Static 3-Quark potential in the $\mathrm{SU}(3)$ lattice QCD simulation

T. T. Takahashi
H. Matsufuru
Y. Nemoto
H. Suganuma

Research Center for Nuclear Physics
 Osaka University

- Introduction
- Methods
- Results
- Discussions and Conclusions

1. Introduction

Quark Confinement Feature in Hadrons

- Regge trafectory for hadrons
- Heavy Quarkonium Features
- Lattice QCD Monte Carlo simulations

Quark Confinement Potential for Quark-Antiquark($\mathrm{Q}-\overline{\mathrm{Q}}$)System

Linear Potential
 $V_{\mathrm{Q} \overline{\mathrm{Q}}}(r) \sim \sigma r$

$$
\begin{aligned}
\sigma= & 0.89 \sim 1.0 \mathrm{GeV} / \mathrm{fm} \\
& \sim \text { String tension }
\end{aligned}
$$

Measurement of Q-Q Potential

EPS File
wilsonloop.tgif.eps.epsf not
found

$$
\begin{gathered}
W \equiv \operatorname{tr} \Pi_{i} U_{\mu_{i}}\left(s_{i}\right) \\
<W>\equiv<\operatorname{tr} \prod_{i} U_{\mu_{i}}\left(s_{i}\right)>=<\exp \left(-\int j_{\mu}^{a}(x) A_{\mu}^{a}(x) d^{4} x\right)> \\
=\sum_{n=0}^{\infty} C_{n}(R) \exp \left(-V_{n}(R) T\right)
\end{gathered}
$$

If we take the limit $T \rightarrow \infty$,

$$
<W>\sim C_{0} \exp \left(-V_{0}(R) T\right)
$$

Lattice QCD Result of Q- \bar{Q} Potential

EPS File
forposter.wilsonloop.eps.epsf
not found

The solid curve denotes a fitting function of

$$
V(R)=-\frac{A}{R}+\sigma R+C
$$

The string tension is estimated as $\sigma \sim 0.85 \mathrm{GeV} / \mathrm{fm}$

Color-Electric Flux-Tube Picture for Hadrons

- Color-Electric flux is squeezed as a one-dimensional tube or string

- Strong-Coupling QCD (Expansion on $\frac{1}{g^{2}}$ in the lattice formalism)
- Dual Superconductor picture
- Lattice QCD simulation

Then, how about 3Q potential V_{QQQ} ??
$V_{\mathrm{QQQ}}=\sigma(a+b+c) ?$

Triangle Flux configuration
$V_{\mathrm{QQQ}}=\sigma L_{\text {total }} ?$

Minimal Flux Length configuration including ' junction point'

Minimal Length Configuration of Flux Tubes for 3 Quark System

In the flux-tube picture, the total tube length is minimized in the ground-state configuration.
For fixed 3 quarks, there are 2 categories for minimal-length flux.

Type-1 configuration
Type-2 configuration
(a) If each angle of the ' quark triangle' does not exceed 120°, this ' Y-type' flux configuration has minimal length of total flux. Here, a junction appears at the ' Fermat point', and total flux-tube length is given as

$$
L(a, b, c)=\left[\frac{a^{2}+b^{2}+c^{2}}{2}+\frac{\sqrt{3}}{2} \sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}\right]^{\frac{1}{2}}
$$

(b) If an angle of the quark triangle exceeds 120°, the flux tubes appear along two shorter sides.

$$
L(a, b, c)=a+b+c-\operatorname{Min}(a, b, c)
$$

Static 3Q Potential

- Long-distance behavior

\sim Quark Confinement

3Q potential is expected to obey the Flux-Tube picture

$$
V_{\mathrm{QQQ}}^{\mathrm{conf}}=\sigma L_{\mathrm{min}}
$$

$L_{\text {min }}$: minimal length of Flux-tubes linking 3 quarks

- Short-distance behavier ~ Perturbative QCD

QCD exhibits the asymptotic freedom

At short distances, perturbative QCD is applicable. At the leading order of $\mathrm{P}-\mathrm{QCD}$, one-gluon-excange is dominant and the interquark potential becomes sum of 2-body Coulomb-type as

$$
V_{\text {coulomb }}=\sum_{i<j} \frac{-A}{\left|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}\right|}
$$

To summarize,the $3 Q$ potential is expected to take the form of

$$
V_{\mathrm{QQQ}}^{\mathrm{total}}=-A\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\sigma L_{\min }+C
$$

Measurement of 3Q Potential

EPS File
baryonloop.tgif.eps.epsf not
found

Then, how can we get the $3 Q$ potential ? For this purpose, we consider the 3Q operator $W_{3 Q}$ defined on the contour of 3 large staples as shown in the above figure. We denote the product of link-variables along each staple by U_{1}, U_{2} and U_{3}, which are $\mathrm{SU}(3)$ matricies.

Similar to $\mathrm{Q}-\overline{\mathrm{Q}}$ case, the 3 Q potential can be obtained from the expectation value of the $3 Q$ operator $\left\langle W_{3 Q}\right\rangle$.

$$
\begin{aligned}
<W_{3 \mathrm{Q}}> & =<\epsilon^{a_{1} a_{2} a_{3} a_{3}} \epsilon^{b_{2} b_{2} b_{3}} U_{1}^{a_{1} b_{1}} U_{2}^{a_{2} b_{2}} U_{3}^{a_{3} b_{3}}> \\
& =\sum_{n=0} C_{n} \exp \left(-V_{n}(i, j, k) T\right)
\end{aligned}
$$

By taking the limit $T \rightarrow \infty$, the ground-state potential $V_{0}(i, j, k)$ can be extracted as

$$
<W_{3 Q}>\sim C_{0} \exp \left(-V_{0}(i, j, k) T\right)
$$

To estimate the ground-state potential, it is desired to take large T.

Lattice QCD Result for 3Q Potential

(a) Y-type ansatz

EPS File for-
poster.baryonloop1.eps.epsf not found

$$
V_{Q Q Q}^{\text {total }}=-A\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\sigma L_{\min }+C
$$

(b) Delta-type ansatz

$$
\begin{aligned}
& \text { EPS File for- } \\
& \text { poster.baryonloop2.eps.epsf } \\
& \text { not found } \\
& V_{\mathrm{QQQ}}^{\mathrm{total}}=-A\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\sigma(a+b+c)+C
\end{aligned}
$$

