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Abstract

Lattice QCD simulations have been a most powerful tool to analyze the nonperturbative
nature of QCD. In this note, we introduce fundamental algorithms to perform numerical
simulations of lattice QCD.
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1 Introduction

Quantum chromodynamics is the fundamental theory to describe the dynamics of quarks and
gluons in hadrons [1]. The gluons are non-Abelian SU(3) gauge field interacting with quarks.
At low-energy, QCD has tow distinct features: the confinement and the spontaneous breaking

of the chiral symmetry. The former confines quarks and gluons in hadrons, and the latter is
the origin of large effective masses of quarks and light pseudoscalar mesons such as pions. The
QCD coupling has striking feature that it decreases at short length (the asymptotic freedom).

Because of this property, the perturbation theory is applicable to high energy phenomena with
momentum transfer p � ΛQCD, where ΛQCD ∼ 200 MeV is a typical energy scale of QCD.

On the other hand, as the energy scale approaching down to ΛQCD, the coupling becomes too
strong so that the perturbation theory breaks down. Thus alternative approach is called for.

Lattice QCD simulations have become a most powerful tool to analyze the nonperturbative

nature of QCD. It is a gauge field theory on 4D Euclidean lattice spacetime, and quantized
along the Feynman’s path integral formalism. The quantized theory can be regarded as a

statistical mechanics system, which enables us to perform numerical simulations by the Monte
Carlo method. With development of computational equipments as well as numerical algorithms,
lattice QCD simulations have become possible to provide quantitative predictions of hadronic

matrix elements such as those needed for the flavor physics. Lattice QCD is also used to
explore the natures of QCD dynamics, such as the confinement mechanism, the spontaneous

chiral symmetry breaking, the instanton dynamics, the U(1) problem, the finite temperature
phase transition, and so on. Similar approaches are of course also applicable to other field
theories.

This note explains basic ingredients of numerical simulations of the lattice QCD. As an
example of lattice QCD action, we adopt the Wilson gauge action and the Wilson fermion
action which are most simple form of the lattice QCD actions, while essentially the same

numerical techniques are applicable to other lattice actions. In particular, the hybrid Monte
Carlo algorithm is explained in detail, which is now the most popular algorithm to generate

the gauge configurations including quark loop effects. Also provided are the procedures to
measure hadronic correlation functions constructed with quark propagators. To obtain the
quark propagator, one needs to invert the fermion operator. This is also the most significant

ingredient of dynamical QCD simulations.
The rest of this note is organized as follows. In the next section, basic setup of lattice QCD

formulation is summarized. Since this note is devoted to issues of numerical simulations, we
restrict ourselves in minimal materials necessary in later sections, while some comments on
the fermion formulations are also included. For details, see for example [2, 4, 3]. In Sec. 3,

overview of lattice QCD simulation is provided. The foundation of the Monte Carlo simulation
is given in Sec. 4. In Sec. 5, the hybrid Monte Carlo algorithm is described for the case of
quenched approximation. While for quenched simulations more efficient algorithms, such as

pseudo-heat-bath algorithm, exist, this is a good preparation for the dynamical simulations.
Section 6 describes the algorithm to invert the fermion operator so as to determine the quark

propagator. The conjugate gradient algorithm is explained as an example. Section 7 describes
the HMC algorithm with dynamical quarks.
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2 QCD on the lattice

2.1 Continuum and lattice field theories

QCD action in the continuum Euclidean space-time is represented as

SQCD =

∫

d4x
1

4
F a

µνF
a
µν +

∑

f

∫

d4xψ̄f (x)(γµDµ +mf )ψf (x), (1)

where Dµ = ∂µ + igAµ(x) is the covariant derivative,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + igfabcAbAc (2)

is the field strength, with f abc the structure constants of SU(3) group. The index f labels the

quark flavors. The Dirac matrices γµ satisfy the relation

{γµ, γν} = 2δµν . (3)

The quark field ψf has 3-color ⊗ 4-spinor components. By applying path integral quantization,

an expectation value of a physical observable O is represented as

〈O〉 =
1

Z

∫

DADψDψ̄O(ψ̄, ψ,A) exp(−SQCD[ψ̄, ψ,A]). (4)

In fact, to quantize a gauge theory in the continuum space-time we need to fix the gauge.

