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Abstract

This note summarizes the overlap-Dirac operator for those who investigates this operator
as a large linear system.
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1 Introduction

The overlap Dirac operator is one of the fermion operators in lattice gauge theories. Among
lattice fermion operators, the overlap operator has an attractive feature that it has an exact
chiral symmetry on the lattice. However, numerical simulation with the overlap operator

has become feasible only recently, because of its large numerical cost. In 2006, the JLQCD
Collaboration started a large scale simulation project with dynamical overlap fermions. Despite
much progress in algorithm and machine power, improved algorithms of the overlap fermion

are still strongly desired. Thus in this note the fundamental structures of the overlap operator
and the linear problems to be solved are summarized.

In numerical simulation of lattice QCD, one needs frequently to solve a linear equation

∑

a,j,x

Dab
ij (x, y)xb

j(y) = bai (x) (1.1)

where D is the Dirac operator (here the overlap operator) which has the following indices:
color (a, b = 1, . . . , 3), spinor (i, j = 1, . . . , 4), and site (x, y)1. For example, for a 164 lattice,

the rank of matrix D is N = 3 × 4 × 164 = 785, 432.
In lattice QCD simulations, the above linear equation must be solved mainly in the following

two situation.

• Computation of quark propagator.

The observables containing quark fields are constructed with the quark propagator, which
is an inverse of the Dirac-operator D.

• During generation of dynamical gauge configuration.

In early days of lattice QCD simulations, the quark determinant det(D) which represent
the dynamical quark effect is often neglected and such simulations are called ‘quenched

approximation’. Nowadays, it has become popular to included the dynamical quark effect
by the hybrid Monte Carlo (HMC) algorithm. In this algorithm, the dynamical quark
effect is represented as ‘pseudofermion’ field φ by making use of the relation

det(D†D) =

∫

Dφ†Dφ exp(−φ†(D†D)−1φ). (1.2)

In HMC algorithm, first φ is given by Gaussian distribution, and then the gauge field is
updated under fixed φ by molecular dynamics (MD). Since D depends on the gauge field

and the force is required to update the gauge field, a linear equation (D†D)x = φ must
be solved at every step of MD. This linear solver is the most time-consuming part of the
HMC algorithm.

In this note, we focus on the latter, i.e. the equation to be solved is in the form (D†D)x = b.

Of course if two successive solver for Dx = b is faster, one should adopt it.

1Here we explicitly assume the SU(3) gauge theory (namely QCD) in 4-dimensional spacetime. In general,
one can consider other group structure and spacetime dimension other than 4.
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2 Overlap Dirac operator

2.1 Overlap operator

The overlap operator with the bare quark mass m is written

D(m) =

(

M0 +
m

2

)

+

(

M0 −
m

2

)

γ5 · sign(HW ). (2.1)

where HW (−M0) is the hermitian Wilson-Dirac operator,

HW (−M0) ≡ γ5DW (−M0), (2.2)

and DW is the Wilson-Dirac operator2,

DW (−M0;x, y) = 4 −M0 −
1

2a

∑

µ

[

(1 − γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U †
µ(x− µ̂)δx−µ̂,y

]

. (2.3)

Uµ(x) ∈SU(3) are link variables which are 3×3 complex matrices and related to the gauge field
Aµ(x) as Uµ(x) = exp[ig0Aµ(x + µ̂/2)] with g the bare coupling constant. µ̂ is a unit vector
in µ-th direction. γµ are 4×4 Dirac matrices which satisfies {γµ, γν} = 2δµ,nu. To make the
argument explicit, we adopt the chiral representation,

γ1 =









−i
−i

i
i









, γ2 =









−1
1

1
−1









, γ3 =









−i
i

i
−i









, (2.4)

γ4 =









−1
−1

−1
−1









, γ5 = −γ1γ2γ3γ4 =









1
1

−1
−1









. (2.5)

These γµ’s are hermitian. Throughout this note, lattice spacing is set to unity: a = 1.
In the following, we use the hopping parameter representation of DW

DW → 2κDW , κ =
1

2(4 − aM0)
. (2.6)

The normalization of DW is irrelevant to the overlap operator, since it appears only in the
sign-function.3 In the overlap operator, M0 needs to satisfy 0 < M0 < 2. Throughout this

work we adopt M0 = 1.6.
As a general property of the lattice Dirac operator, D† = γ5Dγ5 holds (called γ5-hermiticity).

