The static 3-Quark potential in the SU(3) lattice QCD simulation

T. T. Takahashi
H. Matsufuru
Y. Nemoto
H. Suganuma

Research Center for Nuclear Physics
 Osaka University

- Introduction
- Methods
- Results
- Discussions and Conclusions

1. Introduction

Quark Confinement Feature in Hadrons

- Regge trafectory for hadrons
- Heavy Quarkonium Features
- Lattice QCD Monte Carlo simulations

Quark Confinement Potential for Quark-Antiquark($\mathrm{Q}-\bar{Q}$)System

Linear Potential
 $V_{Q \bar{Q}}(r) \sim \sigma r$

$$
\begin{gathered}
\sigma=0.89 \sim 1.0 \mathrm{GeV} / \mathrm{fm} \\
\sim \text { String tension }
\end{gathered}
$$

Color-Electric Flux-Tube Picture for Hadrons

Linear Q- \bar{Q} potential

Flux-Tube Picture for Quark Confinement

- Color-Electric flux is squeezed as a one-dimensional tube or string
- Strong-Coupling QCD
(Expansion on $\frac{1}{g^{2}}$ in the lattice formalism)
- Dual Superconductor picture
- Lattice QCD simulation

Q- \bar{Q} potential has been well studied, and its feature is directly related to Meson properties!

Then, how about 3 Q potential V_{QQQ} ??
$V_{Q Q Q}=\sigma(a+b+c) ?$

Triangle Flux configuration
$V_{\mathrm{QQQ}}=\sigma L_{\text {total }} ?$
Minimal Flux Length configuration including ' junction point'

- 3Q potential V_{QQQ} is directly responsible to baryon properties

Minimal Length Configuration of Flux Tubes for 3 Quark System

In the flux-tube picture, the total tube length is minimized in the ground-state configuration.
For fixed 3 quarks, there are 2 categories for minimal-length flux.

Type-1 configuration
Type-2 configuration
(a) If each angle of the ' quark triangle' does not exceed 120°, this ' Y-type' flux configuration has minimal length of total flux. Here, a junction appears at the ' Fermat point', and total flux-tube length is given as

$$
L(a, b, c)=\left[\frac{a^{2}+b^{2}+c^{2}}{2}+\frac{\sqrt{3}}{2} \sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}\right]^{\frac{1}{2}}
$$

(b) If an angle of the quark triangle exceeds 120°, the flux tubes appear along two shorter sides.

$$
L(a, b, c)=a+b+c-\operatorname{Min}(a, b, c)
$$

Proof of Minimal Flux Condition

For case (a)

This problem is equivalent to find the point P which realizes the minimization of $L=\overline{\mathrm{AP}}+\overline{\mathrm{BP}}+\overline{\mathrm{CP}}$ for fixed A, B and C .

To begin with, we define the point C^{\prime} where $\triangle B A C^{\prime}$ is equilateral triangle.Taking an arbitary point P inside $\triangle A B C$, let us consider the point P^{\prime} so as to make $\triangle B P P^{\prime}$ be an equilateral triangle.

Then, one easily finds $\triangle B P A \equiv \triangle B P^{\prime} C^{\prime}$, and therefore $\overline{\mathrm{AP}}=\overline{\mathrm{C}^{\prime} \mathrm{P}^{\prime}}$ and

$$
L \equiv \overline{\mathrm{AP}}+\overline{\mathrm{BP}}+\overline{\mathrm{CP}}=\overline{\mathrm{CP}^{\prime}}+\overline{\mathrm{P}^{\prime} \mathrm{P}}+\overline{\mathrm{PC}}
$$

Since C^{\prime} is a fixed point independent of P, L is minimized when P and P^{\prime} lie on a straight line CC '. In this case, $\angle \mathrm{APB}=\angle \mathrm{BPC}=\angle \mathrm{CPA}=120^{\circ}$.

For case (b), we cannot take the point P lying on a straight line $C C^{\prime}$. Then L is minimized when P concides with a vertex point between 2 shorter sides.