In the path integral quantization of a nonabelian gauge theory, the gauge fixing is performed
with a trick of Fadeev-Popov determinant which leads the ghost field. However, since the
lattice regularization does not necessarily require the gauge fixing, we did not included the

gauge fixing tern in the above argument, while in some cases the gauge fixing is convenient in
practical simulations.

The lattice discretization provides a regularization of the theory. Finally the lattice spacing

is taken to a → 0: the continuum limit. In this limit, the correlation length (the inverse of
the mass of the lightest mode) in lattice units diverges, i.e. the continuum limit is the second

order phase transition. In lattice QCD simulations, all the quantities are measured in units of
the lattice spacing a. The a−1 provides lattice cutoff of the momentum and energy: they are
restricted in the region less than π/a. However, the parameter being set in simulation is not

the lattice spacing but the coupling between the neighboring sites (and the bare quark masses).
The lattice spacing is determined by comparing a measured quantity, such as the proton mass,

which is provided as a certain number, with the experimental value, mp = 938 MeV. Thus the
lattice scale depends on the quantity defining the scale.

Because of the asymptotic freedom, the limit of the coupling g → 0 corresponds to the a→ 0

limit. On the other hand, in the strong coupling QCD exhibits the confinement phenomena
(area low for the Wilson loops). It is essential to demonstrate that there is no phase transition
during taking the continuum limit. This question is investigated first by Creutz [ref], and

indeed the confinement region of the coupling is smoothly connected to the weak coupling
region without any phase transition. This implies that we can take the extrapolation of the

result obtained at strong coupling region to the continuum limit.
The lattice gauge theory is defined on 4D Euclidean lattices. The gauge field is defined

on links connecting the nearest neighboring sites. The gauge degree of freedom is represented

by an SU(3) matrix Uµ(x), called link variable, which is related to the gauge field Aµ(x) as
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Uµ(x) ' exp[igAµ(x+ µ̂/2)]. The quark field, ψ(x), is defined as an anticommuting Grassmann

variables on sites. The fields Uµ(x) and ψ(x) are subject to the gauge transformation:

ψ(x) → V (x)ψ(x), ψ̄(x) → ψ̄(x)V (x)† (5)

Uµ(x) → V (x)Uµ(x)V †(x+ µ̂a) (6)

where µ̂ is a unit vector along µ-th direction. One can easily verify that these expressions for

the gauge transformation indeed provides the continuum gauge transformation for the small
enough a.

2.2 Lattice QCD actions

The actions for the gauge and quark field must be invariant under the above gauge transforma-
tion Eqs. (5) and (6). The following quantities are gauge invariant: (1) a closed loop composed
of Uµ; (2) ψ̄ and ψ connected with Uµ. The action of the gauge and quark fields are constructed

with these quantities.
Let us consider the smallest loop composed of the link variables,

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †(x+ ν̂)U †
ν (x), (7)

called a plaquette. Hereafter we put a = 1 for simplicity. For small lattice spacing, Uµν '
exp(iga2Fµν). If one take

SG = β
∑

x,µ>ν

(

1 − 1

Nc
ReTrUµν(x)

)

, (8)

where β = 2Nc/g
2, in the limit of a→ 0

SG →
∫

d4x
1

4
F a

µνF
a
µν +O(a2). (9)

The Eq. (8) is called the Wilson gauge action which provide the simplest form of a gauge action
on the lattice. As the lattice gauge action, Eq. (9) is not a unique choice; one can add an O(a2)

term which disappears in the continuum limit. Appropriate choice of the additional terms
would cancel the O(a2) error in (8) and can be used to construct improved actions [5]. For
example, by adding rectangular loops, which has different O(a2) contributions from Eq. (7),

an O(a2)-improved actions is constructed. Such an improved action is important in numerical
simulations, since the finite a errors rapidly disappear and extrapolations to the continuum
limit become more stable. However, we restrict ourselves in the case of the Wilson gauge

action (9), since the essentially the same algorithm is also applicable to the improved actions.
The quark field action is more involved than the gauge field action. Let us start with a

naive discretization:

Dµψ(x) → 1

2a

[

γµUµ(x)ψ(x + µ̂) − γµU
†
µ(x− µ̂)ψ(x− µ̂)

]

. (10)

The resultant action has severe problem that there are 16 poles while physical one is only one of

them. (more detail) These unwanted modes are called ‘doublers’, and they must be eliminated
so as to define a theory with correct number of the quark degrees of freedom.
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The most simple way to avoid doublers is adding Wilson term,

SW =
ra

2
ψ̄D2ψ =

r

2a
ψ(x)

(

Uµ(x)ψ(x+ µ̂) + U †
µ(x− µ̂)ψ(x − µ̂) − 2ψ(x)

)

, (11)

where r is called Wilson parameter. This form is called the Wilson fermion action. The Wilson
term kills 15 doublers except for one at p2 ∼ m2, while this term is of O(a) and hence irrelevant

in the continuum limit. However, the Wilson term explicitly breaks the chiral symmetry. While
the chiral symmetry is restored in the continuum limit, absence of the chiral symmetry make
calculations more involved by causing complex operator mixing. Also the extrapolation to the

chiral limit must be performed carefully, since the quark mass receives additive renormalization,
which does not occur in the presence of the chiral symmetry. In spite of these shortages, the
Wilson fermion and its improved versions are extensively studied because of its simpleness.

In this note, we adopt the Wilson fermion action as an example of the quark action. By
redefining the quark field normalization as

ψ →
√

2κψ, κ =
1

2(m+ 4r)
, (12)

the quark action is represented as

SF =
∑

x,y

ψ̄(x)D(x, y)ψ(y), (13)

D(x, y) = δx,y − κ
∑

µ

{

(r − γµ)Uµ(x)δx+µ̂,y + (r + γµ)U †
µ(x− µ̂)δx−µ̂,y

}

. (14)

The κ is called the hopping parameter. A popular choice of the Wilson parameter is r = 1,
and hereafter we also adopt this value.

2.3 Quantization and numerical simulations

The quantization is performed by the path integral formalism. An expectation value of an
observable is represented as

〈O〉 =
1

Z

∫

DUDψDψ̄ O(ψ̄, ψ, U) exp(−SG[U ] − SF [ψ̄, ψ, U ]). (15)

Integration of the gauge field U over group space is finite. Since the fermion field is represented
as the anticommuting Granssmann field, which is not treated on computers, one first integrated
out the fermion field. Then

〈O〉 ' 1

Z

∫

DU
∏

f

det(Df [U ])O(Sq, U) exp(−SG[U ]), (16)

where Sq(x, y) = D−1(x, y) is a quark propagator. det(D) is real, because of so-called gamma5

hermiticity, Ddag = γ5Dγ5, which implies det(D†) = det(γ5Dγ5) = det(D). In addition, it is

proven that detD > 0 for κ < 1/8.
Eq. (16) means that the physical observable is evaluated by integrating over gauge configu-

ration {U} with the weight of det(Du)e−SG . If one can generate the gauge configurations with

the probability of det(Du)e−SG , one can evaluate physical quantity as

〈O〉 =
1

Nsample

∑

i

O(Ui) (17)

(the important sampling). How the gauge configurations can be generated is discussed in the

following in detail.
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Pseudofermion. Direct computation of the fermionic determinant, det(D[U ]), is practically

impossible. The standard trick employs pseudofermion field. For the case of two flavors of
degenerate quark mass,

∏

f det(Df ) = det(D†D) and D†D is real and positive. Then making
use of the property of Gaussian distribution,

detD†D =

∫

φ†φ exp(−φ†(D†D)−1φ). (18)

which represents the fermionic determinant as an effective action with bosonic (pseudofermion)
field. Appearance of (D†D)−1 requires inverting the fermion operator D, which makes dynam-

ical simulations very time consuming.
Compared to the cases with even number of degenerate flavors, simulation with odd number

of flavor is more involved. There are several procedures to express the odd Nf fermionic

determinant as integrations over bosonic fields with effective actions. These procedures are not
described in this note.

