
Implementation of the overlap fermion simulation

Hideo Matsufuru for JLQCD Collaboration

High Energy Accelerator Research Organization (KEK),
Oho 1-1, Tsukuba 305-0801, Japan

Email: hideo.matsufuru@kek.jp

May 12, 2013, Ver.2.3.1

Abstract

This note explains how the simulation programs of the overlap fermions are imple-
mented. The note contains the implementation of the overlap operator, solver algorithms,
and the Hybrid Monte Carlo update with one and two flavors. Section for describing eigen-
values of overlap operator was added from Ver.2.3.

Contents

1 Introduction 2

2 Lattice actions 2
2.1 Overlap fermion . 2
2.2 Gauge action . 4
2.3 Extra Wilson (Fukaya) term . 5

3 Overlap Dirac operator 5
3.1 Sign function . 5
3.2 Low-mode subtraction . 6
3.3 Approximate sign function . 7
3.4 Zolotarev’s rational approximation . 7
3.5 Multi-shift CG solver . 8

4 Overlap solver algorithm 8
4.1 Nested conjugate Gradient algorithm . 8
4.2 5-dimensional solver . 9
4.3 Performance test . 13
4.4 Additional topics on the 5D solver . 14

1

5 Hybrid Monte Carlo algorithm 15
5.1 Hamiltonian . 15
5.2 Langevin step . 16
5.3 Molecular dynamical evolution . 17
5.4 Metropolis test . 18
5.5 Gauge field part . 19
5.6 Overlap quark part . 19
5.7 Fukaya term . 21
5.8 Additional issues in HMC algorithm . 21

5.8.1 Reflection/refraction prescription . 21
5.8.2 Noisy Metropolis test . 22

6 Eigenmodes of ovelap fermion 22

A Algorithms for linear systems 26
A.1 Conjugate Gradient (CG) algorithm . 26
A.2 Multishift CG algorithm . 27

1 Introduction

This note describes the implementation of the simulation programs of the overlap fermions for
the JLQCD project.

2 Lattice actions

The total action in the present project is represented as

S = Sov + SG + SFukaya, (2.1)

where Sov is the overlap fermion action, SG the gauge field part, and SFukaya the extra Wilson
fermion term1 which is introduced to avoid near-zero modes of HW . SFukaya does not describe
physical fermion content, and considered as a part of the gauge action.

2.1 Overlap fermion

The overlap quark action [1] with quark mass m is defined as

D(m) =

(
1− 1

2
ām

)
D +m, (2.2)

where

D =
1

ā
[1 + γ5 · sign(HW)] , (2.3)

ā = a/(1 + s) ≡ 1/M0, (2.4)

1Unlike the publication, this term is called ‘Fukaya term’ in this note after H. Fukaya who proposed to employ
this term in our project.

2

where HW (−M0) is the hermitian Wilson-Dirac operator,

HW (−M0) ≡ γ5aDW (−M0), (2.5)

and DW is the Wilson-Dirac operator,

DW (−M0;x, y) = 4−M0 −
1

2a

∑
µ

[
(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U

†
µ(x− µ̂)δx−µ̂,y

]
. (2.6)

As the kernel DW , we take the simplest Wilson-Dirac operator, while improved operators are
also candidates. In the following, we set a = 1 and use the hopping parameter representation
of DW , DW → 2κDW with κ = 1/2(4 − aM0). The normalization of DW is irrelevant to the
overlap operator, since it appears only in the sign-function.2

The sign function sign(HW) is the most involved part for the practical implementation of
the overlap fermion and will be described in the next section. Here we proceed as it is homehow
given.

Two-flavor case. In the case of two degenerate flavors, the fermion action is treated in the
standard prescription. By integrating the Grassmann variables, fermion determinant arizes
and it is again exponentiated by introducing pseudofermion fields:∫

Dψ̄†Dψ exp[−Sov] = det[D(m)†D(m)] =

∫
Dϕ†Dϕ exp[−SPF], (2.7)

SPF = ϕ†[D(m)†D(m)]−1ϕ. (2.8)

If the Hasenbusch acceleration (multi-mass preconditioning) [2] is applied,

det[D(m)†D(m)] = det[D(m′)†D(m′)] det[D(m′)†−1D(m)†D(m)D(m′)−1] (2.9)

=

∫
Dϕ†1Dϕ1Dϕ

†
2Dϕ2 exp

[
−S(1)

PF − S
(2)
PF

]
, (2.10)

S
(1)
PF = ϕ†1[D(m′)†D(m′)]−1ϕ1, (2.11)

S
(2)
PF = ϕ†2

{
D(m′)[D(m)†D(m)]−1D(m′)†

}
ϕ2, (2.12)

where m′ is a mass of the preconditioner. Here we restrict ourselves to the case of single
preconditioner.

One-flavor case. The algorithm of HMC with single flavor is based on Refs. [3, 4]. The
squared hermitian overlap-Dirac operator, H2(m) = D†(m)D(m), commutes with γ5, and
therefore can have eigenstates with definite chirality. The projection operators P± = (1±γ5)/2
decompose H2 into two parts:

H2 = P+H
2P+ + P−H

2P− ≡ Q+ +Q−, (2.13)

det(H2) = det(Q+) det(Q−) (2.14)

2Caution: in the low-mode subtraction, the threshold parameter in the code is given by the hopping parameter
representation, and differs in normalization to the value quoted in the paper.

3

and when there is no zero mode, the two factors on RHS of Eq. (2.14) give equal contribution
to the path integral. Even when there are zero modes, since they give constant contributions
to the path integral which is easily evaluated, only the non-zero modes enters the molecular
dynamical evolution. Therefore by choosing one of the chiral sectors one can simulate one
flavor of the overlap fermion.

In the following, let us choose for simplicity the positive chirality sector assuming no zero
modes. The cases with the negative chirality sector and with zero modes are straightforward,
while the simulation becomes complicated when the topological charge can changes during
HMC [4], which is absent in our case. The pseudo-fermion action for one flavor of overlap
fermion reads as

SPF = S
(1)
PF + S

(2)
PF , (2.15)

where

S
(1)
PF = ϕ†1+Q

−1
+ (m′)ϕ1+, (2.16)

S
(2)
PF = ϕ†2+

(
Q+(m

′)

Q+(m)

)
ϕ2+ = ϕ†2+

1

2

[
Q+(m

′)Q−1
+ (m) +Q−1

+ (m)Q+(m
′)
]
ϕ2+ (2.17)

are the terms of the preconditioner and the preconditioned dynamical fermion, respectively.

For the latter, we adopt the symmetric form so as to asure that S
(2)
PF is real. ϕ1+ and ϕ2+ are

invariant under multiplication of projection operator P+.

2.2 Gauge action

We consider either the admissible (topology conserving) action or rectangular improved action.

• Admissible action:

SG = β
∑

x,µ>ν

1− 1
3ReTrPµν(x)

1− 1
ϵ

[
1− 1

3ReTrPµν(x)
] (2.18)

which satisfies the admissibility condition

|1− Pµν(x)| < ϵ, ∀x, µ, ν. (2.19)

• Rectangular improved action:

SG = β

cplq ∑
x,µ>ν

(
1− 1

3
ReTrPµν(x)

)
+ crct

∑
x,µ ̸=ν

(
1− 1

3
ReTrRµν(x)

) (2.20)

where Rµν(x) is 2× 1 rectangular Wilson loop. Several improved actions are categorized
to this class of actions, such as Iwasaki, Lüscher-Weisz, DBW2, depending on the the
choices of the coefficients cplq and crct.

In our productive run, we adopt the rectangular improved action with the values cplq = 3.648
and crct = −0.331, i.e. the Iwasaki gauge action [5]. In the present version of the Fortran code,
the admissible action is not involved.3

3The admissible action had been included in the Fortran overlap HMC code Ver.3.1.0 and the preceding
versions.

4

2.3 Extra Wilson (Fukaya) term

To suppress the near-zero modes of HW , the Wilson/twisted mass ghost term is introduced as
[6]

det

(
H2

W

H2
W + µ2

)
=

∫
Dϕ†WDϕW exp(−SFukaya) (2.21)

with
SFukaya = ϕ†W

[
Dtm

W (µ)(D†
WDW)−1Dtm

W (µ)†
]
ϕW , (2.22)

where Dtm
W (µ) = DW + iγ5µ and µ is the mass of the twisted mass ghost. Note that HW (µ)† =

HW (−µ).

