Monte Carlo Renormalization Group Analysis of QCD in two dimensional coupling space

QCD-TARO Collaboration

Lattice '99 / 1 July 1999 / Pisa, Italy

Abstract: We report our recent result of the Monte Carlo Renormalization Group analysis in two dimensional coupling space. The qualitative feature of the RG flow is described with a phenomenological RG equation. The data on the lattice spacing for various actions serve the condition to determine the parameters.

- CONTENTS -

MCRG and Perfect action search Results of MCRG Flow

- Flow in 2-D coupling space
- \circ 3-D coupling space
- \circ DBW2 action

Phenomenological RG equation

- Weak coupling regime
- Strong coupling
- $\circ\,$ Feature of flow

Summary and Outlook

The QCD-TARO Collaboration

Ph. de Forcrand^a, M. García Pérez^b, T. Hashimoto^c, S. Hioki^d, H. Matsufuru^e, O. Miyamura^f, A. Nakamura^g, I.-O. Stamatescu^{h,i}, T. Takaishi^j and T. Umeda^f

- ^a SCSC, ETH-Zürich, Switzerland
- ^b Dept. Física Teórica, Univ. Autónoma de Madrid, Spain
- ^c Dept. Appl. Phys., Fac. Engineering, Fukui Univ., Japan
- d Dept. of Physics, Tezukayama Univ., Nara, Japan
- e Research Center for Nuclear Physics, Osaka Univ., Japan
- f Dept. of Physics, Hiroshima Univ., Japan
- g Res. Inst. for Inform. Sci. and Education, Hiroshima Univ., Japan
- ^h Inst. Theor. Physik, Univ. of Heidelberg, Germany
- i FEST, Heidelberg, Germany
- j Hiroshima University of Economics, Japan

Physical goals:

• Finite Temperature QCD

 \rightarrow Umeda's poster

• Finite Chemical Potential

 \rightarrow Takaishi's talk

MCRG and Improved Actions

- this presentation

Blocking and MCRG

Action: $S = \beta \Sigma_i c_i O_i$

[Swendsen '81]

blocked conf. \rightarrow coupling $\{\beta^{(1)}, c_i^{(1)}\}$

• Schwinger-Dyson equation

• Demon method

 \downarrow

- Improved in comparison with directly generated conf.

Perfect Action

Blocking trajectory

→ Renormalization Trajectory (RT)

Action on RT – Perfect action:

Same physics as in continuum QCD

Finite number of operators

 \rightarrow truncation effect

Strategy

First we investigate GR flow in 2-D coupling space

• Determination of RT on 2-D space

• Is truncation effect large ?

- comparison with 3-D coupling space

• Description of flow dynamics

- phenomenological RG equation

Quantitative determination of RT

 \rightarrow Perfect action in 2-D coupling space

Then,

• Coupling space with D > 2

• Inclusion of fermions

Flow in 2-D coupling space

Action:

$$S = \beta_{11} \sum ReTr(1 - \frac{1}{3}U_{11}) + \beta_{12} \sum ReTr(1 - \frac{1}{3}U_{12})$$

Swendsen blocking \rightarrow Schwinger-Dyson method [QCD-TARO, hep-lat/9806008]

3-D Coupling Space (1)

Flow in three-coupling space:

$$S = \beta_{11} \sum ReTr(1 - \frac{1}{3}U_{11}) + \beta_{12} \sum ReTr(1 - \frac{1}{3}U_{12}) + \beta_{twist} \sum ReTr(1 - \frac{1}{3}U_{twist})$$

[QCD-TARO, in Lattice '97; hep-lat/9802006]

3-D Coupling Space (2)

 \circ Flow projected on (β_{11},β_{12}) are similar to 2-D result. \circ Coupling β_{twist} is small

- does not change coupling flow very much.

DBW2 action (1)

DBW2 action - midway to perfect action (Doubly Blocked Wilson action in 2 coupling space) [QCD-TARO, in Lattice '98; hep-lat/9809086]

Near RT, actions really improved ?