Static 3Q Potential

- Long-distance behavior

\sim Quark Confinement

3Q potential is expected to obey the Flux-Tube picture

$$
V_{\mathrm{QQQ}}^{\mathrm{conf}}=\sigma L_{\mathrm{min}}
$$

$L_{\text {min }}$: minimal length of Flux-tubes linking 3 quarks

- Short-distance behavier ~ Perturbative QCD

QCD exhibits the asymptotic freedom

At short distances, perturbative QCD is applicable. At the leading order of $\mathrm{P}-\mathrm{QCD}$, one-gluon-excange is dominant and the interquark potential becomes sum of 2-body Coulomb-type as

$$
V_{\text {coulomb }}=\sum_{i<j} \frac{-A}{\left|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}\right|}
$$

To summarize,the $3 Q$ potential is expected to take the form of

$$
V_{\mathrm{QQQ}}^{\mathrm{total}}=-A\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\sigma L_{\min }+C
$$

2. Method

Expectaion Value of Operator

The vacuum expectation value of operator \mathcal{O} is given as

$$
<\mathcal{O}>=\frac{\int D \bar{\psi} D \psi D A \mathcal{O} \exp \left(i S_{\mathrm{QCD}}\right)}{\int D \bar{\psi} D \psi D A \exp \left(i S_{\mathrm{QCD}}\right)}
$$

But, the analytical calculation of the path-integral is difficult in a nonperturbative manner. So, we adopt numerical simulation based on the Monte Carlo method.

To perform the numerical estimation, it is useful to take the Euclidean metric

Minkowski \rightarrow Euclidean

Then we get $\langle\mathcal{O}\rangle$ as

$$
<\mathcal{O}>=\frac{\int D \bar{\psi} D \psi D A \mathcal{O} \exp (-S)}{\int D \bar{\psi} D \psi D A \exp (-S)}
$$

Here

$$
S \equiv \int L_{E u c i d} d^{4} x
$$

This form is equivalent to that of statistical mechanics.

Lattice QCD Simulation

We define QCD on the lattice by discritizing space-time.

In this formalism, gauge field $A_{\mu}(x)$ is represented by 'Link Variable' $U_{\mu}(s) \equiv \exp \left(\operatorname{iag} A_{\mu}(s)\right)$, with the lattice spacing a and the gauge coupling constant g. All the physical quantities can be expressed as link-variable products.

$$
\begin{gathered}
A_{\mu}(x) \rightarrow U_{\mu}(s) \\
F_{\mu \nu}(x) \rightarrow U_{\mu}(s) U_{\nu}(s+\mu) U_{\mu}^{\dagger}(s+\nu) U_{\nu}^{\dagger}(s) \\
S_{\mathrm{QCD}}=\int d^{4} x \frac{1}{2} \operatorname{tr}\left(F_{\mu \nu}(x) F_{\mu \nu}(x)\right) \\
\rightarrow S_{\mathrm{latt}}=\beta \sum_{s, \mu<\nu} \operatorname{tr}\left(1-\frac{1}{2 N_{c}}\left(P_{\mu \nu}+P_{\mu \nu}^{\dagger}\right)\right) \quad \beta \equiv \frac{2 N_{c}}{g^{2}}
\end{gathered}
$$

- QCD gauge configurations are generated using the Monte Carlo method with random numbers weighted by $\exp (-S)$
\rightarrow Statistical Mechanics

Measurement of Q-Q Potential

The $Q-\bar{Q}$ potential is obtained from the Wilson loop, a product of link variables along the rectangular contour corresponding to the quark color current $j_{\mu}^{a}(x)$.

Here, the Wilson loop $W \equiv \operatorname{tr} \Pi_{i} U_{\mu_{i}}\left(s_{i}\right)$ is gauge invariant, and relates with the potential $V(R)$ such as

$$
\begin{aligned}
<W> & \equiv<\operatorname{tr} \prod_{i} U_{\mu_{i}}\left(s_{i}\right)>=<\exp \left(-\int j_{\mu}^{a}(x) A_{\mu}^{a}(x) d^{4} x\right)> \\
& =\sum_{n=0}^{\infty} C_{n}(R) \exp \left(-V_{n}(R) T\right)
\end{aligned}
$$

The label n denotes the quantum number, and $n=0$ corresponds to the ground state. The factor $C_{n}(R)$ physically means the overlap between the operator W and the n-th state. Here, the normalization condition $\Sigma_{n=0}^{\infty}\left|C_{n}(R)\right|^{2}=1$ is imposed.