3 Overlap Dirac operator

3.1 Sign function

The overlap operator with the bare mass m introduced in the previous section is written as

D(m) =

(
M0 +

m

2

)
+

(
M0 −

m

2

)
γ5 · sign(HW). (3.1)

As already noted, the implementation of the sign function sign(HW) is a quite involved issue.
In practice, one needs to compute a result of multiplication of D(m) to a vector v. v is a
complex vector having the degrees of freedom of color, spinor, and site. When sign(HW) is
applied to v, it expands v in terms of the eigenmodes of HW , and assign ±1 according the sign
of the eigenvalues:

sign(HW) · v =
∑
λ

sign(λ)(ψλ, v)ψλ. (3.2)

(ψλ, v) is a inner product and given by ψ†
λ · v. In numerical application, it is not realistic to

determine all the eigenmodes. A standard procedure therefore applies the eigenmode decompo-
sition only to low-lying modes, and employs some approximation formula to sign(HW). As the
latter, we adopt the Zolotarev’s rational approximation [9, 10]. The polynomial approximation
is also widely applied procedure. Since these approximations are valid in certain region of λ,
highest eigenvalue is also needed to be computed (or to be set to certain value).

The steps to compute signHW · v is as follows:

(i) Determine the low-lying (and highest) eigenmodes of HW .
(ii) Subtract low-lying eigenmodes from the vector v:

ṽ = v −
nλ∑
i=1

(ψλi
, v)ψλi

(3.3)

(iii) Multiply approximate sign-function ϵ(HW) to ṽ.
(iv) Then the total sign function, and thus D(m)v, is calculated as

sign(HW)v ≃
nλ∑
i=1

sign(λi)(ψλi
, v)ψλi

+ ϵ(HW)ṽ. (3.4)

5

Implementation: In the Fortran code, the Wilson fermion kernel is implemented in file
oprw5 chiral.f with the chiral representation of the γ matrices. (The Dirac representation
os also adopted in early stage of the project, but not not maintained. There are two versions,
one is with generic MPI version and the other is tuned for the Blue Gene/L machine.4

The overlap fermion kernel is implemented in file opr overlap zolotarev.f. The input
parameters Rm, Rm0 correspond to m and M0.

3.2 Low-mode subtraction

It is necessary to determine the low-lying modes to subtract them from HW . As an eigenvalue
solver, we currently adopt the implicitly restarted Lanczos method [7]. This method is based
on the Lanczos algorithm. When Nk eigenmodes are desired to determine, this method extends
the Krylov subspace Kk to (Nk + Np)-dimension. Then information of Np vectors in extra-
space is compressed into the Nk-dimension space by applying implicitly shifted QR algorithm.
Repeated application of extension and compression of Krylov subspace causes that the Nk

vectors approach to the lowest Nk eigenvectors. After enough application of this step, the
tridiagonal Lanczos matrix is diagonalized by QR algorithm. The same algorithm is also
applied to determine the highest eigenmodes.

In practice, it is useful to determine the eigenvalues whose absolute values are less than
certain threshold, Vth. Then nλ is defined as the number of eigenvalues which satisfies |λ| < Vth.
This is the policy adopted by the present program. Detailed description of eigenvalue solver
will be presented in a separate note.

Implementation:
The eigenvalues of HW are determined by routines in the files eigen wilson5 lex.f and
qris.f. The former implements the main part of the implicitly restated Lanczos algorithm,
and the latter contains routines for implicitly shifted QR algorithm. In the common file,
eigen wlex.h, contains parameter Nkmax. This parameter specifies the maximum size of Krylov
subspace, Nk +Np, and hence it must be larger than the sum of the input parameters Nkxmin
and Nkxmin, which are respectively Nk and Np for the determination of low-lying eigenmodes.
This is also true for Nkxmax and Nkxmax for the determination of highest eigenmodes (while
practically the highest mode can be easily determined compared to the low-lying ones). The
parameter Nkmax also appears in other common files, and must be changed simultaneously.

The parameter Vthrs corresponds to Vth. Nsbt, the number of subtracted eigenvectors, is
counted accordingly in the program. The parameters Enorm eigen specifies the precision of
the eigenvalue relation, HWψλ = λψλ. The determined eigenvalues and eigenvectors are stored
in common variables TDa(Nkmax) and Vk(Nvst,Nkmax).

For an acceleration technique, the Chebychev acceleration is implemented. (More detailed
description will be supplyed.)

Comment: If the low-lying eigenmodes of HW are monitored during MD steps in HMC, the
cost of eigenvalue solver is not negligible. Improving this part is highly desired. CG (conjugate
gradient) algorithm [8] is a potential alternative to the Lanczos type algorithm.

4We thank IBM staffs for tuning the Wilson Dirac kernel, in particular Jun Doi for continuous effort.

6

3.3 Approximate sign function

There are several procedures to approximate the sign function sign(HW).
In this project, we adopt the Zolotarev’s partially fractional approximation [9, 10].

3.4 Zolotarev’s rational approximation

The Zolotarev’s rational approximation is represented as [9, 10]

1√
H2

W

=
d0
λmin

(h2W + c2n)
n∑

l=1

bl
h2W + c2l−1

(3.5)

where hW = HW /λmin. Multiplying HW to this function, sign(HW) is computed. This formula
is valid for the interval hW ∈ [1, b] with b = λmax/λmin. The parameters d0 and bl are related
to the coefficients cl as follows.

d0 =
2λ

1 + λ

n∏
l=1

1 + c2l−1

1 + c2l
(3.6)

bl = d0

∏n−1
i=1 (c2i − c2l−1)∏n

i=1,i ̸=l(c2i−1 − c2l−1)
(3.7)

To determine d0 precisely, the parameter λ (which is defined in terms of ϑ function) must also
be determined. However, d0 can practically be determined by enforcing that the approximate
sign function exhibits least deviation from unity in the range [1, b].

Alternatively, the following approximate expresseion is practically useful. By enforcing
the sign function is unity at hW = 1, 2λ/(1 + λ) = 1 follows. (After numerically obtaining
approximate function, this factor can easily obtained by maximum and minimum in the range
[λmin, λmax]. Precise value of this factor maximally halves the deviation from 1.) Then

d0 =
n∏

l=1

1 + c2l−1

1 + c2l
. (3.8)

The coefficients cl is given as [10]5

cl =
sn2(lK ′/(2n+ 1);κ′)

1− sn2(lK ′/(2n+ 1);κ′)
(3.9)

K ′ = u(1) =

∫ 1

0

dt√
(1− t2)(1− κ′2t2)

, (3.10)

where κ′ =
√
1− κ2, κ = λmin/λmax. K

′ is the complete elliptic integral of the first kind with
modulus κ′, i.e., the value of u such that sn(u;κ′) = 1.

One needs to determine cl and K ′ for given b = λmax/λmim and n. sn(u, κ′) must be
computed somehow.

5In Ref. [9], cl is defined sn(lK′/2n;K′) instead of sn(lK′/(2n+ 1);K′) in Eq. (3.10).

7

Implementation: First of all, elliptic function sn must be computed. We make use of a
routine in Numerical Recipes [11]. In Fortran code, subroutine Jacobi elliptic (sncndn in
Numerical Recipes) compute sn(u, kc), cn(u, kc), and dn(u, kc) for given u and kc = 1 − k2.
In subroutine Poly Zolotarev, first the value of u which satisfies cn(u, kc) = 0 (sn(u, kc)=1)
is determined to the 14-th digit precision. Then cl, d0, and bl are determined according to
Eqs. (3.10), (3.8), and (3.7), respectively. A program to check the Zolotarev approximation
formula by giving sign(x) for real number x is also available.

3.5 Multi-shift CG solver

In the rational approximation of sign(HW), one needs to solve equations(
H2

W + cj
)
x = b j = 1, . . . n (3.11)

for single source vector b. If there is no efficient way to solve these equations, the rational
approximation is not tractable.

Multi-shift solver [12, 13] enables to solve these n equations at once. We employ the multi-
shift CG algorithm (for the standard CG algorithm, see Sec. A.1). The multi-shift solver
algorithms make use of the fact that the Krylov subspace Kk(A, v0) for matrix A and initial
vector v0 is unchanged against a shift A→ A+σ, i.e., Kk(A, v0) = Kk(A+σ, v0) . This implies
that the residual vector, which is perpendicular to the previous Klylov subspace, can be shared
by n equations in Eq. (3.11). Then n solutions of Eq. (3.11) can be determined simultaneously.
The algorithm is summarized in A.2.