Fixed c_{12}/c_{11} ($\beta_{11} = \beta c_{11}$, $\beta_{12} = \beta c_{12}$) with $c_{11} + 8c_{12} = 1$

Twice blocked lattice from Wilson action \rightarrow Couplings determined with Demon method

 $c_{12} = -1.4088$

c.f. Symanzik action: $c_{12} = -1/12$ Iwasaki action : $c_{12} = -0.331$

Result

Fig.1: Restration of rotational symmetry in $Q\bar{Q}$ potential

$$\delta_V^2 \equiv \sum_{\text{off}} \frac{[V(R) - V_{on}(R)]^2}{V(R)^2 \delta V(R)^2} \left(\sum_{\text{off}} \frac{1}{\delta V(R)^2} \right)^{-1}$$

 $V_{on}(R)$: fitting function from only on-axis data Σ_{off} implies summation over only off-axis data

Fig.2: Scaling of $T_c/\sqrt{\sigma}$

Improvement is actually found near RT.

DBW2 action (2)

0.10 Wilson 0.08 Symanzik × Iwasaki • DBW2 0.06 ∞ 0.04 0.02 0.00 0.05 0.10 0.15 0.20 a²[fm²]

Fig.1:Rotational symmetry breaking of $Q\bar{Q}$ potential

Fig.2: Scaling of $T_c/\sqrt{\sigma}$

with Iwasaki et al., Phys.Rev.D56 (1997) 151, Beinlich et al., Eur.Phys.J. C6 (1999) 133

Flow dynamics

Phenomenological RG equation in 2-D coupling space

$$\frac{d\vec{\beta}}{da} = -2a \begin{pmatrix} \sigma + \zeta_1/a & 0\\ 0 & 2\sigma + \zeta_2/a \end{pmatrix} \vec{\beta} + \frac{1}{a} \begin{bmatrix} \mathbf{A}\vec{\beta} - B(\beta_n) \frac{\vec{n}}{|\vec{n}|^2} \end{bmatrix} - (1)$$

where,

$$\vec{\beta} = \left(\begin{array}{c} \beta_{11} \\ \beta_{12} \end{array} \right)$$

A: 2×2 constant matrix with eigenvalues 0 and λ , $B(x) = 12b_0 + 72b_1/x$,

with $b_0 = 33/(48\pi^2)$, $b_1 = (102/121)b_0^2$

 \vec{n} : constant vector – set to (1,8)

(from weak coupling expansion of action)

- σ : string tension
- ζ_1 , ζ_2 , components of ${f A}$ are parameters

First term describes flow in strong coupling region Second term is for weak coupling region Weak coupling region (1)

The first term of (1):

$$\frac{d\vec{\beta}}{dlna} = \mathbf{A}\vec{\beta} - B(\beta_n)\frac{\vec{n}}{|\vec{n}|^2}$$

Asymptotic scaling of SU(3) gauge theory \Rightarrow one of eigenvalue of A is zero, the other is irrelevant: $\lambda < 0$.

Features described by this equation are as follows:

If
$$A = 0$$
,
 $\vec{\beta} = \beta_n \frac{\vec{n}}{|\vec{n}|^2} + c\vec{n}_{\perp}$
with $a\Lambda = (\frac{\beta_n/6 + b_1/b_0}{b_0})^{b_1/2b_0^2} \exp(-\beta_n/12b_0)$
($\beta_n = (\vec{n} \cdot \vec{\beta})$, \vec{n}_{\perp} is orthogonal to \vec{n} .)

: 2-loop asymptotic scaling

Weak coupling region (2)

 $A \neq 0$ case: consider a simple case with $b_1 = 0$. \rightarrow inhomogeneous linear diff. eq.

$$\frac{d\vec{\beta}}{dlna} = \mathbf{A}\vec{\beta} - 12b_0\frac{\vec{n}}{|\vec{n}|^2} = \mathbf{A}\vec{\beta} + h_1\vec{v_1} + h_2\vec{v_2}$$

where $\vec{v_1}$ and $\vec{v_2}$ are normalized eigenvectors for eigenvalues λ and 0,

$$h_1 = -(12b_0/\lambda)(\vec{v_1} \cdot \mathbf{A}\vec{n})/|\vec{n}|^2, h_2 = -12b_0[(\vec{v_2} \cdot \vec{n}) - (\vec{v_2} \cdot \vec{v_1})(\vec{v_1} \cdot \mathbf{A}\vec{n})/\lambda]/|\vec{n}|^2.$$

 \downarrow

General solution is

$$\vec{eta} = (c_1 a^\lambda - h_1 / \lambda) \vec{v_1} + (c_2 + h_2 \ln a) \vec{v_2}$$

With increasing a,

 $\vec{\beta}$ firstly approach to a degenerate line,

$$(\vec{v}_{2\perp} \cdot \vec{\beta}) = -\frac{h_1}{\lambda} (\vec{v}_{2\perp} \cdot \vec{v}_1) \qquad (\vec{v}_{2\perp} \perp \vec{v}_2, |\vec{v}_{2\perp}| = 1)$$

with power behavior in a,

and successively runs logarithmically along $\vec{v_2}$.