2.4 Comments on fermion formulations

In Subsection 2.2, we discussed that the Wilson fermion action explicitly breaks the chiral

symmetry. For the chiral symmetry on the lattice, there is celebrated Nielsen-Ninomiya’s
theorem:

Nielsen-Ninomiya’s theorem [6]

Suppose a fermion action SF = ψ̄D[U ]ψ satisfies the following conditions:
(a) Translational invariance
(b) Chiral symmetry: Dγ5 + γ5D = 0

(c) Hermiticity
(d) Bilinear in fermion field

(e) Locality
Then, doublers exist.

Thus to avoid doublers, at least one of the above conditions (a)–(e) must be violated. The
Wilson fermion (and its improved variants) breaks the chiral symmetry explicitly.

Another popular fermion formulation is the staggered fermion. In the staggered fermion
formulation, the spinor degrees of freedom is scattered on the 2d hypercubes so that the field
on each original site has only one spinor component. This decreases the number of doublers

to 4, and these 4 doublers are regarded as flavors (recently called ‘tastes’). The staggered
fermion holds remnant of the chiral symmetry, and hence applied to studies in which the chiral

symmetry plays essential role. Without additive mass renormalization, small quark mass region
is relatively easily explored, and smaller number of degrees of freedom per site makes simulation
faster. However, complicated flavor structure makes analysis more involved. Furthermore, so-

called ‘fourth root trick’ introduced to implement dynamical flavors less than 4 is still now
under active debate.

Recently, great progress has been achieved in understanding of the chiral symmetry on the

lattice [7]. The progress was started by the domain-wall fermion formulation, which originally
intended to implement the chiral gauge theory by considering 5D space [8]. While this idea

has difficulty in practical simulation, it was applied to a vector gauge theory such as QCD
and succeeded to describe fermions keeping the chiral symmetry [9]. A large fermion mass
(domain-wall mass) is introduced which makes the left and right modes appear on two edges in

the 5th direction. In practice, with finite extent in 5-th dimension causes small overlap between
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the left and right modes, which generate residual mass in addition to the quark mass put by

hand.
The understanding of the chiral symmetry on the lattice was also drastically proceeded. In

particular, the exact chiral symmetry on the lattice was realized in the light of the Ginsparg-

Wilson relation [10],
γ5D +Dγ5 = aRDγ5D, (19)

where R is a local operator commuting with γ5. A fermion action satisfying this relation is

symmetric under a transformation

δψ = γ5(1 − aRZD)ψ, δψ̄ = ψ̄(1 − aDR(1 − Z))γ5, (20)

where Z is a parameter [11]. This transformation leads to Ward-Takahashi identity which

implies that the pions behave as Nambu-Goldstone bosons [12]. Namely, Eq. 20 is realized as
the exact chiral symmetry on the lattice, for lattice fermion action holding the relation (19).

Examples of fermion actions which satisfy the Ginsparg-Wilson relation are the fixed point

action [13] and the overlap fermion action [14]. Here we consider the latter formulation. The
overlap fermion operator is written as

D =
1

Ra
[1 + γ5sign(HW (−M0))] (21)

whereHW (−M0) is the hermitian Wilson-Dirac operator with large negative massHW (−M0) =
γ5DW (−M0). This operator is Ns → ∞ limit of the domain-wall fermion, and hence free from
residual mass. However, numerical implementation costs high, because of the sign-function of

operator HW . Hence numerical simulations have become possible only recently with large com-
putational resources and development of algorithms. Large-scale simulations with dynamical

overlap fermions are in progress by JLQCD Collaboration [15].

3 Overview of lattice QCD simulations

The lattice QCD simulation is in general performed as follows.