Comment: On scalar machines, the double-path solver [14, 15] is worth to be considered
as an alternative. There are alternative method to determine the solution of Eq. (3.11) by
extending the dimension of vectors.

4 Overlap solver algorithm

The inversion of the overlap operator D(m) is required in every step of the HMC update. This
is usually most time consuming part of the simulation. Therefore, improvement of the solver
algorithm for this inversion is quite important to reduce the simulation cost.

Besides HMC, solver algorithm is also needed to determine the quark propagators. To
determine the quark propagator for several values of mass simultaneously, multishift CG solver
is applicable. If the low-lying eigenmodes of Dov are determined, they can be used for the
low-mode preconditioning, in which these low-mode part is subtracted from Dov for decreasing
the condition number.

4.1 Nested conjugate Gradient algorithm

Once the approximate sign(HW) is at hand, overlap quark propagator can be computed by
standard solver algorithms for hermitian or nonhermitian matrices. In HMC algorithm, since
one needs to invert only D(m)†D(m), which is hermitian and positive definite, the standard
conjugate gradient (CG) algorithm is applicable. The CG algorithm is summarized in Ap-
pendix A.1. Of course it is worth to examine which of hermitian algorithms and nonhermitian
algorithms (BiCGStab, MR, GMRES, etc.) are efficient (see T. Kaneko’s report [25, 27]). For
the latter, one needs to solve the linear equations twice in HMC algorithm.

8

With the rational approximation to the sign function, the CG algorithm is also necessary
to implement Dov. In this sense, it is called ‘nested’ CG algorithm.

Relaxed CG algorithm. The relaxed stopping condition method [16] is based on an idea
that, as the outer solver proceeds, the correction to the solution vector, |xi − xi−1|, becomes
smaller and one does not have to evaluate D(m) with too much accuracy. Its implementation
depends on the outer solver algorithm, and for CG(NE), the condition is loosened as

ϵms
i ∝

√
ζi, ζi = ζi−1 +

1

|ri−1|2
, (4.1)

where ri−1 = Dxi−1 − b and ϵms
i the stopping condition for the inner (multishift) solver.

This technique accelerate the convergence measured in multiplication of DW almost a factor
of 2 [17, 26]. The relaxed CG algorithm is summarized as follows.

outer loop:

1: set initial guess x0

2: r0 = b−Ax0

3: p0 = r0

4: ζ = 1/|r0|2

5: repeat until |rk|/|b| < ϵout

5-1: inner loop: calculate qk so that |qk −Apk| < ϵout|b||pk|
√
ζ/k

5-2: α = ⟨rk, rk⟩/⟨pk, qk⟩
5-3: xk+1 = xk + αpk

5-4: rk+1 = rk − αpk

5-5: convergence check: exit outer loop if |rk|/|k| < ϵout

5-6: β = ⟨rk+1, rk+1⟩/⟨rk, rk⟩
5-7: pk+1 = rk + βpk

5-7: ζ = ζ + 1/|rk+1|2

Comment: There are possible improvements:
- Other outer solver algorithm.
- Adoptive precision.
- Guess of initial approximate solution (chronological estimator or preconditioning).
- Chiral projection.

4.2 5-dimensional solver

The 5-dimensional CG solver is based on the Schur decomposition [20, 21]. Let us consider a
5-dimensional block matrix

M5 =

(
A B
C D

)
=

(
1 0

CA−1 1

)(
A 0
0 S

)(
1 A−1B
0 1

)
≡ L̃D̃Ũ , (4.2)

9

where S = D − CA−1B. S is called the Schur complement. Consider a linear equation

M5

(
ϕ
ψ4

)
=

(
0
χ4

)
. (4.3)

Using M5 = L̃D̃Ũ and multiplying L̃−1 from the left to the above equation, one arrives at(
A 0
0 S

)(
ϕ+A−1Bψ4

ψ4

)
=

(
0
χ4

)
. (4.4)

Namely, by solving 5-dimensional equation (4.3), one can solve Sψ4 = χ4.
Hereafter an example for N(= Npole) = 2 case is shown explicitly. Let us consider the 5D

operator of a form

M5 =


HW −√

q2 0
−√

q2 −HW
√
p2

HW −√
q1 0

−√
q1 −HW

√
p1

0
√
p2 0

√
p1 Rγ5 + p0H

 =

(
A B

C D

)
. (4.5)

In general, A B, and C has the following structure.

A =

 AN

AN−1

. . .

 , B =

 BN

BN−1
...

 , C = (CN , CN−1, · · ·) (4.6)

A−1 =


A−1

N

A−1
N−1

. . .

 (4.7)

A−1
i =

1

H2
W + qi

(
HW −√

qi
−√

qi −HW

)
(i = 1, . . . , n) (4.8)

Then

S = D − CA−1B = D −
∑
i

CiA
−1
i Bi (4.9)

= Rγ5 + p0HW +HW

N∑
i=1

pi
H2

W + qi
. (4.10)

The parameters R, p0, pi and qi (i = 1, . . . , N) are determined appropriately by comparing
with the Zolotarev’s partially fractional approximation formula (see below). This technique
also applies to other partial fractional approximation and continuum fractional approximation
[20, 21].

10

Low-mode subtraction [18]. The low-mode preconditioned hermitian overlap operator is
written as

Hov = f1γ5 + f2

Nsbt∑
j=1

sign(λj)vj × v†j + f2PH sign(HW)PH , (4.11)

where f1 =M0 +
m
2 , f2 =M0 − m

2 , vj is an eigenvector of HW associated to an eigenvalue λj ,

and PH = 1−
∑Nsbt

j=1 vj × v†j is the projector onto the space spanned by the eigenvectors whose
eigenvalue |λ| > λthrs. This implies that the 5D operator is modified as

D = Rγ5 + p0PHHWPH + f2

Nsbt∑
j=1

sign(λj)vj × v†j , (4.12)

Bi =

(
0√
piPH

)
, Ci = (0,

√
piPH). (4.13)

The parameters of the 5D matrix are determined as

R = f1, (4.14)

p0 = f2
d0
λthrs

∑
l

bl, (4.15)

pl = f2d0bl(c2n − c2l−1)λthrs, (4.16)

ql = c2l−1 · λ2thrs. (4.17)

Note that in the approximation of sign(HW) in Eq. (4.11), λthrs replaces λmin in Eq. (3.5).

Even-odd preconditioning. 5D solver is not efficient without applying a preconditioning
technique. One can apply the even-odd preconditioning by decomposing 4D lattice sites into
even and odd sites as

M5x =

(
Mee Meo

Moe Moo

)(
xe
xo

)
=

(
be
bo

)
. (4.18)

By multiplying (
M−1

ee −M−1
ee MeoM

−1
oo

0 M−1
oo

)
(4.19)

from the left, one has a closed equation for xe,

(1−M−1
ee MeoM

−1
oo Moe)xe = b′e ≡M−1

ee be −M−1
ee MeoM

−1
oo bo, (4.20)

and after solving Eq. (4.20), xo is provided as

xo = bo −M−1
oo Moexe. (4.21)

The even-even and odd-odd block matrices must be inverted. The even-even matrix has
the form

Mee =


γ5 −√

q2 0
−√

q2 −γ5
√
p2PHee

γ5 −√
q1 0

−√
q1 −γ5

√
p1PHee

0
√
p2PHee 0

√
p1PHee Dee

 , (4.22)

11

Dee = f1γ5 + f2
∑
j

signλjvje × v†je + p0PHeeγ5PHee, (4.23)

where vje is even-part of the eigenvector vj . Moo, Meo, and Moe are similarly defined.
The matrix Mee (and also Moo) can be decomposed into left and right triangular matrices,

Mee = LeUe =


1
r2 1

1
r1 1

0 s2 0 s1 1




γ5 −√

q2
v2

√
p2PHee

γ5 −√
q1

v1
√
p1PHee

u0

 (4.24)

where

rl = −√
qlγ5 (4.25)

vl = −(1 + ql)γ5 (4.26)

sl = −
√
pl

1 + ql
PHeeγ5 (4.27)

u0 = Dee +

(∑
l

pl
1 + ql

)
PHeeγ5PHee (4.28)

Multiplication of U−1 and L−1 is easily implemented by forward and backward substitution.
However, one need to solve x = u−1

0 z for a given 4D even-vector z at each iteration step of the
solver algorithm for Eq. (4.20).

