Hadrons in finite temperature lattice QCD

Hideo Matsufuru (RCNP, Osaka Univ.)

for QCD-TARO Collaboration:

Ph. de Forcrand^a, M. García Pérez^b, T. Hashimoto^c, S. Hioki^d,
R. Katayama^e, H. Matsufuru, O. Miyamura^e, A. Nakamura^f,
I.-O. Stamatescu^{g,h}, T. Takaishiⁱ and T. Umeda^e

TMU-Yale Simposium 13-15 Dec 1999, in Tokyo

^a SCSC, ETH-Zürich, Switzerland

^b Dept. Física Teórica, Univ. Autónoma de Madrid, Spain

^c Dept. Appl. Phys., Fac. Engineering, Fukui Univ., Japan

^d Dept. of Physics, Tezukayama Univ., Nara, Japan

^e Dept. of Physics, Hiroshima Univ., Japan

 f Res. Inst. for Inform. Sci. and Education, Hiroshima Univ., Japan

^g Inst. Theor. Physik, Univ. of Heidelberg, Germany

^h FEST, Heidelberg, Germany

^{*i*} Hiroshima University of Economics, Japan

References:

Lattice 98, 420-425; hep-lat/9809173 hep-lat/9911001 (Lattice 99)

<u>Introduction</u>

Finite temperature hadron properties:

• What happens on hadrons

or what new effect above T_c ?

 \bullet Change of masses and width near T_c

Example of effective theory: NJL model analysis

c.f. Hatsuda and Kunihiro, Phys. Rep. 247 (1994) 221

- Chiral restoration
- parity partner degeneracy
- \circ Above T_c : Soft modes

<u>Our Goals</u>

Study of hadronic correlators at finite temperature using lattice QCD

Temporal correlator ;

 $\Rightarrow \text{Wave function} \\ \text{Is there bound state at } T > T_c ? \\ \text{How can we show that } ? \end{cases}$

 \Rightarrow Spectral function

- Chiral symmetry restoration and deconfinement
 Relation of two phenomena
- □ Relation between hadronic correlators and topological quantities

Lattice QCD

— SU(3) gauge theory on Euclidean 4-D lattice

- \circ Gauge field: link var. $U_{\mu}(x) \sim e^{igaA_{\mu}(x)}$
- \circ Quark field: $ar{\psi}(x)$, $\psi(x)$

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi O[U, \bar{\psi}, \psi] \exp(-S[U, \bar{\psi}, \psi])$$

S: lattice action

 \rightarrow continuum QCD action for $a \rightarrow 0$ limit (a : lattice spacing)

 \Rightarrow Monte Carlo simulation

Quark field (Grassmann field) - integrated out:

$$Z = \int \mathcal{D}U\mathcal{D}\det K[U] \exp(-S[U, \bar{\psi}, \psi])$$

where

$$S_F = \sum_{x,y} \bar{\psi}(x) K(x,y) \psi(x)$$

Quenched approximation: set det K = 1

- neglect quark loop effect ($m_q \rightarrow \infty$ limit)

Lattice QCD(2)

Finite temperature lattice QCD

 $Z = \int \mathcal{D}U \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(-\int_{0}^{\tau} d\tau \int d^{3}x\mathcal{L}
ight)$

Periodic/anti-periodic boundary condition for boson/fermion in temporal direction

Temperature Green function

⇒information on spectral function at finite temperature Hashimoto, Nakamura and Stamatescu (1993)

For detailed investigation of hadronic properties at T > 0, sufficient resolution in temporal direction is significant (need large temporal cutoff)

 \Rightarrow Anisotropic lattice

Lattice QCD (3)

Anisotropic lattice: Karsch ('82) Burgers, Karsch, Nakamura and Stamatescu ('88)

Different cutoffs in spatial (a_{σ}^{-1}) and in temporal (a_{σ}^{-1}) directions: $a_{\sigma} > a_{\sigma}$

 \rightarrow Enough information in t (Euclidean temporal direction) keeping spatial lattice size not quite large

Bare anisotropy γ in the action and the renormalized anisotropy ξ is different

 \rightarrow "Calibration" is necessary

(tuning of parameters for desired physical anisotropy and cutoffs)

Strategy

Difficulty; Mass is extracted at $t \gg 1$. However, at T > 0, temporal extent is short. \implies Choice of hadronic operator is significant.