Thus HW = γ5DW is hermitian. The sign function, sign(HW ), is the most involved part for the
practical implementation of the overlap fermion and will be described in the next subsection.

For practical implementation, Uµ(x) must be kept on the memory. On the other hand,

γµ, which is represented as just permutation in spinor components and real/imaginary parts.
Also (1±γµ) plays a projector onto 2-component spinor. Thus before multiplication of Uµ, the

4-component spinor is projected onto 2-spinor, and afterward 4-spinor is reconstructed.

2While we adopt as the kernel DW the simplest Wilson-Dirac operator, other Wilson-like operators including
improved ones are also applicable.

3Caution: for the low-mode subtraction, the threshold parameter in the code is given by the hopping param-
eter representation, and differs in normalization to the value quoted in the paper.
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Implementation: In the Fortran code, the Wilson fermion kernel is implemented in file

oprw5 chiral.f. The overlap fermion kernel is implemented in file opr overlap zolotarev.f.
The input parameters Rm, Rm0 correspond to m and M0.

2.2 Sign function

As already noted, the implementation of the sign function sign(HW ) is quite involved. One

needs to compute a result of multiplication of D(m) to a vector v. When sign(HW ) is applied
to v, it expands v in terms of the eigenmodes of HW , and assign ±1 according the sign of the

eigenvalues:
sign(HW ) · v =

∑

λ

sign(λ)(ψλ, v)ψλ. (2.7)

(ψλ, v) is a inner product and given by ψ†
λ · v. In numerical application, it is not realistic to

determine all the eigenmodes. A standard procedure therefore applies the eigenmode decompo-
sition only to low-lying modes, and employs some approximation formula to sign(HW ). As the

latter, we adopt the Zolotarev’s rational approximation [4, 5]. The polynomial approximation
is also widely applied procedure. Since these approximations are valid in certain region of λ,

highest eigenvalue is also needed to be computed (or to be set to certain value).
The steps to compute signHW · v is as follows:

(i) Determine the low-lying (and highest) eigenmodes of HW .

(ii) Subtract low-lying eigenmodes from the vector v:

ṽ = v −
nλ
∑

i=1

(ψλi
, v)ψλi

(2.8)

(iii) Multiply approximate sign-function ǫ(HW ) to ṽ.

(iv) Then the total sign function, and thus D(m)v, is calculated as

sign(HW )v ≃
nλ
∑

i=1

sign(λi)(ψλi
, v)ψλi

+ ǫ(HW )ṽ. (2.9)

2.3 Low-mode subtraction

It is necessary to determine the low-lying modes to subtract them from HW . As an eigenvalue
solver, we currently adopt the implicitly restarted Lanczos algorithm [2]. This method is
based on the Lanczos algorithm. When Nk eigenmodes are desired to determine, this method

extends the Krylov subspace Kk to (Nk + Np)-dimension. Then information of Np vectors
in extra-space is compressed into the Nk-dimension space by applying implicitly shifted QR

algorithm. Repeated application of extension and compression of Krylov subspace causes that
the Nk vectors approach to the lowest Nk eigenvectors. After enough application of this step,
the tridiagonal Lanczos matrix is diagonalized by QR algorithm. The same algorithm is also

applied to determine the highest eigenmodes.
In practice, it is useful to determine the eigenvalues whose absolute values are less than

certain threshold, Vth. Then nλ is defined as the number of eigenvalues which satisfies |λ| < Vth.
This is the policy adopted by the present program. Detailed description of eigenvalue solver
will be presented in a separate note.

4



Implementation:

The eigenvalues of HW are determined by routines in the files eigen wilson5 lex.f and
qris.f. The former implements the main part of the implicitly restated Lanczos algorithm,
and the latter contains routines for implicitly shifted QR algorithm. In the common file,

eigen wlex.h, contains parameter Nkmax. This parameter specifies the maximum size of Krylov
subspace, Nk +Np, and hence it must be larger than the sum of the input parameters Nkxmin
and Nkxmin, which are respectively Nk and Np for the determination of low-lying eigenmodes.