Inversion of u0. The standard method to solve a linear equation is the iterative Krylov
subspace method. The Krylov subspace is, starting with initial residual vector r0 = z, composed
as Kk(A; z) = span{z,Az, . . . , Ak−1z}. Because of the structure of the matrix u0, the Krylov
subspace closes at most at 2(Nsbt + 1) dimension, and then is spanned by a non-orthogonal
basis {z, γ5z, vje, γ5vje} (j = 1, . . . Nsbt). Thus u

−1
0 z is also expanded in this basis.

Denoting wj = vje, wNsbt+j = γ5vje (j = 1, . . . , Nsbt), u0 is expressed as

u0 =

a+ 2Nsbt∑
i,j=1

ci,jwi × w†
j

 γ5. (4.29)

The coefficients are given as a = f1 + p0 + uH ,

ci,j = −uHδi,j ≡
(∑

l

pl
1 + ql

)
δi,j (4.30)

ci+Nsbt,j+Nsbt
= −uHδi,j (4.31)

ci,j+Nsbt
= [f2sign(λi)− p0λi]δi,j + uH(v†ieγ5vje). (4.32)

for i, j = 1, . . . , Nsbt. u0 is also be expanded as

u−1
0 = γ5

ā+ ā′γ5 +
2Nsbt∑
i,j=1

c̄i,jwi × w†
j

 . (4.33)

12

5D solver 4D solver
mq Npoly time [sec] DW mult [k] time [sec] DW mult [k]

0.400 10 16.7 27 41.3 119
0.100 10 41.0 65 161.2 467
0.050 10 75.5 119 322.2 932
0.035 10 104.7 165 458.8 1328
0.025 10 141.2 222 621.5 1801
0.015 10 203.8 321 787.9 2281

0.400 20 28.7 56 55.4 125
0.100 20 65.2 127 216.2 489
0.050 20 121.4 236 431.2 976
0.035 20 168.8 329 614.3 1,390
0.025 20 228.0 444 832.1 1,883
0.015 20 330.1 642 1050.0 2,377

Table 1: The convergence of 5D and 4D solvers on Blue Gene 1024-node class. The convergence
criterion is |r|2/|b|2 < 10−20. Note that the |b − (D†D)x|2 of the 5D solver is of one order of
magnitude larger that of the 4D solver.

From the condition u0u
−1
0 = 1, one easily obtains that ā = 1/a, ā′ = 0, and c̄i,j is determined

by solving a linear equation

∑
l

[
aδil +

∑
k

cik(w
†
kwl)

]
c̄lj = −1

a
cij . (4.34)

This inversion must be done only once before starting the 5D solver. In each step of iteration,
required operation is the 2Nsbt inner products (w

†
jb) and vector operations related to wj . This

is not a heavy operation compared to other parts of the 5D solver.

4.3 Performance test

A comparison of performance of the 5D and 4D solver is performed on a single configuration
of 163 × 48 lattice generated at β = 2.30, Nf = 2 + 1 with mud = 0.100, ms = 0.100, and
at Q = 0. The result on Blue Gene 1024-node job class is shown in Table 1 as well as in
Fig. 1 for mq ≤ 0.1. The convergence time and numbers of DW mult were observed for various
quark masses and Npoly = 10 and 20. The former Npoly corresponding the value used in the
productive run. The convergence criterion is |r|2/|b|2 < 10−20. Note that the |b− (D†D)x|2 of
the 5D solver is of one order of magnitude larger than that of the 4D solver. The threshold of
eigenvalues for low-mode subtraction is set as λthrs = 0.045, which leads on this configuration
Nsbt = 8.

There are specific features for each of these two algorithms.

• Increasing the degree of polynomial, Npoly, Relaxed CG increases the cost only gradually,
because the multishift CG mothod is applied for the inner loop. In 5D solver, since
the size of vector is almost propotional to Npoly, the numerical cost increases linearly.
(However, these features are not apparent in the above performance test. This may
depend also on the machine archtecture.)

13

0 0.02 0.04 0.06 0.08 0.1 0.12
m

q
(quark mass)

0

200

400

600

800

1000

co
nv

er
ge

nc
e

tim
e

[s
ec

]

5D (Npoly=10)
4D (Npoly=10)
5D (Npoly=20)
4D (Npoly=20)

Figure 1: The quark mass dependence of the convergence time of 5D and 4D solvers on Blue
Gene 1024-node class. See also the comments of Table 1.

• By relaxed CG, several masses of overlap fermion can be solver simultaneously by making
use of multishift CG for outer loop. The 5D solver can be applied to single quark mass
mass at once. Thus we adopt the relaxed CG to the spectroscopy (partially quenched),
in which the cost can be largely reduced by solving quark propagator for several masses
simultaneously. On the other hand, in HMC the quark mass is fixed to a single value,
and hence the 5D solver is employed.

4.4 Additional topics on the 5D solver

Approximate solution Suppose that one has an approximate solution ψ̃4 of a 4D equation,

Dovψ4 = χ4. (4.35)

If one can also compose an approximate solution of 5D equation from ψ̃4, it can provide a good
initial guess for the 5D linear problem.

Because of Eq. (4.4), when ψ4 is already known, ϕ is given by solving

Aϕ = −Bψ4. (4.36)

More explicitly,

ϕ =

 ϕN
ϕN−1

...

 , ϕi =

(√
qi

HW

) √
pi

H2
W + qi

ψ4, (4.37)

which is easily determined simultaneously by using the multishift CG solver.
There are two straightforward applications:

14

• Adaptive 5D solver
At early stage of the CG iteration, one does not require the full precision to Dov. The
above method enables us to change the value of Npoly at an intermediate stage of CG
iteration. Namely, the smaller Npoly is used at the earlier CG iterations. The precisions at
which Npoly is changed are selected in accord with the precisions of the approximation to
the sign function with that Npoly. This idea was examined in a reort [28] on a Nf =2+1
configuration with mq = 0.015 and ms = 0.100. In summary, the adoptive 5D solver
achieves about 15% acceleration for the dynamical quark, while almost no improvement
for the preconditioner. Present simulation code does not include this technique.

• Chronological estimator in HMC update.
The chronological estimator technique compose an initial guess of linear equation by
previous solutions. To apply it to the 5D solver, one needs to store large 5D solutions.
The above method reduces the size of stored vectors from (2Npoly +1)×Nq to Nq, where
Nq = 2 ·Ncolor ·Nspinor ·Nsite

Hermitian version of 5D solver. In the implementation in Subsec. 4.2, the even-odd pre-
conditioned matrix in Eq. 4.20 was not hermitian. Therefore the CGNE algorithm is employed
to solve it. However, the hermitian (while not positive definite) version of the even-odd pre-
conditioned matrix can also be constructed [30]. Then the algorithms for hermitian matrices,
e.g. MINRES, are applicable. Unfortunately, this implementation does not improve the cost
[30].

5 Hybrid Monte Carlo algorithm

The hybrid Monte Carlo algorithm introduces the conjugate momenta to the gauge field, and
update them with molecular dynamical evolution based on the Hamiltonian formalism.

• At the beginning of this evolution period, the conjugate momenta and pseudofermion
fields are refreshed according to the Gaussian weight (Langevin algorithm).

• The molecular dynamical evolution is performed with the leap-frog algorithm so as to
conserve the total Hamiltonian.

• At the end of evolution, the Metropolis test is performed so that the step size error is
statistically corrected. For this purpose, total Hamiltonian is computed at the beginning
and at the end of molecular dynamical evolution.

These whole steps compose one ‘trajectory’.

5.1 Hamiltonian

The Hamiltonian is defined as

H[H,U ;ϕ] =
∑
x,µ

1

2
Tr
[
Pµ(x)

2
]
+ S[U, ϕ]. (5.1)

Pµ(x) is conjugate momenta to the link variable Uµ(x). Writing link variable as

Uµ(x) = exp
[
iAa

µ(x)t
a
]
, (5.2)

15

where ta is SU(3) generator satisfying Tr(tatb) = δab,

dUµ(x)

dτ
= i

dAa
µ(x)

dτ
taUµ(x) ≡ iPµ(x)Uµ(x),

Pµ(x) = paµ(x)t
a. (5.3)

Therefore paµ(x) is conjugate to Aa
µ(x), and Pµ(x) is hermitian and traceless. The kinetic term

of Eq. (5.1) implies
1

2
Tr
[
Pµ(x)

2
]
=

1

2

∑
a

[
paµ(x)

]2
. (5.4)

Implementation: In the Fortran program, variable H corresponds to iH.

