Monte Carlo Renormalization Group Analysis of QCD in two dimensional coupling space

QCD-TARO Collaboration

Lattice '99 / 1 July 1999 / Pisa, Italy

Abstract

We report our recent result of the Monte Carlo Renormalization Group analysis in two dimensional coupling space. The qualitative feature of the RG flow is described with a phenomenological RG equation. The data on the lattice spacing for various actions serve the condition to determine the parameters.

MCRG and Perfect action search

Results of MCRG Flow

- Flow in 2-D coupling space
- 3-D coupling space
- DBW2 action

Phenomenological RG equation

- Weak coupling regime
- Strong coupling
- Feature of flow

Summary and Outlook

The QCD-TARO Collaboration

Ph. de Forcrand ${ }^{a}$, M. García Pérez ${ }^{b}$, T. Hashimoto ${ }^{c}$, S. Hioki ${ }^{d}$, H. Matsufurue ${ }^{e}$, O. Miyamura ${ }^{f}$, A. Nakamura ${ }^{g}$, I.-O. Stamatescu ${ }^{h, i}$, T. Takaishi ${ }^{j}$ and T. Umeda ${ }^{f}$

${ }^{a}$ SCSC, ETH-Zürich, Switzerland
${ }^{b}$ Dept. Física Teórica, Univ. Autónoma de Madrid, Spain
${ }^{c}$ Dept. Appl. Phys., Fac. Engineering, Fukui Univ., Japan
${ }^{d}$ Dept. of Physics, Tezukayama Univ., Nara, Japan
${ }^{e}$ Research Center for Nuclear Physics, Osaka Univ., Japan
${ }^{f}$ Dept. of Physics, Hiroshima Univ., Japan
${ }^{g}$ Res. Inst. for Inform. Sci. and Education, Hiroshima Univ., Japan
${ }^{h}$ Inst. Theor. Physik, Univ. of Heidelberg, Germany
${ }^{i}$ FEST, Heidelberg, Germany
${ }^{j}$ Hiroshima University of Economics, Japan

Physical goals:

- Finite Temperature QCD
\rightarrow Umeda's poster
- Finite Chemical Potential
\rightarrow Takaishi's talk
- MCRG and Improved Actions
- this presentation

Blocking and MCRG

Action: $S=\beta \Sigma_{i} c_{i} O_{i}$
given configuration with $\left\{\beta^{(0)}, c_{i}^{(0)}\right\}$
\downarrow
blocking $\quad a \rightarrow 2 a$
[Swendsen '81]
\downarrow
blocked conf. $\quad \rightarrow$ coupling $\left\{\beta^{(1)}, c_{i}^{(1)}\right\}$

- Schwinger-Dyson equation
- Demon method
- Improved in comparison with directly generated conf.

Perfect Action

Blocking trajectory
\rightarrow Renormalization Trajectory (RT)
Action on RT - Perfect action:
Same physics as in continuum QCD
Finite number of operators
\rightarrow truncation effect

Strategy

First we investigate GR flow in 2-D coupling space

- Determination of RT on 2-D space
- Is truncation effect large ?
- comparison with 3-D coupling space
- Description of flow dynamics
- phenomenological RG equation

Quantitative determination of RT
\rightarrow Perfect action in 2-D coupling space

Then,

- Coupling space with $D>2$
- Inclusion of fermions

Flow in 2-D coupling space

Action:

$$
\begin{aligned}
S= & \beta_{11} \sum \operatorname{ReTr}\left(1-\frac{1}{3} U_{11}\right) \\
& +\beta_{12} \sum \operatorname{ReTr}\left(1-\frac{1}{3} U_{12}\right)
\end{aligned}
$$

Swendsen blocking \rightarrow Schwinger-Dyson method [QCD-TARO, hep-lat/9806008]

3-D Coupling Space (1)

Flow in three-coupling space:

$$
\begin{aligned}
S= & \beta_{11} \sum \operatorname{Re} \operatorname{Tr}\left(1-\frac{1}{3} U_{11}\right) \\
& +\beta_{12} \sum \operatorname{Re} \operatorname{Tr}\left(1-\frac{1}{3} U_{12}\right) \\
& +\beta_{\text {twist }} \sum \operatorname{Re} \operatorname{Tr}\left(1-\frac{1}{3} U_{t w i s t}\right) \\
& {[\text { QCD-TARO, in Lattice '97; hep-lat/9802006] }}
\end{aligned}
$$

beta_twist

3-D Coupling Space (2)

- Flow projected on $\left(\beta_{11}, \beta_{12}\right)$ are similar to 2-D result.
- Coupling $\beta_{\text {twist }}$ is small
- does not change coupling flow very much.