This is also true for Nkxmax and Nkxmax for the determination of highest eigenmodes (while
practically the highest mode can be easily determined compared to the low-lying ones). The

parameter Nkmax also appears in other common files, and must be changed simultaneously.
The parameter Vthrs corresponds to Vth. Nsbt, the number of subtracted eigenvectors, is

counted accordingly in the program. The parameters Enorm eigen specifies the precision of

the eigenvalue relation, HWψλ = λψλ. The determined eigenvalues and eigenvectors are stored
in common variables TDa(Nkmax) and Vk(Nvst,Nkmax).

For an acceleration technique, the Chebychev acceleration is implemented. (More detailed
description will be supplied.)

To do: The eigenvalue solver has not yet well improved. Within the framework of Lanczos
method there may be some improvement. Alternative algorithms such as the CG algorithm [3]
should be tested. For the recent simulation, the determination of low-lying eigenmodes of HW

takes about (1/4 of the total HMC for 2+1 flavor simulation). Improving this part is highly
desired.

2.4 Zolotarev’s rational approximation

The Zolotarev’s rational approximation is represented as [4, 5]

1
√

H2
W

=
d0

λmin
(h2

W + c2n)
n
∑

l=1

bl
h2

W + c2l−1
(2.10)

where hW = HW/λmin. MultiplyingHW to this function, sign(HW ) is computed. This formula
is valid for the interval hW ∈ [1, b] with b = λmax/λmin. The parameters d0 and bl are related

to the coefficients cl as follows.

d0 =
2λ

1 + λ

n
∏

l=1

1 + c2l−1

1 + c2l
(2.11)

bl = d0

∏n−1
i=1 (c2i − c2l−1)

∏n
i=1,i6=l(c2i−1 − c2l−1)

(2.12)

To determine d0 precisely, the parameter λ (which is defined in terms of ϑ function) must also
be determined. However, d0 can practically be determined by enforcing that the approximate
sign function exhibits least deviation from unity in the range [1, b].

Alternatively, the following approximate expression is practically useful. By enforcing the
sign function is unity at hW = 1, 2λ/(1 − λ) = 1 follows. Then

d0 =
n
∏

l=1

1 + c2l−1

1 + c2l

. (2.13)
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After gross setting of parameters, precise value of d0 can easily be determined since the

Zolotarev’s formula gives minimax function, which ensures that the maximum deviations from
the central value in the valid range are equal in positive and negative directions. Thus obtaining
maximum and minimum values of the approximate function, d0 is easily determined.

The coefficients cl is given as [5]4

cl =
sn2(lK ′/(2n + 1);K ′)

1 − 2sn2(lK ′/(2n + 1);K ′)
(2.14)

K ′ = u(1) =

∫ 1

0

dt
√

(1 − t2)(1 − κ′2t2)
, (2.15)

where κ′ =
√

1 − κ2, κ = λmin/λmax. K ′ is the complete elliptic integral of the first kind with

modulus κ′, i.e., the value of u such that sn(u;κ′) = 1.
One needs to determine cl and K ′ for given b = λmax/λmim and n. sn(u, κ′) must be

computed somehow.

Implementation: First of all, elliptic function sn must be computed. We make use of a
routine in Numerical Recipes [6]. In Fortran code, subroutine Jacobi elliptic (sncndn in

Numerical Recipes) compute sn(u, kc), cn(u, kc), and dn(u, kc) for given u and kc = 1 − k2.
In subroutine Poly Zolotarev, first the value of u which satisfies cn(u, kc) = 0 (sn(u, kc)=1)

is determined to the 14-th digit precision. Then cl, d0, and bl are determined according to
Eqs. (2.15), (2.13), and (2.12), respectively. A program to check the Zolotarev approximation
formula by giving sign(x) for real number x is also available.

2.5 Multi-shift CG solver

In the rational approximation of sign(HW ), one needs to solve equations
(

H2
W + cj

)

x = b, j = 1, . . . n (2.16)

for a single source vector b. If there is no efficient way to solve these equations, the rational
approximation is not tractable.

Multi-shift solver [7, 8] enables to solve these n equations at once. We employ the multi-

shift CG algorithm. The multi-shift algorithms make use of the fact that the Krylov subspace
Kk(A, v0) for a matrix A and initial vector v0 is unchanged against a shift A → A + σ, i.e.,
Kk(A, v0) = Kk(A + σ, v0) . This implies that the residual vector, which is perpendicular to

the previous Klylov subspace, can be shared by n equations in Eq. (2.16). Then n solutions of
Eq. (2.16) can be determined simultaneously. The algorithm is summarized in Appendix A.