5.2 Langevin step

At the beginning of trajectory, paµ is randomly refreshed with Gaussian probability measure,

P (paµ) = exp

[
−1

2
(paµ)

2
]
. (5.5)

The pseudo-fermion field is given by the heat-bath algorithm. During the molecular dy-
namical evolution, the pseudo-fermion field plays a role of external field. All pseudo-fermionic
terms appearing in the present action is written as the form of

exp(−SPF) = exp
[
−ϕ†(D†D)−1ϕ

]
= exp(−ξ†ξ), (5.6)

and hence easily generated by Gaussian random number generator. After generating ξ, ϕ is
given as

ϕ = D†ξ. (5.7)

One-flavor case. The pseudo-fermion fields ϕ1+ and ϕ2+ must be given according to a
probability density exp(−SPF1) and exp(−SPF2). This is achieved with Gaussian distributed
field ξ1+ and ξ = 2+ by transformations:

ϕ1+ =
√
Q+(m′) · ξ1+, (5.8)

ϕ2+ =

√
Q+(m)

Q+(m′)
· ξ2+. (5.9)

The operator
√
Q+(m′) can be implemented by, e.g., partial fraction expansion (Zolotarev’s

approximation) by expressing as [4]

ϕ1+ =
Q+(m

′)√
Q+(m′)

· ξ1+. (5.10)

This part is more time consuming than the Nf = 2 HMC. Other approaches, for example
Chebyshev polynomial approximation, should be compared.

16

5.3 Molecular dynamical evolution

Let us start with general discussion. For dynamical variable p and its conjugate momentum p,
the evolution operator Vp and Vq is defined so as to evolve {p, q} as

Vq(∆τ) : {p, q} → {p, q +∆τ · p}

Vp(∆τ) : {p, q} → {p−∆τ
∂S

∂q
, q}. (5.11)

By requiring reversibility, the leap-frog integrator is constructed as

VPUP (∆τ) = Vp(
∆τ

2
)Vq(∆τ)Vp(

∆τ

2
). (5.12)

This form is called ‘PUP-type’ integrator, since variable q is the link variable in the present
case. Alternatively, ‘UPU-type’ integrator is also defined as

VUPU (∆τ) = Vq(
∆τ

2
)Vp(∆τ)Vq(

∆τ

2
). (5.13)

Standard leap-frog evolution is implemented as, for example by adopting UPU-type integrator,

V (∆τ)n = Vq(
∆τ

2
)

(
n−1∏
i

[Vp(∆τ)Vq(∆τ)]

)
Vp(∆τ)Vq(

∆τ

2
). (5.14)

Practically, UPU is known to be more efficient than PUP.
In the present case, p and q correspond to Pµ(x) and Uµ(x), respectively. By differentiating

the Hamiltonian H by simulation time τ ,

dH
dτ

=
∑
µ,x

Tr

[
dPµ(x)

dτ
Pµ(x) + iPµ(x)Rµ(x)

]
(5.15)

where the force Rµ(x) satisfying

dS

dτ
=
∑

Tr[iPµ(x)Rµ(x)] (5.16)

is anti-hermitian and traceless. The evolution of Pµ(x) is

iPµ(x) → iPµ(x) + ∆τRµ(x),

Uµ(x) → exp(∆τ · iH)Uµ(x). (5.17)

Sexton-Weingarten (multi-time step) acceleration Sexton and Weingarten introduced
multi-time step into the above molecular dynamical evolution.

H = T (p) + S1(q) + S2(q) ≡ H1 +H2 (5.18)

where
H1 = T (p) + S1(q), H2 = S2(q). (5.19)

Then the evolution operator can be composed as

V (∆τ) = V2(
∆τ

2
)

[
V1(

∆τ

m
)

]m
V2(

∆τ

2
). (5.20)

17

V2 includes only the evolution of p. This procedure is efficient when the force R1 = ∂S1/∂q is
much larger than R2 = ∂S2/∂q.

The multi-time step acceleration can be generalized to cases of more than two time steps.
In the case of three time step,

V (∆τ) = V3(
∆τ

2
)

{
V2(

∆τ

2n
)

[
V1(

∆τ

mn
)

]m
V2(

∆τ

2n
)

}n

V3(
∆τ

2
). (5.21)

We set S1 = SG + SFukaya, S2 = S
(1)
PF , and S3 = S

(2)
PF .

Improved integrator. Instead of the integrator (5.12), Omelyan et al. considered the fol-
lowing type of the integrator [23, 24]:

VPUPUP (∆τ) = Vp(λ∆τ)Vq(
∆τ

2
)Vp[(1− 2λ)∆τ]Vq(

∆τ

2
)Vp(λ∆τ) (5.22)

The leading error of this integrator is C∆t3, and the coefficient C is represented as

C = α(λ)[T, [V, T]] + β(λ)[V, [V, T]], (5.23)

α(λ) =
1− 6λ+ 6λ2

12
, β(λ) =

1− 6λ

24
. (5.24)

where T and V are the evolution operator for the kinetic and potential part of the Hamitonian.
Minimizing

E3 =
√
α(λ)2 + β(λ)2, (5.25)

they found

λc =
1

2
− (2

√
326 + 36)1/3

12
+

1

(6
√
326 + 36)1/3

≃ 0.193 183 327 503 7836. (5.26)

The Omelyan integrator can also be implemented for the nested integrator with multi-time
step.

Comment on the performance:

5.4 Metropolis test

At the end of the molecular dynamical steps, Metropolis test is performed so as to ensure the
detailed balance condition. The candidate of new configuration q′ is accepted with probability

P = min

{
1,
e−H(p′,q′)

e−H(p,q)

}
. (5.27)

If q′ is rejected, the initial configuration q is adopted as the new configuration.

18

5.5 Gauge field part

Let us consider the admissible action first.

dSG
dτ

= β
∑

x,µ>ν

(
−1

3
ReTr

dPµν(x)

dτ

)
1

[1− 1
ϵReTrPµν(x)]2

. (5.28)

Then the gauge force RGµ(x) is expressed as

Rµ(x) = −β
3

[∑
±ν

Uµ(x)V
†
µ,ν(x)

[1− 1
ϵSµ,ν(x)]

2

]
AT

(5.29)

where
Sµ,±ν(x) = ReTr[Uµ(x)V

†
µ,±ν(x)], (5.30)

Vµ,+ν(x) = Uν(x)Uµ(x+ ν̂)U †
ν (x+ µ̂),

Vµ,−ν(x) = U †
ν (x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂), (5.31)

and [. . .]AT means anti-hermitian-traceless.
In the case of rectangular improved gauge action, RGµ(x) is obtained similarly.

5.6 Overlap quark part

We first describe the two flavor case in detail, and finally briefly commnet on the one flavor case
which is almost the same as for the former. We consider the Hasenbusch preconditioned version,
Eq.(2.10), since the unpreconditioned action is the same as the first term of the preconditioned
one, Eq.(2.11).