DBW2 action (1)

DBW2 action - midway to perfect action
(Doubly Blocked Wilson action in 2 coupling space)
[QCD-TARO, in Lattice '98; hep-lat/9809086]
Near RT, actions really improved ?
Fixed $c_{12} / c_{11} \quad\left(\beta_{11}=\beta c_{11}, \beta_{12}=\beta c_{12}\right)$ with $\quad c_{11}+8 c_{12}=1$
Twice blocked lattice from Wilson action
\rightarrow Couplings determined with Demon method

$$
c_{12}=-1.4088
$$

c.f. Symanzik action: $c_{12}=-1 / 12$

Iwasaki action : $c_{12}=-0.331$

Result

Fig.1: Restration of rotational symmetry in $Q \bar{Q}$ potential

$$
\delta_{V}^{2} \equiv \sum_{\text {off }} \frac{\left[V(R)-V_{\text {on }}(R)\right]^{2}}{V(R)^{2} \delta V(R)^{2}}\left(\sum_{\text {off }} \frac{1}{\delta V(R)^{2}}\right)^{-1}
$$

$V_{o n}(R)$: fitting function from only on-axis data $\Sigma_{\text {off }}$ implies summation over only off-axis data

Fig.2: Scaling of $T_{c} / \sqrt{\sigma}$

DBW2 action (2)

Fig.1:Rotational symmetry breaking of $Q \bar{Q}$ potential

Fig.2: Scaling of $T_{c} / \sqrt{\sigma}$

with Iwasaki et al., Phys.Rev.D56 (1997) 151,
Beinlich et al., Eur.Phys.J. C6 (1999) 133

Flow dynamics

Phenomenological RG equation in 2-D coupling space

$$
\frac{d \vec{\beta}}{d a}=-2 a\left(\begin{array}{cc}
\sigma+\zeta_{1} / a & 0 \tag{1}\\
0 & 2 \sigma+\zeta_{2} / a
\end{array}\right) \vec{\beta}+\frac{1}{a}\left[\mathbf{A} \vec{\beta}-B\left(\beta_{n}\right) \frac{\vec{n}}{|\vec{n}|^{2}}\right]
$$

where,

$$
\vec{\beta}=\binom{\beta_{11}}{\beta_{12}}
$$

A: 2×2 constant matrix with eigenvalues 0 and λ, $B(x)=12 b_{0}+72 b_{1} / x$, with $b_{0}=33 /\left(48 \pi^{2}\right), \quad b_{1}=(102 / 121) b_{0}^{2}$
\vec{n} : constant vector - set to $(1,8)$
(from weak coupling expansion of action)
σ : string tension
ζ_{1}, ζ_{2}, components of \mathbf{A} are parameters
First term describes flow in strong coupling region Second term is for weak coupling region

Weak coupling region (1)

The first term of (1):

$$
\frac{d \vec{\beta}}{d l n a}=\mathbf{A} \vec{\beta}-B\left(\beta_{n}\right) \frac{\vec{n}}{|\vec{n}|^{2}}
$$

Asymptotic scaling of $\operatorname{SU}(3)$ gauge theory
\Rightarrow one of eigenvalue of A is zero, the other is irrelevant: $\lambda<0$.

Features described by this equation are as follows:
If $A=0$,

$$
\begin{aligned}
\vec{\beta}= & \beta_{n} \frac{\vec{n}}{|\vec{n}|^{2}}+c \vec{n}_{\perp} \\
& \text { with } a \Lambda=\left(\frac{\beta_{n} / 6+b_{1} / b_{0}}{b_{0}}\right)^{b_{1} / 2 b_{0}^{2}} \exp \left(-\beta_{n} / 12 b_{0}\right) \\
\left(\beta_{n}=\right. & \left.(\vec{n} \cdot \vec{\beta}), \vec{n}_{\perp} \text { is orthogonal to } \vec{n} .\right)
\end{aligned}
$$

: 2-loop asymptotic scaling

Weak coupling region (2)

$A \neq 0$ case:
consider a simple case with $b_{1}=0$.
\rightarrow inhomogeneous linear diff. eq.

$$
\frac{d \vec{\beta}}{d l n a}=\mathbf{A} \vec{\beta}-12 b_{0} \frac{\vec{n}}{|\vec{n}|^{2}}=\mathbf{A} \vec{\beta}+h_{1} \overrightarrow{v_{1}}+h_{2} \overrightarrow{v_{2}}
$$

where $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are normalized eigenvectors for eigenvalues λ and 0 ,

$$
\begin{aligned}
h_{1} & =-\left(12 b_{0} / \lambda\right)\left(\overrightarrow{v_{1}} \cdot \mathbf{A} \vec{n}\right) /|\vec{n}|^{2}, \\
h_{2} & =-12 b_{0}\left[\left(\overrightarrow{v_{2}} \cdot \vec{n}\right)-\left(\overrightarrow{v_{2}} \cdot \overrightarrow{v_{1}}\right)\left(\overrightarrow{v_{1}} \cdot \mathbf{A} \vec{n}\right) / \lambda\right] /|\vec{n}|^{2} . \\
& \Downarrow
\end{aligned}
$$

General solution is

$$
\vec{\beta}=\left(c_{1} a^{\lambda}-h_{1} / \lambda\right) \overrightarrow{v_{1}}+\left(c_{2}+h_{2} \ln a\right) \overrightarrow{v_{2}}
$$

With increasing a,
$\vec{\beta}$ firstly approach to a degenerate line,

$$
\left(\overrightarrow{v_{2} \perp} \cdot \vec{\beta}\right)=-\frac{h_{1}}{\lambda}\left(\overrightarrow{v_{2} \perp} \cdot \overrightarrow{v_{1}}\right) \quad\left(\overrightarrow{v_{2} \perp} \perp \overrightarrow{v_{2}},\left|\overrightarrow{v_{2}}\right|=1\right)
$$

with power behavior in a,
and successively runs logarithmically along $\overrightarrow{v_{2}}$.