Todo:

On scalar machines, the double-path solver [9, 10] is worth to be considered as an alternative.

3 Overlap solver algorithm

3.1 Nested conjugate Gradient algorithm

Once the approximate sign(HW ) is at hand, overlap quark propagator can be computed by

standard solver algorithms for hermitian or nonhermitian matrices. In HMC algorithm, since

4In Ref. [4], cl is defined sn(lK′/2n; K′) instead of sn(lK′/(2n + 1); K′) in Eq. (2.15).

6



one needs to invert only D(m)†D(m), which is hermitian and positive definite, the standard

conjugate gradient (CG) algorithm is applicable. Of course it is worth to examine which of
hermitian algorithms and nonhermitian algorithms (BiCGStab, MR, GMRES, etc.) are efficient
(see T. Kaneko’s report [16, 18]). For the latter, one needs to solve the linear equations twice

in HMC algorithm.
With the rational approximation to the sign function, the CG algorithm is also necessary

to implement Dov. In this sense, it is called ‘nested’ CG algorithm.

Relaxed CG algorithm. The relaxed stopping condition method [11] is based on an idea
that, as the outer solver proceeds, the correction to the solution vector, |xi − xi−1|, becomes

smaller and one does not have to evaluate D(m) with too much accuracy. Its implementation
depends on the outer solver algorithm, and for CG(NE), the condition is loosened as

ǫms
i ∝

√

ζi, ζi = ζi−1 +
1

|ri−1|2
, (3.1)

where ri−1 = Dxi−1 − b and ǫms
i the stopping condition for the inner (multishift) solver.

This technique accelerate the convergence measured in multiplication of DW almost a factor
of 2 [12, 17]. The relaxed CG algorithm is summarized as follows.

outer loop:

1: set initial guess x0

2: r0 = b−Ax0

3: p0 = r0

4: ζ = 1/|r0|2

5: repeat until |rk|/|b| < ǫout

5-1: inner loop: calculate qk so that |qk −Apk| < ǫout|b||pk|
√
ζ/k

5-2: α = 〈rk, rk〉/〈pk, qk〉
5-3: xk+1 = xk + αpk

5-4: rk+1 = rk − αpk

5-5: convergence check: exit outer loop if |rk|/|k| < ǫout

5-6: β = 〈rk+1, rk+1〉/〈rk, rk〉
5-7: pk+1 = rk + βpk

5-7: ζ = ζ + 1/|rk+1|2

Todo:

- Other outer solver algorithm.
- Adoptive precision.

- Guess of initial approximate solution (chronological estimator or preconditioning).
- Chiral projection.

There are still lots of things to try.
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3.2 5-dimensional solver

The 5-dimensional CG solver is based on the Schur decomposition [14, 15]. Let us consider a

5-dimensional block matrix

M5 =

(

A B
C D

)

=

(

1 0
CA−1 1

)(

A 0
0 S

)(

1 A−1B
0 1

)

≡ L̃D̃Ũ , (3.2)

where S = D − CA−1B. S is called the Schur complement. Consider a linear equation

M5

(

φ
ψ4

)

=

(

0
χ4

)

. (3.3)

Using M5 = L̃D̃Ũ and multiplying L̃−1 from the left to the above equation, one arrives at
(

A 0
0 S

)(

φ+A−1Bψ4

ψ4

)

=

(

0
χ4

)

. (3.4)

Namely, by solving 5-dimensional equation (3.3), one can solve

Sψ4 = χ4 (3.5)

Be an appropriate choice of parameters, as shown below, S can be set to the hermitian overlap

operator Hov = γ5Dof . Thus by solving Eq. (3.5) twice, one can solve H2
ovx = D†

ovDovx = b.
Hereafter an example for N(= Npole) = 2 case is shown explicitly. Let us consider the 5D

operator of a form

M5 =















HW −√
q2 0

−√
q2 −HW

√
p2

HW −√
q1 0

−√
q1 −HW

√
p1

0
√
p2 0

√
p1 Rγ5 + p0H















=

(

A B

C D

)

. (3.6)

In general, A B, and C has the following structure.

A =







AN

AN−1

. . .






, B =







BN

BN−1
...






, C = (CN , CN−1, · · ·) (3.7)

A−1 =









A−1
N

A−1
N−1

. . .