SPF = ϕ†[D(m)†D(m)]−1ϕ. (5.32)

d

dτ
S
(1)
PF = −ψ† d

dτ
[D(m)†D(m)]ψ, (5.33)

where ψ = [D(m)†D(m)]−1ϕ.

d

dτ
D(m)†D(m) = F 2 d

dτ

{
R2 + 1 +R[ϵ(HW)γ5 + γ5ϵ(HW)]

}
= f [ϵ̇(HW)γ5 + γ5ϵ̇(HW)] (5.34)

where F = m0 −m/2, R = (m0 +
m
2)/(m0 − m

2), and f = m2
0 −m2/4. ϵ(x) is approximation

to the sign function. Defining as ψ5 = γ5ψ, Eq. (5.33) is written as

d

dτ
S
(1)
PF = −f

[
ψ†ϵ̇(HW)ψ5 + ψ†

5ϵ̇(HW)ψ
]

(5.35)

Using the formula

ϵ(x) = x(x2 + c2n)
n∑

l=1

bl
x2 + c2l−1

, (5.36)

19

where x = hW = HW /λmin,

dϵ

dτ
=

dx

dτ
(x2 + c2n)

n∑
l=1

bl
x2 + c2l−1

+
n∑

l=1

(c2l−1 − c2n)
x

x2 + c2l−1

(
x
dx

dτ
+
dx

dτ
x

)
bl

x2 + c2l−1
. (5.37)

Defining as

ψl =
1

x2 + c2l−1
ψ,

ψ5l =
1

x2 + c2l−1
γ5ψ, (5.38)

which can be determined by, for example, applying multi-shift CG method twice. The first
term of Eq. (5.35) is expressed as[

d

dτ
S
(1)
PF

]
1st−term

= −fψ†
5

dhW
dτ

(h2W + c2n)
n∑

l=1

blψl

− f
n∑

l=1

(c2l−1 − c2n)ψ
†
5lhW

(
hW

dhW
dτ

+
dhW
dτ

hW

)
ψl. (5.39)

The second term of Eq. (5.35) is obtained by replacement

ψ† → ψ†
5, ψ†

l → ψ†
5l,

ψ5 → ψ, ψ5l → ψl. (5.40)

Force of Wilson kernel:
The derivative of the hermitian Wilson kernel, dHW /dτ , is a standard ingredient of HMC with
Wilson-type fermions:

ζ†
dHW

dτ
η = −κ · ζ†(x)γ5

∑
x,µ

{(1− γµ)iPµ(x)Uµ(x)η(x+ µ̂)

−(1 + γµ)U
†
µ(x− µ̂)iPµ(x− µ̂)η(x− µ̂)

}
= −κ

∑
x,µ

iPµ(x)ab
{
ζ†(x)bγ5[(1− γµ)Uµ(x)η(x+ µ̂)]a

−[(1− γµ)Uµ(x)ζ(x+ µ̂)]†bγ5η(x+ µ̂)]a
}
. (5.41)

Therefore, defining T+µη(x) ≡ (1− γµ)Uµ(x)η(x+ µ̂),

Rµ(x)ab = −κ
[
ζ†(x)bγ5[T+µη(x)]a − [T+µζ(x)]

†
bγ5η(x)a

]
AT

. (5.42)

Force of preconditioned overlap kernel:
For the preconditioned overlap operator, Eq. (2.12), the force is easily obtained.

d

dτ
S
(2)
PF = −

[
Z†ϵ̇(HW)Y + Y †ϵ̇(HW)Z

]
(5.43)

20

where

Y = [D†(m)D(m)]−1D†(m′)ϕ2,

Z = γ5[fY − F ′ϕ2], (5.44)

and f = m2
0 −m2/4, F ′ = m0 −m′/2. Then computation of Eq. (5.43) can be done by the

same routine to compute the preconditioner, Eq. (5.35), i.e. the standard overlap force.

One flavor case:
Once the pseudo-fermion fields is provided, the molecular dynamical evolution for the one flavor
is straightforward, since

dS
(1)
PF

dτ
= ϕ†1+P+

(
dQ(m′)−1

dτ

)
P+ϕ1+, (5.45)

and so on can be implemented as almost same as the Nf = 2 case.

5.7 Fukaya term

The force of Fukaya term is easily computed making use of the routine to compute the force
of Wilson kernel, Eq. (5.42).6

dSFukaya

dτ
=

d

dτ
ϕWDW (µ)[D†

WDW]−1D†
W (µ)ϕW

= −
[
ζ†γ5

dHW

dτ
η + η†γ5

dHW

dτ
ζ

]
, (5.46)

where

η = [D†
WDW]−1DW (µ)†ϕW ,

ζ = DW η − ϕW . (5.47)

5.8 Additional issues in HMC algorithm

In this subsection, we describe the algorithms which are not used in the latest version of our
simulation.

5.8.1 Reflection/refraction prescription

During update of link variable, the lowest eigenvalue of HW may change the sign, where the
value of SPF discontinuously changes. Ref. [19] introduced reflection/refraction.

Suppose that the lowest eigenmode λ acrosses zero at time τ0.
The antihermitian normal vector N of the zero-eigenvalue surface is expressed as

N =
Dλ√

Tr[(Dλ)2]

∣∣∣∣∣
λ=0

, (5.48)

6Cf. Fukaya’s memo.

21

where Dλ = ⟨λ|DHW |λ⟩.

∆SPF = SPF [λ(τ = τ0 + ϵ)]− SPF [λ(τ = τ0 − ϵ)] (5.49)

Then reflection or refraction occurs depending on the values of ∆SPF and Tr[NH]:

Reflection:
1

2
Tr[NH]2 < ∆SPF ⇒ H = 2Tr[NH] ·N (5.50)

Refraction:
1

2
Tr[NH]2 > ∆SPF ⇒ H = −Tr[NH] ·N

(
1−

√
1− 2∆S/Tr[NH]2

)
.

(5.51)

Implementation: To detect the zero-crossing, the lowest eigenmode is monitored during
every step of evolution of Uµ. If the lowst eigenvalue changes the sign, whether λbefore · λafter
is less than certain value (input parameter E crit wall) is checked. Then ‘wall’-finding process
starts.

Firstly, a value of τ0, at which the lowest eigenvalue vanishes, is estimated by linear in-
terpolation. If the value of |λ| is larger than |λbefore| or |λafter|, this signals that the lowest
eigenvalues before and after evolution has no relation. In this case, the program quits the
wall-finding process.

If the program is treating a true zero-crossing, the value of τ0 is determined until |λ| is less
than certain value (input parameter E conv wall). Then ∆SPF is evaluated, and accordingly
reflection or refraction occurs.

5.8.2 Noisy Metropolis test

For the Nf = 2 simulation at β = 2.3 [17], the 5D solver is adopted without the low-mode
preconditioning. This makes the HMC update inaccurate when very low eigenvalue of HW

appears. To correct this inaccuracy, the nisy Metropolis algorithm is employed in Nf = 2
simulation.

6 Eigenmodes of ovelap fermion

This section summarize the nature of eigenvalues of the Ginsparg-Wilson fermions following
the textbook by S. Aoki [31].

Let us consider a fermion operator which satisfies the Ginsparg-Wilson relation [32]

Dγ5 + γ5D = aDRγ5D, (6.1)

where R is Hermitian and commutable with γ5, and γ5-Hermiticity

γ5Dγ5 = D†. (6.2)

In addition, we assume locality of R, Rxy = Rδxy. Hereafter a is set to 1. In the case of overlap
fermion of Eq. (2.3), R = 1/M0.

With these conditions, there exists a unitary operator V satisfying

D =
1

R
(1 + V), V †V = V V † = 1, γ5V γ5 = V †. (6.3)

It is also easy to show that D and D† are commutable:

DD† = D†D. (6.4)

22

Eigenmodes of D. Consider an eigenmode (λ, |λ⟩) satisfying eigenvalue equation

D|λ⟩ = λ|λ⟩. (6.5)

Then the commutability of D and D† indicates that D†|λ⟩ is also an eigenstate belonging to
λ. Considering degeneracy, one can express it as

D†|λ, i⟩ =
∑
j

cij |λ, j⟩. (6.6)

Then
cki = ⟨λ, k|D†|λ, i⟩ = ⟨λ, k|λ̄k|λ, i⟩ = λ̄kδki (6.7)

leading to
D†|λ, i⟩ = λ̄|λ, i⟩, (6.8)

i.e. |λ, i⟩ is a simultaneous eigenstate of D and D†.
From the Ginsparg-Wilson relation, λ+ λ̄ = Rλ̄λ. Setting λ = x+ iy,(

x− 1

R

)2

+ y2 =

(
1

R

)2

, (6.9)

namely eigenvalues of D distribute on a circle of radius R−1 and center (1/R, 0). Thus λ takes
real values only when λ = 0 or λ = 2/R.