(1) Generating gauge configurations.

(2) Measuring physical observables.

(3) Analyzing measured quantities.

Each step is discussed in some detail below.

3.1 Generating gauge configuration

To obtain the expectation values of some physical observables, in any case one first needs the
gauge configuration. One of main goals of this note is to introduce an algorithm to generate the

gauge configurations. An important point is how to treat the fermionic determinant, det(D[U ]).
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Quenched approximation. In early days (last century), and also nowadays in exploratory

studies, quenched simulations have been a convenient approach; it sets det(D[U ]) = 1. This
makes update of gauge configuration considerably easy. However, the quenched approximation
neglects the quark loop effects completely, and hence important part of the dynamics lacks.

Surprisingly, even in this approximation, many quantities give rather good results. For exam-
ple, low-lying light hadron spectrum is in agreement with experimental values within O(10%)
accuracy, with appropriate choice of the lattice scale. Several quantities, such as charmonium

hyperfine splitting, severely deviate from the experimental values, and of course it is difficult to
compute quantities in which vacuum polarization effect plays essential roles, such as η ′ meson.

Also the finite temperature phase transition essentially depends on the number of dynamical
flavors.

Full QCD. With recent developments of computers and algorithms, dynamical simulations

have become popular compared to the last century. The dynamical simulations are usually
implemented with HMC algorithms or its variants. The dynamical simulations, which are
usually implemented with HMC algorithms, require large computational cost compared to the

quenched cases because they contain inversions of quark operator at every step of molecular
dynamical evolution. Since the number of iteration rapidly increases as the quark decreases,

so is the cost of dynamical simulations. For example, Ukawa estimated the cost of Nf = 2
simulations with O(a)-improved Wilson quarks as

cost

TFlops·year ∼ 2.8

[

# conf

1000

] [

mπ/mρ

0.6

]−6 [ L

3fm

]5
[

a−1

2GeV

]7

(22)

based on their run in the CP-PACS project [16]. This estimate has been considerably changed
by a new simulation techniques, such as the Lüscher’s domain decomposed HMC algorithm

[17, 18]. Thus it is quite important to develop efficient algorithms for dynamical simulations.
The computational cost also strongly depends on the fermion formulations.

Sharing configurations. Once the gauge configurations are generated, there are numbers of

possible measurements. Thus there has been an idea to share the gauge configurations gener-
ated with dynamical simulations. MILC Collaboration’s ‘Gauge Connection’ [19] is pioneering
activity of this kind. Recently, there has been started international activity to share the lattice

QCD data: the International Lattice DataGrid (ILDG) [20]. ILDG is composed of regional
grids, and delegates to the ILDG board composed of the representatives of participating coun-

tries. ILDG has two working groups. The metadata working group has been investigating how
the information of an ensemble and configurations is expressed, and defined a standard format
to store the configuration data. They have defined QCDml, which is markup language based on

XML. The middleware working group has been investigating how the data are opened public
and downloaded with common interface. ILDG formally started at June 2006, and the number
of public data as well as members of the community are increasing. Thus one may find and

make use of the dynamical configurations from ILDG, if appropriate data are public, without
performing expensive and time-consuming dynamical simulations.

3.2 Measurement

Once the gauge configurations are in hand, one can measure physical observables on them.

Some quantities are composed of only the gauge field, i.e. link variables. Examples are the
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Wilson loops, the glueball correlators, and so on. The Wilson loops at large temporal separation

gives the static quark potential, which is useful to set the lattice scale a.
Lots of quantities contain the quark fields. Hadronic matrix elements are usually calculated

using two- or three-point correlation functions. As an example, let us consider a meson two-

point correlator,
M(t) =

∑

~x

〈O(x)O†(x)〉, (23)

where
O(x) = q̄(x)Γq(x) (24)

is an operator having the quantum number of the meson, which is represented by 4 × 4 spinor

matrix Gamma. Foe example, Γ = γ5 and γi specify a pseudoscalar meson and a vecotor
meson, respectively. By inserting a complete set of states Eq. (23) is expressed as

M(t) =
∑

j

|Zj |2
2Mj

exp(−Mjt) (25)

→ |Z0|2
2M0

exp(−M0t) (t� 1) (26)

where Mj is the mass of j-th excited state, and Zj = 〈j|O(x)|0〉. Thus from the behavior of
M(t), one can extract the mass of the meson. While the decay constant is also determined
from the same correlator, it is more involved and not treated as an example in this note.