If we take the limit $T \rightarrow \infty$,

$$
<W>\sim C_{0} \exp \left(-V_{0}(R) T\right)
$$

So, to get the grount-state potential, it is desired to take the large- T Wilson loop as possible.

Measurement of 3Q Potential

Then, how can we get the $3 Q$ potential ? For this purpose, we consider the 3 Q operator $W_{3 \mathrm{Q}}$ defined on the contour of 3 large staples as shown in the above figure. We denote the product of link-variables along each staple by U_{1}, U_{2} and U_{3}, which are $\mathrm{SU}(3)$ matricies.

Similar to $Q-\bar{Q}$ case, the $3 Q$ potential can be obtained from the expectation value of the $3 Q$ operator $\left\langle W_{3 Q}\right\rangle$.

$$
\begin{aligned}
<W_{3 \mathrm{Q}}> & =<\epsilon^{a_{1} a_{2} a_{3} \epsilon_{3}} \epsilon^{b_{2} b_{2} b_{3}} U_{1}^{a_{1} b_{1}} U_{2}^{a_{2} b_{2}} U_{3}^{a_{3} b_{3}}> \\
& =\sum_{n=0} C_{n} \exp \left(-V_{n}(i, j, k) T\right)
\end{aligned}
$$

By taking the limit $T \rightarrow \infty$, the ground-state potential $V_{0}(i, j, k)$ can be extracted as

$$
<W_{3 Q}>\sim C_{0} \exp \left(-V_{0}(i, j, k) T\right)
$$

To estimate the ground-state potential, it is desired to take large T.

Effective Mass Plot

To evaluate the ground-state potential $V_{0}(R)$, it is convinient to measure the 'Effective mass', defined as

$$
\begin{aligned}
V(R, T) & \equiv \ln \frac{\langle W(R, T)\rangle}{\langle W(R, T+1)\rangle} \\
& \sim V_{0}(R)+\frac{C_{1}(R)}{C_{0}(R)} e^{-\Delta V(R) T}\left(1-e^{-\Delta V(R)}\right)
\end{aligned}
$$

Then, from the plot of the 'effective mass' $V(R, T)$ as the function of T, we can check whether ground-state is dominant in $\langle W\rangle$, and can estimate the appropriate value of T to get the ground-state potential.

Smearing Technique

Smearing is a standard technique which enhances ground-state overlap in the lattice formalism. This is achieved by the replacementof spatial link variables $U_{i}(s)$ by 'obscured' links $\widetilde{U_{i}}(s)$ iteratively.

$$
U_{i}(s) \rightarrow \widetilde{U_{i}}(s) \equiv N\left[\left(\alpha U_{i}(s)+\sum_{j \neq i} U_{j}(s) U_{i}(s+j) U_{j}^{\dagger}(s+i)\right]\right.
$$

(N is a normarization constant, and α is a parameter.)

We take $\alpha=2.3$, number of iteration: $N_{\text {smr }}=20$ for $\mathrm{Q}-\overline{\mathrm{Q}}$ potential, and $\alpha=2.3, N_{\text {smr }}=20$ for 3Q potential .

3. Results

Lattice QCD Result of Q- \bar{Q}
 Potential

The solid curve denotes a fitting function of

$$
V(R)=-\frac{A}{R}+\sigma R+C
$$

The string tension is estimated as $\sigma \sim 0.85 \mathrm{GeV} / \mathrm{fm}$

Effective Mass Plot for 3Q state

Lattice QCD Result for 3Q Potential

(a) Y-type ansatz

The 3 Q potential V_{QQQ} as the function of the minimal length $R_{\text {min }}$ of the flux tube linking the 3 quarks. Apart from a constant, $V_{Q Q Q}$ is described as a linear potential in terms of the minimal linking length $R_{\text {min }}$.