γ5|λ⟩ is an eigenfunction of D with eigenvalue λ̄:

Dγ5|λ⟩ = γ5D
†|λ⟩ = λ̄γ5|λ⟩. (6.10)

Considering a degenerate case, expanding as

γ5|λ, i⟩ =
∑
j

Uij |λ̄, j⟩, (6.11)

δji = ⟨λ, j|γ5γ5|λ, i⟩ = (UU †)ji (6.12)

namely U is unitary. Without degeneracy, one finds

γ5|λ⟩ = e−iθ|λ̄⟩. (6.13)

Eigenmodes of H2. For H2 = D†D (H ≡ γ5D in this note),

[H2, γ5] = 0 (6.14)

is derived from the Ginsparg-Wilson relation. Thus the eigenvector of H2 can be set to an
simultaneous eigenvector of γ5, i.e. a state with definite chirality. The eigenvalue of H2 is
Λ = λ̄λ, and chiral eigenstates are composed as

|Λ,±⟩ = C
1± γ5

2
|λ⟩ (6.15)

where C is a normalization constant. With Eq. (6.13),

|Λ,±⟩ = C

2

(
|λ⟩ ± e−iθ|λ̄⟩

)
. (6.16)

This gives a relation between the chiral eigenstates of H2 and the eigenstates of D.

23

Eigenmodes of H. Since H ≡ γ5D is Hermitian, its eigenvalue λH is real.

H|λH⟩ = λH |λH⟩ (6.17)

For eigenvalue of H2, Λ = λ2H = λ̄λ < (2/R)2 meands

− 2

R
≤ λH ≤ 2

R
. (6.18)

Let us consider a condition that |λH⟩ is chiral:

γ5|λH⟩ = ±|λH⟩. (6.19)

Applying |λH⟩ from left and right to the Gisparg-Wilson relation, one obtains 2λH = ±Rλ2H .
Thus

λH = 0, +
2

R
for γ5|λH⟩ = |λH⟩ (6.20)

λH = 0, − 2

R
for γ5|λH⟩ = −|λH⟩ (6.21)

Defining

Γ5 ≡ γ5

(
1− R

2
D

)
, (6.22)

The Ginsparg-Wilson relation indicates that H and Γ5 are anticommutative:

{H,Γ5} = 0. (6.23)

Since
HΓ5|λH⟩ = −Γ5H|λH⟩ = −λHΓ5|λH⟩, (6.24)

if λH ̸= 0 and Γ5|λH⟩ ̸= 0, −λH is also an eigenvalue of H with eigenvector Γ5|λH⟩. Γ5|λH⟩ = 0
occurs when

⟨λH |Γ5Γ5|λH⟩ = 1− R2

4
λ2H = 0, (6.25)

namely λH = ±2/R. These condition means that paired eigenvalues (λH ,−λH) appears in
non-chiral cases.

For paired eigenmodes,

| − λH⟩ = CΓ5|λH⟩ = 1√
1−R2λ2H/4

(
γ5 −

R

2
λH

)
|λH⟩. (6.26)

Since |λH⟩ and | − λH⟩ are orthogonal, ⟨λH |γ5|λH⟩ = RλH/2. Similarly, ⟨−λH |γ5| − λH⟩ =
−RλH/2, and ⟨−λH |γ5|λH⟩ = ⟨λH |γ5| − λH⟩ =

√
1− (RλH/2)2 hold.7 Thus with the basis of

eigenstates of H, D is expressed as

D =

 R
2 λ

2
H −λH

√
1− (R2 λH)2

λH

√
1− (R2 λH)2 R

2 λ
2
H

 = λH

(
x −

√
1− x2√

1− x2 x

)
(6.27)

7In numerical simulations, these states are determined by some kind of eigenvalue solver. Then a relative
phase of obtained |λH⟩ and | − λH⟩ may be arbitrary, and to be adjusted so that this condition is satisfied.

24

where x = RλH/2. Solving eigenvalue equation,

λ± = λH

RλH2 ± i

√
1−

(
RλH
2

)2
 . (6.28)

Eigenstates are

|λ ≡ λ+⟩ =
1√
2
[|λH⟩ − i| − λH⟩] (6.29)

|λ̄ ≡ λ−⟩ =
1√
2
[|λH⟩+ i| − λH⟩] (6.30)

With the same basis, γ5 is represented as

γ5 =

(
x

√
1− x2√

1− x2 −x

)
(6.31)

The eigenvalue of this matrix is surely ±1. Eigenvectors are simultaneous eigenvectors of
Λ = λ2H ,

|Λ,+⟩ =
1√
2

[√
1 + x2 |λH⟩+

√
1− x2 | − λH⟩

]
(6.32)

|Λ,−⟩ =
1√
2

[√
1− x2 |λH⟩ −

√
1 + x2 | − λH⟩

]
. (6.33)

θ apearing in the relation (6.13) satisfies tan θ =
√
1− x2/x.

The chiral eigenmodes are as follows.

(1) λH = 0:
γ5|λH = 0,±⟩ = ±|λH = 0,±⟩ (6.34)

is also the simultaneous eigenvector corresponding to Λ = 0 and λ = 0.

(2) λH = ± 2
R :

γ5|λH = ±2/R⟩ = ±|λH = ±2/R⟩. (6.35)

The eigenvectors |λH = ±2/R⟩ is also an eigenvector of D with eigenvalue λ = |λH |,
since

D|λH = ±2/R⟩ = γ5(±)
2

R
|λH = ±2/R⟩ = 2

R
|λH = ±2/R⟩. (6.36)

Massive operators. We obtained the relation between eigenmodes of D and eigenmodes of
H. In practical simulation, eigenvalue solver sometimes become unstable without small mass
term. The overlap Dirac operator (2.2) contains the mass as an additive term, and thus the
eigenvectors are unchenged with modified eigenvalues

λ(m) =

(
1− m

2M0

)
λ+m, (6.37)

and similar relation for λ̄. For H(m) = γ5D(m), the mass enters as a coefficient of γ5. For the
chiral modes, λH = 0 and ±2M0, they are eigenstates of γ5 and the relation to λH(m) is the

25

same as Eq. (6.37). For the non-chiral modes, using Eq. (6.31), one can again diagonalize the
matrix H(m) and obtains two eigenvalues ±λ(m) as

λH(m) =
√(

1−m2/4M2
0

)
λ2H +m2, (6.38)

or inversely

λH =
√
(λ2H(m)−m2)/

(
1−m2/4M2

0

)
. (6.39)

The corresponding eigenvectors are

|λ(m)⟩ =
1√

2λH(m)

[√
λH(m) + λH |λH⟩+

√
λH(m)− λH | − λH⟩

]
| − λ(m)⟩ =

1√
2λH(m)

[
−
√
λH(m)− λH |λH⟩+

√
λH(m) + λH | − λH⟩

]
(6.40)

Since Eq. (6.40) is orthogonal transformation, its inverse is obviously

|λH⟩ =
1√

2λH(m)

[√
λH(m) + λH |λH(m)⟩ −

√
λH(m)− λH | − λH(m)⟩

]
| − λH⟩ =

1√
2λH(m)

[√
λH(m)− λH |λH(m)⟩+

√
λH(m) + λH | − λH(m)⟩

]
(6.41)

Thus eigenmodes of H(m) can be converted to the eigenmodes of massless overlap Dirac oper-
ator.

A Algorithms for linear systems

A.1 Conjugate Gradient (CG) algorithm

The conjugate gradient(CG) algorithm is common and often most powerful algorithm for solv-
ing linear equations, in particular for large and sparse matrices. The CG algorithm applies to a
hermitial and positive definite matrix. If the matrix A is not a hermitial and positive definite,
the CG algorithm is applicable to A†A. This is called CGNE (CG for normal equation).

CG algorithm is an iterative solver which approximate the solution vector x to an equation

Ax = b (CG) or A†Ax = A†b (CGNE) (A.1)

by iteratively constructing xi by multiplying A to the previously obtained vectors. After inven-
tion of the CG algorithm, which was one of the greatest algorithmic progress in 20th century,
its mathematical background has extensively been investigated. The CG-type algorithms are
now called Krylov subspace method, which obtain an approximate solution in the Krylov sub-
space Kk(v0) = span{v0, Av0, A2v0, . . . , A

k−1v0}. This family of algorithms has been extended
to nonhermitian matrices, and include GMRES, BiCG, CGS, BiSGStab, etc.

Here we quote the CG algorithm for a hermitian and positive definite matrix matrix A.