Strong coupling region (1)

Model equation in strong coupling region:

$$\frac{d\vec{\beta}}{da^2} = -\begin{pmatrix} \sigma_1 + \zeta_1/a & 0\\ 0 & \sigma_2 + \zeta_2/a \end{pmatrix} \vec{\beta} ,$$

where σ 's and ζ 's are parameters.

Strong coupling calculation of Wilson loop

$$< W(N \times M) >= (\beta_1/18)^{NM} P_{NM}(\beta_2/\beta_1^2)$$
,

 $P_{NM}(x)$: Polynomial whose coefficients are tiling weights

for filling the area by 1×1 and 1×2 actions Requiring the area law with physical string tension σ ,

$$(\beta_1/18)^{NM} P_{NM}(\beta_2/\beta_1^2) = e^{-a^2\sigma NM}.$$

Guess of $P_{NM}(\beta_2/\beta_1^2)$ for large NM: $P_{NM} \sim e^{sNM}$ with entropy density s corresponding to choice of 1×1 or 1×2 tiles $\rightarrow ln(\beta_1/18) + s = -a^2\sigma$

In a differential form, $d\beta_1/da^2 = -\sigma$ ($\sigma_1 = \sigma$) Area law $\rightarrow \sigma_2 = 2\sigma$

 ζ 's control next order correction.

Fit of Numerical Results

In terms of dimensionless variable $a_s = a\sqrt{\sigma}$, (1) becomes

$$\frac{d\vec{\beta}}{da_s} = -2 \begin{pmatrix} a_s + \bar{\zeta}_1 & 0\\ 0 & 2a_s + \bar{\zeta}_2 \end{pmatrix} \vec{\beta} + \frac{1}{a_s} \left[\mathbf{A}\vec{\beta} - B(\beta_n) \frac{\vec{n}}{|\vec{n}|^2} \right]$$

where $\bar{\zeta} = \zeta/\sqrt{\sigma}$.

Parameterization of A:

$$\vec{v_1} = (\cos \theta', \sin \theta')$$
 and $\vec{v_2} = (\cos \theta, \sin \theta),$

then

$$\mathbf{A} = \frac{\lambda}{\sin(\theta - \theta')} \begin{pmatrix} \sin\theta\cos\theta' & -\cos\theta\cos\theta' \\ \sin\theta\sin\theta' & -\cos\theta\sin\theta' \end{pmatrix}$$

We fit the following data to this RG equation.

- Initial condition: Wilson action ($\beta_{12} = 0$)
- Results for Symanzik, Iwasaki and DBW2 actions
 - o QCD-TARO, Phys.Rev.Lett.71(1993)3063
 - Borici and Rosenfelder, hep-lat/9711035 (Lattice '97)
 - QCD-TARO, hep-lat/9809086 (Lattice '98)
 - CP-PACS, hep-lat/9905005

Preliminary Result (1)

Preliminary result of fit:

$$\theta = -0.118, \ \theta' = -0.218, \lambda = -2.0 \ \zeta_1 = \zeta_2 = 0.25$$

(to show qualitative feature)

Qualitative feature of flow is well described. $\downarrow\downarrow$

Quantitative fit

- Renormalization trajectory in 2-D space
- \circ Constant a contour

Preliminary Result (2)

Conclusion and Outlook

Summary of our previous works:

- Determination of flow in 2-D coupling space
- Comparison with 3-D space (with twist operator) $-c_{tist}$ is small.
- DBW2 action

(obtained on twice blocked conf. from Wilson action)

- near to RT, rotational symmetry and scaling of $T_c/\sqrt{\sigma}$ are improved

In this work,

We found that phenomenological renormalization group equation well describe the observed feature of flow. Preliminary fit result is encouraging.

Outlook:

- Quantitative determination of RT and use as an improved action
- MCRG with fermions