(b) Delta-type ansatz

The 3 Q potential $V_{Q Q Q}$ as the function of the perimeter $R_{\text {delta }}$ of the quark triangle. The delta-type ansatz is less successful for the fitting V_{QQQ} in comparison with the Y -type ansatz.

Table

(i, j, k)	$V_{\text {latt }}$	$V_{\min }$	$V_{\text {latt }}-V_{\min }$
$(1,1,1)$	$1.0231(38)$	1.0091	-0.0140
$(1,1,2)$	$1.2181(61)$	1.2145	-0.0036
$(1,1,3)$	$1.4154(49)$	1.3958	-0.0196
$(1,2,2)$	$1.3870(46)$	1.3887	0.0017
$(1,2,3)$	$1.5588(60)$	1.5580	-0.0008
$(1,3,3)$	$1.7141(43)$	1.7195	0.0054
$(2,2,2)$	$1.5216(33)$	1.5230	0.0014
$(2,2,3)$	$1.6745(11)$	1.6755	0.0010
$(2,3,3)$	$1.8242(54)$	1.8169	-0.0073
$(3,3,3)$	$1.9607(92)$	1.9438	-0.0169
$(1,1,0)$	$0.8459(36)$	0.8529	0.0070
$(1,2,0)$	$1.0970(40)$	1.1023	0.0053
$(1,3,0)$	$1.2935(39)$	1.2926	-0.0009
$(2,2,0)$	$1.3164(40)$	1.3262	0.0098
$(2,3,0)$	$1.5032(58)$	1.5069	0.0037
$(3,3,0)$	$1.6741(40)$	1.6808	0.0067

The comparison between the lattice QCD data $V_{\text {latt }}$ for the 3 Q potential and the fitting function of

$$
V_{\min }=-A\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\sigma R_{\min }+C
$$

for each 3 quark configuration labeled by ($\mathrm{i}, \mathrm{j}, \mathrm{k}$). One finds a quite good agreement between $V_{\text {latt }}$ and $V_{\min }$ within a few $\%$ accuracy.

Comparison of lattice QCD data with Theoretical Fitting Curve

The comparison between the lattice QCD data for the 3 Q potential and the fitting function

$$
V_{\mathrm{QQQ}}=-A\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\sigma R_{\min }+C
$$

which is suggested from the flux-tube picture. This fitting with 3 parameters ($\mathrm{A}, \sigma, \mathrm{C}$) seems quite well.

Summary and Conclusion

The static three-quark potential is studied in detail with the SU(3) lattice-QCD Monte Carlo simulation at the quenched level. The potential measurements are done for 16 patterns of threequark configurations on the $\operatorname{SU}(3)$ lattice with $12^{3} \times 24$ and $\beta=$ 5.7. The ground-state potential for three-quark systems is extracted with the standard smearing technique. Apart from a constant, the ground-state three-quark potential is well fitted by a sum of the two-body Coulomb-type part and the three-body linear part within a few \% accuracy. Here, the three-quark confinement potential $V_{3 Q}^{\text {conf }}$ is set to be proportional to the minimal length linking the three quarks, and the coefficient almost coincides with the string tension obtained from the $Q-\bar{Q}$ potential. In terms of the hadron flux-tube picture, this lattice QCD result supports the minimal flux-tube formation among the three quarks instead of the triangle flux-tube formation. As an approximation, however, $V_{3 Q}^{\text {conf }}$ is almost describable by a sum of effective two-body $Q-Q$ potentials with a reduced string tension by a color factor.

$$
\begin{gathered}
V_{\mathrm{QQQ}}=-A\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\sigma R_{\min }+C \\
R_{\min }(a, b, c)=\left[\frac{a^{2}+b^{2}+c^{2}}{2}+\frac{\sqrt{3}}{2} \sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}\right]^{\frac{1}{2}}
\end{gathered}
$$