(3.8)

A−1
i =

1

H2
W + qi

(

HW −√
qi

−√
qi −HW

)

(i = 1, . . . , n) (3.9)

Then

S = D − CA−1B = D −
∑

i

CiA
−1
i Bi (3.10)

= Rγ5 + p0HW +HW

N
∑

i=1

pi

H2
W + qi

. (3.11)
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The parameters R, p0, pi and qi (i = 1, . . . , N) are determined appropriately by comparing

with the Zolotarev’s partially fractional approximation formula (see below). This technique
also applies to other partial fractional approximation and continuum fractional approximation
[14, 15].

Low-mode subtraction [13]. The low-mode preconditioned hermitian overlap operator is
written as

Hov = f1γ5 + f2

Nsbt
∑

j=1

sign(λj)vj × v†j + f2PH sign(HW )PH , (3.12)

where f1 = M0 + m
2 , f2 = M0 − m

2 , vj is an eigenvector of HW associated to an eigenvalue λj ,

and PH = 1−∑Nsbt

j=1 vj × v†j is the projector onto the space spanned by the eigenvectors whose
eigenvalue |λ| > λthrs. This implies that the 5D operator is modified as

D = Rγ5 + p0H + f2

Nsbt
∑

j=1

sign(λj)vj × v†j , (3.13)

Bi =

(

0√
piPH

)

, Ci = (0,
√
piPH ). (3.14)

The parameters of the 5D matrix are determined as

R = f1, (3.15)

p0 = f2
d0

λthrs

∑

l

bl, (3.16)

pl = f2d0bl(c2n − c2l−1)λthrs, (3.17)

ql = c2l−1 · λ2
thrs. (3.18)

Note that in the approximation of sign(HW ) in Eq. (3.12), λthrs replaces λmin in Eq. (2.10).

Even-odd preconditioning. 5D solver is not efficient without applying a preconditioning
technique. One can apply the even-odd preconditioning by decomposing 4D lattice sites into

even and odd sites as

M5x =

(

Mee Meo

Moe Moo

)(

xe

xo

)

=

(

be
bo

)

. (3.19)

By multiplying
(

M−1
ee −M−1

ee MeoM
−1
oo

0 M−1
oo

)

(3.20)

from the left, one has a closed equation for xe,

(1 −M−1
ee MeoM

−1
oo Moe)xe = b′e ≡M−1

ee be −M−1
ee MeoM

−1
oo bo, (3.21)

and after solving Eq. (3.21), xo is provided as

xo = bo −M−1
oo Moexe. (3.22)
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The even-even and odd-odd block matrices must be inverted. The even-even matrix has

the form

Mee =















γ5 −√
q2 0

−√
q2 −γ5

√
p2PHee

γ5 −√
q1 0

−√
q1 −γ5

√
p1PHee

0
√
p2PHee 0

√
p1PHee Dee















, (3.23)

Dee = f1γ5 + f2

∑

j

signλjvje × v†je + p0PHeeγ5PHee, (3.24)

where vje is even-part of the eigenvector vj. Moo, Meo, and Moe are similarly defined.
The matrix Mee (and also Moo) can be decomposed into left and right triangular matrices,

Mee = LeUe =















1
r2 1

1
r1 1

0 s2 0 s1 1





























γ5 −√
q2

v2
√
p2PHee

γ5 −√
q1

v1
√
p1PHee

u0















(3.25)

where

rl = −√
qlγ5 (3.26)

vl = −(1 + ql)γ5 (3.27)

sl = −
√
pl

1 + ql
PHeeγ5 (3.28)

u0 = Dee +

(

∑

l

pl

1 + ql

)

PHeeγ5PHee (3.29)

Multiplication of U−1 and L−1 is easily implemented by forward and backward substitution.
However, one need to solve x = u−1

0 z for a given 4D even-vector z at each iteration step of the
solver algorithm for Eq. (3.21).

Inversion of u0. The standard method to solve a linear equation is the iterative Krylov
subspace method. The Krylov subspace is, starting with initial residual vector r0 = z, composed

as Kk(A; z) = span{z,Az, . . . , Ak−1z}. Because of the structure of the matrix u0, the Krylov
subspace closes at most at 2(Nsbt + 1) dimension, and then is spanned by a non-orthogonal
basis {z, γ5z, vje, γ5vje} (j = 1, . . . Nsbt). Thus u−1

0 z is also expanded in this basis.