CG algorithm:

(i) initial step

p0 = r0 = b

x0 = b

26

(ii) iteration step

for i = 0, 1, 2, . . . (repeat until convergence)

βi = − (ri,ri)
(pi,Api)

xi+1 = xi − βipi

ri+1 = ri + βiApi

αi =
(ri+1,ri+1)

(ri,ri)

pi+1 = ri+1 + αipi

A.2 Multishift CG algorithm

Multi-shift solver [12, 13] enables to solve these n equations at once. We employ the multi-shift
CG algorithm (for the standard CG algorithm, see Sec. A.1). The multi-shift solver algorithms
make use of the fact that the Krylov subspace Kk(A, v0) for matrix A and initial vector v0 is
unchanged against a shift A → A + σ, i.e., Kk(A, v0) = Kk(A + σ, v0) . This implies that the
residual vector, which is perpendicular to the previous Klylov subspace, can be shared by n
equations in Eq. (3.11). Then n solutions of Eq. (3.11) can be determined simultaneously. The
algorithm is written as follows.

Multi-shift CG algorithm:

(i) initial step

x0 = 0 xσ0 = 0
r0 = p0 = b pσ0 = b

ζσ0 = ζσ−1 = 1

(ii) iteration step

for i = 0, 1, 2, . . . (repeat until convergence)

βi = − (ri,ri)
(pi,Api)

xi+1 = xi − βipi
ri+1 = ri + βiApi

αi =
(ri+1,ri+1)

(ri,ri)

pi+1 = ri+1 + αipi
α̂i = 1 + αi−1βi

βi−1

ζσi+1 =
[
(α̂i − σβi)/ζ

σ
i + (1− α̂i)/ζ

σ
i−1

]−1

βσi =
ζσi+1

ζσi
βi

ασ
i =

(
ζσi+1

ζσi

)
αi

xσi+1 = xσi − βσi p
σ
i

pσi+1 = ζσi+1ri+1 + ασ
i p

σ
i

The operations in the right column are for the shifted equations.

Implementation: The solutions of Eq. (3.11) for larger cj converges faster. For the conver-
gence criterion, the squared norm of the vector pσ is monitored and the itereation is stopped
when it become less than the given criterion.

27

Acknowledgment

I would like to thank Satoru Ueda for pointing out many typos. This note is based on the
work supported in part by the Grant-in-Aid of the Ministry of Education (Nos. 19740160,
20105005). Numerical simulations were performed on Hitachi SR11000 and IBM System Blue
Gene Solution at High Energy Accelerator Research Organization (KEK) under a support of
its Large-scale Simulation Program.

References

[1] H. Neuberger, “Exactly massless quarks on the lattice,” Phys. Lett. B 417 (1998) 141
[arXiv:hep-lat/9707022];
“More about exactly massless quarks on the lattice,” Phys. Lett. B 427 (1998) 353
[arXiv:hep-lat/9801031].

[2] M. Hasenbusch, “Speeding up the Hybrid-Monte-Carlo algorithm for dynamical fermions,”
Phys. Lett. B 519 (2001) 177 [arXiv:hep-lat/0107019].

[3] A. Bode, U. M. Heller, R. G. Edwards and R. Narayanan, “First experiences with HMC
for dynamical overlap fermions,” arXiv:hep-lat/9912043.

[4] T. DeGrand and S. Schaefer, “Simulating an arbitrary number of flavors of dynamical
overlap fermions,” JHEP 0607 (2006) 020 [arXiv:hep-lat/0604015].

[5] Y. Iwasaki, “Renormalization Group Analysis Of Lattice Theories And Improved Lattice
Action. 2. Four-Dimensional Nonabelian SU(N) Gauge Model,”

[6] H. Fukaya, S. Hashimoto, K. I. Ishikawa, T. Kaneko, H. Matsufuru, T. Onogi and
N. Yamada [JLQCD Collaboration], “Lattice gauge action suppressing near-zero modes of
H(W),” Phys. Rev. D 74 (2006) 094505 [arXiv:hep-lat/0607020].

[7] ARPACK – Arnordi Package –, http://www.caam.rice.edu/software/ARPACK/

[8] T. Kalkreuter and H. Simma, “An Accelerated conjugate gradient algorithm to compute
low lying eigenvalues: A Study for the Dirac operator in SU(2) lattice QCD,” Comput.
Phys. Commun. 93, 33 (1996) [arXiv:hep-lat/9507023].

[9] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling and H. A. van der Vorst, “Numerical
methods for the QCD overlap operator. I: Sign-function and error bounds,” Comput. Phys.
Commun. 146, 203 (2002) [arXiv:hep-lat/0202025].

[10] T. W. Chiu, T. H. Hsieh, C. H. Huang and T. R. Huang, “A note on the Zolotarev optimal
rational approximation for the overlap Dirac operator,” Phys. Rev. D 66, 114502 (2002)
[arXiv:hep-lat/0206007].

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, NUMERICAL
RECIPES in FORTRAN, 2nd ed. (Cambridge Univ. Press, 1986,1992).

[12] A. Frommer, B. Nockel, S. Gusken, T. Lippert and K. Schilling, “Many masses on one
stroke: Economic computation of quark propagators,” Int. J. Mod. Phys. C 6, 627 (1995)
[arXiv:hep-lat/9504020].

28

[13] B. Jegerlehner, “Krylov space solvers for shifted linear systems,” arXiv:hep-lat/9612014.

[14] H. Neuberger, “Minimizing storage in implementations of the overlap lattice-Dirac oper-
ator,” Int. J. Mod. Phys. C 10, 1051 (1999) [arXiv:hep-lat/9811019].

[15] T. W. Chiu and T. H. Hsieh, “A note on Neuberger’s double pass algorithm,” Phys. Rev.
E 68, 066704 (2003) [arXiv:hep-lat/0306025].

[16] N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, T. Lippert and K. Schafer, “Numerical
methods for the QCD overlap operator. III: Nested iterations,” Comput. Phys. Commun.
165 (2005) 221 [arXiv:hep-lat/0405003].

[17] S. Aoki et al. [JLQCD Collaboration], “Two-flavor QCD simulation with exact chiral
symmetry,” Phys. Rev. D 78 (2008) 014508 [arXiv:0803.3197 [hep-lat]].

[18] S. Hashimoto et al. [JLQCD collaboration], “Lattice simulation of 2+1 flavors of overlap
light quarks,” PoS LAT2007 (2007) 101 [arXiv:0710.2730 [hep-lat]].

[19] Z. Fodor, S. D. Katz and K. K. Szabo, “Dynamical overlap fermions, results with hybrid
Monte-Carlo algorithm,” JHEP 0408, 003 (2004) [arXiv:hep-lat/0311010].

[20] A. Borici, “Computational methods for the fermion determinant and the link between
overlap and domain wall fermions,” arXiv:hep-lat/0402035.

[21] R. G. Edwards, B. Joo, A. D. Kennedy, K. Orginos and U. Wenger, “Comparison of chiral
fermion methods,” PoS LAT2005 (2006) 146 [arXiv:hep-lat/0510086].

[22] T. Takaishi and P. de Forcrand, “Testing and tuning new symplectic integrators for hy-
brid Monte Carlo algorithm in lattice QCD,” Phys. Rev. E 73 (2006) 036706 [arXiv:hep-
lat/0505020].

[23] I. P. Omelyan, I.M.Mryglod, and R. Folk, “Optimized Verlet-like algorithms for molecular
dynamics simulation,” Phys. Rev. E 65 (2002) 056706.

[24] I. P. Omelyan, I.M.Mryglod, and R. Folk, “Symplectic analytically integrable decom-
position algorithms: classification, derivation, and application to molecular dynamics,
quantum and celestial mechanics simulations,” Comput. Phys. Commun. 151 (2003) 272.

[25] T. Kaneko, “GMRES(m) for overlap solver”, JLQCD internal report on 8 Dec 2005.

[26] T. Kaneko, “Relaxed overlap solver”, JLQCD internal report on 19 Jan 2006.

[27] T. Kaneko, “overlap solvers”, JLQCD internal report on 9 Feb 2006.

[28] H. Matsufuru, “Adaptive 5D solver”, JLQCD internal report on 12 Dec 2007.

[29] H. Matsufuru, “Omelyan integrator”, JLQCD internal report on 12 Nov 2008.

[30] H. Matsufuru, “5D solver with hermitian even-odd preconditioning”, JLQCD internal
report on 14 Nov 2007.

[31] S. Aoki, Field Theory on the lattice (Springer Verlag Japan, 2005) [in Japanese].

[32] P. H. Ginsparg and K. G. Wilson, “A Remnant of Chiral Symmetry on the Lattice,” Phys.
Rev. D 25 (1982) 2649.

29