• Investigate following questions.

- Define the "hadronic operator" as one which has sufficiently large overlap with corresponding states. Then, what happens on this operator at T>0 ?
- Is there bound state at $T > T_c$? How can we show that ?
- Develop reliable procedure to extract the pole masses with short extent in t-direction.

Simulation

Present simulation: corase, unimproved lattice ⇒Qualitative results, deveropment of procedures

□ Lattice: $12^3 \times N_t \ \beta = 5.68, \ \gamma = 4.0, \ \text{quenched}$ $N_t = 72 \ (T \simeq 0), \ 20 \ (T < T_c), \ 16, \ 12 \ (T > T_c) : T = 1/N_t a_t$ $\circ \ \# \text{conf.} = 60$ $\circ \ \text{Anisotropy:} \ \xi \equiv a_s/a_t = 5.3(1)$ from the ratio of Wilson loops Engels, Karsch and Scheideler (1997), Klassen (1998) $\circ \ \text{Cutoff:} \ a_{\sigma}^{-1} = 0.85(3) \ \text{GeV} \ (a_{\sigma} \sim 0.24 \ \text{fm}), \ a_{\tau}^{-1} = 4.5(2) \ \text{GeV}$ from heavy quark potential

- \Box Light quark: Anisotropic Wilson action
- Hopping parameter and bare anisotropy:

_	κ_s	γ_F	m_q	m_{PS}	$m_V \ [GeV]$
	0.0810	4.05	0.17	0.81	0.90
	0.0840	3.89	0.12	0.68	0.80
	0.0860	3.78	0.10	0.61	0.75
-			(m is with paive actimate)		

 $(m_q \text{ is with naive estimate})$

 $\circ \gamma_F$ determined by calibration

using masses in spatial and temporal direction

- Scalar channel: only connected part is evaluated
- Chiral extrapolation: $m_q \rightarrow 0$ limit
- \Box Heavy quark: Anisotropic Fermilab action
- Quark mass around charm quark
- Calibration using the dispersion relation

Light Hadrons (1)

Correlators:

$$\begin{split} G_M(\vec{x},t) &= \sum_{z,y_1,y_2} \omega_1(\vec{y_1})\omega_2(\vec{y_2}) \\ &\times \langle Tr[S(\vec{y_1},0;\vec{z},t)\gamma_M\gamma_5 S^{\dagger}(\vec{y_2},0;\vec{z}+\vec{x},t)\gamma_5\gamma_M^{\dagger}] \rangle \\ S(\vec{x_1},t_1;\vec{x_2},t_2) : \text{ quark propagator} \\ \gamma_M &= \gamma_5, \ \gamma_1, \ 1, \ \gamma_1\gamma_5 \\ (M &= P_S, \ V, \ S, \ A \) \end{split}$$

♦ Gauge fixing : Coulomb gauge

Parameters a, p: determined from the wave function at T = 0

Light Hadrons (2)

Effective mass : m_{eff}

$$\frac{G_M(\vec{x}=0,t)}{G_M(\vec{x}=0,t+1)} = \frac{\cosh\left[m_{\text{eff}}(N_t/2-t)\right]}{\cosh\left[m_{\text{eff}}(N_t/2-t-1)\right]}$$

 $m_{eff} \rightarrow m_M$ for sufficient large t

 \circ Source dependence (at T=0)

 \Rightarrow exp-exp source seems the best choice (?)