Denoting wj = vje, wNsbt+j = γ5vje (j = 1, . . . , Nsbt), u0 is expressed as

u0 =



a+
2Nsbt
∑

i,j=1

ci,jwj × w†
j



 γ5. (3.30)

The coefficients are given as a = f1 + p0 + uH ,

ci,j = uHδi,j ≡
(

∑

l

pl

1 + ql

)

δi,j (3.31)

ci+Nsbt,j+Nsbt
= uHδi,j (3.32)

ci,j+Nsbt
= [f2sign(λi) − p0λi]δi,j + uH(v†jeγ5vje). (3.33)
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5D solver 4D solver
mq Npoly time [sec] DW mult [k] time [sec] DW mult [k]

0.400 10 16.7 27 41.3 119
0.100 10 41.0 65 161.2 467
0.050 10 75.5 119 322.2 932
0.035 10 104.7 165 458.8 1328
0.025 10 141.2 222 621.5 1801
0.015 10 203.8 321 787.9 2281

0.400 20 28.7 56 55.4 125
0.100 20 65.2 127 216.2 489
0.050 20 121.4 236 431.2 976
0.035 20 168.8 329 614.3 1,390
0.025 20 228.0 444 832.1 1,883
0.015 20 330.1 642 1050.0 2,377

Table 1: The convergence of 5D and 4D solvers on Blue Gene 1024-node class. The convergence
criterion is |r|2/|b|2 < 10−20. Note that the |b − (D†D)x|2 of the 5D solver is of one order of
magnitude larger that of the 4D solver.

for i, j = 1, . . . , Nsbt. u0 is also be expanded as

u−1
0 = γ5



ā+ ā′γ5 +
2Nsbt
∑

i,j=1

c̄i,jwj × w†
j



 . (3.34)

From the condition u0u
−1
0 = 1, one easily obtains that ā = 1/a, ā′ = 0, and c̄i,j is determined

by solving a linear equation

∑

l

[

aδil +
∑

k

cik(w
†
kwl)

]

c̄lj = −1

a
cij . (3.35)

This inversion must be done only once before starting the 5D solver. In each step of iteration,
required operation is the 2Nsbt inner products (w†

jb) and vector operations related to wj . This
is not a heavy operation compared to other parts of the 5D solver.

4 Performance test

In this section, we compare the performance of the 4D and 5D solvers. A comparison is

performed on a single configuration of 163 × 48 lattice generated at β = 2.30, Nf = 2 + 1 with
mud = 0.100, ms = 0.100, and at Q = 0. The result on Blue Gene 1024-node job class is shown
in Table 1 as well as in Fig. 1 for mq ≤ 0.1. The convergence time and numbers of DW mult

were observed for various quark masses and Npoly = 10 and 20. The former Npoly corresponding
the value used in the productive run. The convergence criterion is |r|2/|b|2 < 10−20. Note that

the |b − (D†D)x|2 of the 5D solver is of one order of magnitude larger than that of the 4D
solver. The threshold of eigenvalues for low-mode subtraction is set as λthrs = 0.045, which
leads on this configuration Nsbt = 8.

There are specific features for each of these two algorithms.
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Figure 1: The quark mass dependence of the convergence time of 5D and 4D solvers on Blue
Gene 1024-node class. See also the comments of Table 1.

• Increasing the degree of polynomial, Npoly, Relaxed CG increases the cost only gradually,

because the multishift CG method is applied for the inner loop. In 5D solver, since the size
of vector is almost proportional to Npoly, the numerical cost increases linearly. (However,
these features are not apparent in the above performance test. This may depend also on

the machine architecture.)

• By relaxed CG, several masses of overlap fermion can be solver simultaneously by making
use of multishift CG for outer loop. The 5D solver can be applied to single quark mass

mass at once. Thus we adopt the relaxed CG to the spectroscopy (partially quenched),
in which the cost can be largely reduced by solving quark propagator for several masses
simultaneously. On the other hand, in HMC the quark mass is fixed to a single value,

and hence the 5D solver is employed.

5 Additional topics on the 5D solver

Approximate solution. Suppose that one has an approximate solution ψ̃4 of a 4D equation,

Dovψ4 = χ4. (5.36)

If one can also compose an approximate solution of 5D equation from ψ̃4, it can provide a good
initial guess for the 5D linear problem.