Strong coupling region (1)

Model equation in strong coupling region:

$$
\frac{d \vec{\beta}}{d a^{2}}=-\left(\begin{array}{cc}
\sigma_{1}+\zeta_{1} / a & 0 \\
0 & \sigma_{2}+\zeta_{2} / a
\end{array}\right) \vec{\beta}
$$

where σ 's and ζ 's are parameters.
介
Strong coupling calculation of Wilson loop

$$
<W(N \times M)>=\left(\beta_{1} / 18\right)^{N M} P_{N M}\left(\beta_{2} / \beta_{1}^{2}\right),
$$

$P_{N M}(x)$: Polynomial whose coefficients are tiling weights for filling the area by 1×1 and 1×2 actions
Requiring the area law with physical string tension σ,

$$
\left(\beta_{1} / 18\right)^{N M} P_{N M}\left(\beta_{2} / \beta_{1}^{2}\right)=e^{-a^{2} \sigma N M} .
$$

Guess of $P_{N M}\left(\beta_{2} / \beta_{1}^{2}\right)$ for large $N M$:
$P_{N M} \sim e^{s N M} \quad$ with entropy density s corresponding to choice of 1×1 or 1×2 tiles
$\rightarrow \quad \ln \left(\beta_{1} / 18\right)+s=-a^{2} \sigma$
In a differential form, $d \beta_{1} / d a^{2}=-\sigma \quad\left(\sigma_{1}=\sigma\right)$
Area law $\rightarrow \sigma_{2}=2 \sigma$
ζ 's control next order correction.

Fit of Numerical Results

In terms of dimensionless variable $a_{s}=a \sqrt{\sigma}$,
(1) becomes

$$
\frac{d \vec{\beta}}{d a_{s}}=-2\left(\begin{array}{cc}
a_{s}+\bar{\zeta}_{1} & 0 \\
0 & 2 a_{s}+\bar{\zeta}_{2}
\end{array}\right) \vec{\beta}+\frac{1}{a_{s}}\left[\mathbf{A} \vec{\beta}-B\left(\beta_{n}\right) \frac{\vec{n}}{|\vec{n}|^{2}}\right]
$$

where $\bar{\zeta}=\zeta / \sqrt{\sigma}$.
Parameterization of \mathbf{A} :

$$
\overrightarrow{v_{1}}=\left(\cos \theta^{\prime}, \sin \theta^{\prime}\right) \text { and } \quad \overrightarrow{v_{2}}=(\cos \theta, \sin \theta),
$$

then

$$
\mathbf{A}=\frac{\lambda}{\sin \left(\theta-\theta^{\prime}\right)}\left(\begin{array}{c}
\sin \theta \cos \theta^{\prime} \\
\sin \theta \sin \theta^{\prime}
\end{array}-\cos \theta \cos \theta \sin \theta^{\prime}\right)
$$

We fit the following data to this RG equation.

- Initial condition: Wilson action ($\beta_{12}=0$)
- Results for Symanzik, Iwasaki and DBW2 actions - QCD-TARO, Phys.Rev.Lett.71(1993)3063
- Borici and Rosenfelder, hep-lat/9711035 (Lattice '97)
- QCD-TARO, hep-lat/9809086 (Lattice '98)
- CP-PACS, hep-lat/9905005

Preliminary Result (1)

Preliminary result of fit:

$$
\theta=-0.118, \quad \theta^{\prime}=-0.218, \lambda=-2.0 \quad \zeta_{1}=\zeta_{2}=0.25
$$

(to show qualitative feature)

Flow

Qualitative feature of flow is well described.
\Downarrow
Quantitative fit

- Renormalization trajectory in 2-D space
- Constant a contour

Preliminary Result (2)

Conclusion and Outlook

Summary of our previous works:

- Determination of flow in 2-D coupling space
- Comparison with 3-D space (with twist operator)
$-c_{\text {tist }}$ is small.
- DBW2 action
(obtained on twice blocked conf. from Wilson action)
- near to RT, rotational symmetry and scaling of $T_{c} / \sqrt{\sigma}$ are improved

In this work,
We found that phenomenological renormalization group equation well describe the observed feature of flow. Preliminary fit result is encouraging.

Outlook:

- Quantitative determination of RT and use as
an improved action
- MCRG with fermions