 \circ effective mass at T > 0

Variational analysis (T = 0):

$$C_M^{(i,j)}(t) = \sum_{\vec{x}} \langle O_M^{(i)}(\vec{x},t) O_M^{(j)\dagger}(0) \rangle$$

$$O_M^{(i)}(\vec{x},t) = \sum_{\vec{y}} \phi(\vec{y}) \bar{q}(\vec{x}+\vec{y},t) \Gamma_M q(\vec{x},t)$$

 $\phi(ec{y})$: point, exp, exp-exp (convoluted)functions

Diagonalize 3×3 correlator matrix $C_M^{(i,j)}(t)$ $\rightarrow D^{(k)}(t)$ (k = 1, 2, 3) (diagonal components) : large overlap with each state is expected

Contribution to ground state:

point-exp \gtrsim exp-exp \gg point-point

• Cancelation of 1st and 2nd excited states in exp-exp operator

Variational analysis (T > 0):

 $\hfill\square$ Result of the variational analysis:

- Diagonalized correlator with the lowest effective mass
 consistent with exp-exp correlator
- Large statistical fluctuation
- $\circ~$ Different behavior from "fake" meson which is composed with free quark propagators even above T_c
- Bound state in the deconfining phase ?
- □ *t*-dependence of the wave function (next page) also suggests that quark and anti-quark tend to stay together

We assume the existence of mesonic modes at all T and extract temporal (pole) masses from exp-exp correlators

- Fit range: largest 3 points
- Large systematic uncertainties

₩

- Temperature dependence of mass
- Comparison with screening mass

t-dependence of the wave function: $w_{\Gamma}(\vec{r},t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t)\Gamma q(\vec{x},t)O^{\dagger}(0) \rangle$

If there is no bound state (like free quark case), wave function becomes broader as t.

In this case,

(normalized at spatial origin)

increases as t.

Light Hadrons (8)

— Conclusion —

(1) Masses

- No significant change of mass at $N_t = 20$ ($T \sim 0.93T_c$)
- Significant change at $N_t = 16$, $12 (T \sim 1.15T_c, 1.5T_c)$
- (2) Wave functions
 - No significant change at $N_t = 20$.
 - Narrower than free q- \bar{q} even at $N_t = 16, 12$. Still prefer to stay together.

(3) s-mass (screening mass) vs t-mass (pole mass)

t-mass is not well identified in the whole t.

 \Rightarrow Take largest 3 point for cosh-fitting.

- Grows above T_c .
- Stronger growing of s-masses.
- Consistent behaviour with NJL model.

- Outlook -

• Extraction of spectral function

QCD-TARO, in Lattice 97

Nakahara, Asakawa and Hatsuda (1999)

- Other channels: baryons etc.
- Relation with topological quantities
- Improved action clover quark action
- With dynamical quarks

Heavy Quarkonium (1)

Heavy quark: $m_Q \gtrsim a_\sigma^{-1}$

 \Rightarrow Fermilab action – Effective theory approach With O(a) improvement (with clover term)

Clover action: Sheikholeslami and Wohlert (1985) Fermilab action: El-Khadra, Kronfeld and Mackenzie (1997)

Anisotropic Fermilab action — Calibration with dispersion relation

cf. Klassen, hep-lat/9809174

Charmonium at finite temperature

Target meson mass $\sim m_{J/\psi} = 3.1~{
m GeV}$

- mass shift near T_c ? Hashimoto et al.,(1986)
- J/ψ suppression above T_c ? Matsui and Satz (1986)

Effective mass Correlator with exp type smearing, $m_Q \sim m_{charm}$

Heavy Quarkonium (3)

— Conclusion —

Meson effective mass:

- No significant change at $N_t = 20$
- Significant change at $N_t = 16, 12$ in the vector channel

The Temperature dependence is different from that of light mesons, especially in vector channel.

- Outlook -

Need more detailed analysis

- Variational analysis, and so on

 \circ Precise determination of mass shift near T_c Comparison with quark potential model using measured $Q\text{-}\bar{Q}$ potential at T>0

 \circ Fate of J/ψ meson above T_c