Because of Eq. (3.4), when ψ4 is already known, φ is given by solving

Aφ = −Bψ4. (5.37)
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More explicitly,

φ =







φN

φN−1
...






, φi =

( √
qi

HW

) √
pi

H2
W + qi

ψ4, (5.38)

which is easily determined simultaneously by using the multishift CG solver.
There are two straightforward applications:

• Adaptive 5D solver
At early stage of the CG iteration, one does not require the full precision to Dov . The
above method enables us to change the value of Npoly at an intermediate stage of CG

iteration. Namely, the smaller Npoly is used at the earlier CG iterations. The precisions at
which Npoly is changed are selected in accord with the precisions of the approximation to
the sign function with that Npoly. This idea was examined in a report [19] on a Nf =2+1

configuration with mq = 0.015 and ms = 0.100. In summary, the adoptive 5D solver
achieves about 15% acceleration for the dynamical quark, while almost no improvement

for the preconditioner. Present simulation code does not include this technique.

• Chronological estimator in HMC update.
The chronological estimator technique compose an initial guess of linear equation by

previous solutions. To apply it to the 5D solver, one needs to store large 5D solutions.
The above method reduces the size of stored vectors from (2Npoly +1)×Nq to Nq, where
Nq = 2 ·Ncolor ·Nspinor ·Nsite

Hermitian version of 5D solver. In the implementation in Subsec. 3.2, the even-odd pre-
conditioned matrix in Eq. 3.21 was not hermitian. Therefore the CGNE algorithm is employed

to solve it. However, the hermitian (while not positive definite) version of the even-odd pre-
conditioned matrix can also be constructed [20]. Then the algorithms for hermitian matrices,
e.g. MINRES, are applicable. Unfortunately, this implementation does not improve the cost

[20].

6 Conclusion and outlooks

In this note, we described the linear problem for the overlap Dirac operator on the lattice. Two
kinds of algorithms, the nested CG (or 4D) solver and 5D solver are described in detail. At
present, the latter is faster than the former. These two algorithms seem to still have room for

further improvement.
Another challenge concerning the overlap operator is to develop good algorithms for re-

cent architectures such as GPGPU and Cell Broadband Engine. In some cases, making use
of the single precision arithmetic units will help to accelerate the solver, while double preci-
sion is required for final results. In practice, the severest bottleneck may be the inter-node

communication for which the bandwidth of a present architecture is not sufficient for naive
implementation. Algorithms with less communication are essential, such as the multi-grid and

domain decomposition algorithms.
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A Multishift CG algorithm

Multi-shift solver [7, 8] enables to solve these n equations at once. We employ the multi-shift
CG algorithm. The multi-shift solver algorithms make use of the fact that the Krylov subspace
Kk(A, v0) for matrix A and initial vector v0 is unchanged against a shift A → A + σ, i.e.,

Kk(A, v0) = Kk(A + σ, v0) . This implies that the residual vector, which is perpendicular to
the previous Klylov subspace, can be shared by n equations in Eq. (2.16). Then n solutions of
Eq. (2.16) can be determined simultaneously. The algorithm is written as follows.

Multi-shift CG algorithm:

(i) initial step

x0 = 0 xσ
0 = 0

r0 = p0 = b pσ
0 = b
ζσ
0 = ζσ

−1 = 1

(ii) iteration step

for i = 0, 1, 2, . . . (repeat until convergence)

βi = − (ri,ri)
(pi,Api)

xi+1 = xi − βipi

ri+1 = ri + βiApi

αi = (ri+1,ri+1)
(ri,ri)

pi+1 = ri+1 + αipi

α̂i = 1 + αi−1βi

βi−1

ζσ
i+1 =

[

(α̂i − σβi)/ζ
σ
i + (1 − α̂i)/ζ

σ
i−1

]−1

βσ
i =

ζσ

i+1

ζσ

i

βi

ασ
i =

(

ζσ

i+1

ζσ

i

)

αi

xσ
i+1 = xσ

i − βσ
i p

σ
i

pσ
i+1 = ζσ

i+1ri+1 + ασ
i p

σ
i

The operations in the right column are for the shifted equations.

Implementation: The solutions of Eq. (2.16) for larger cj converges faster. For the conver-
gence criterion, the squared norm of the vector pσ is monitored and the iteration is stopped

when it become less than the given criterion.
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