Eq. (23) is represented using quark propagator Sq(x, y) = D−1(x, y) as

M(t) =
∑

~x

Tr
[

Sq(x, 0)ΓSq(0, x)Γ
†
]

(27)

=
∑

~x

Tr
[

Sq(x, 0)Γγ5S
†
q(x, 0)γ5Γ

†
]

. (28)

We have used in the second line the gamma5 hermiticity, D† = γ5Dγ5. Thus one first needs

to determine the quark propagator by solving a linear equation,

D(x, y)Sq(y, z) = δx,z. (29)

This inversion is performed using iterative solver algorithm, since D is a huge sparse matrix.
Since the inversions often dominate the simulation time, seeking for fast algorithms is of great
importance. In Sec. 6, we describe fundamental algorithm of iterative solver, the conjugate

gradient (CG) algorithm.

3.3 Analysis

After the measurements are performed on each configuration, they are analyzed. First of all,
the correlation functions are averaged and their statistical errors are evaluated. The estimation

of errors estimation is briefly discussed below. Usually the observed correlation functions do
not directly give the desired quantities, but give them as a results analyses such as fits. For

example, the meson masses are extracted from the behavior of meson correlator (23) at large
t, by fitting the data to exponential form. The fitting method is easily found in literatures.
For the hadronic matrix elements, such as decay constants and form factors, one also need to

renormalize them. The renormalization is done either perturbatively or nonperturbatively.
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Statistical errors With O(Ui) being computed, one can compute the average value given in

Eq. (17). With finite statistics, the expectation value is determined with some precision, and
one needs to also evaluate the statistical error. For independent data Oi (i = 1, ...,M), average
and its error is estimated as

〈O〉 =
1

M

M
∑

i

Ok (30)

δ〈O〉 =

√

〈(O − 〈O〉)2〉
M − 1

=

√

〈O2〉 − 〈O〉2
M − 1

(31)

This estimate is based on the central limiting theorem, which claims that with sufficiently large

number of data, the distribution of average values obeys Gaussian distribution. The error in
Eq. (31) represent the width of this distribution.

Most quantities are not directly extracted from the measured data, but given by results of fit
analyses. For such a quantity, a complicated function f(O) of directly measured quantities O’s,
the propagation low of errors often give incorrect estimate. In addition, the fit itself requires

the error of the correlator, and hence estimating the error of the result of fit is nontrivial.
To estimate the statistical error of such quantities, the jackknife method provides a conve-

nient solution. The jackknife method is summarized in Appendix A.

Systematic errors In order to compare the results of simulations with experimental values,

one also need to estimate the systematic errors. Since the evaluation of systematic errors is
quite involved, here we just list up the typical source of systematic errors to be considered.

• Finite lattice spacing. Numerical simulations are performed inevitably at finite lattice
spacing a, while the QCD result is obtained in the a→ 0 limit. Thus extrapolation to the

continuum limit is necessary for quantitative calculations. Since the Wilson quark action
has O(a) error, the extrapolation is done linearly in a. If one employs O(a) improved

action, the extrapolation is done in O(a2), and the uncertainty of the extrapolation is
reduced. This shows practical significance of improved actions. If one does not perform
the continuum extrapolation, the systematic errors are estimated with an order counting.

• Finite lattice size. Numerical simulation is done also inevitably at finite lattice size.

The lattice size should be taken so as to be enough larger than typical hadronic size, say
∼1fm. For relatively extended objects, lattice sizes should be chosen carefully, for example

for baryons and exotic hadrons. For studies of finite temperature phase transition, in
particular for the second order transition, the finite size effect should be carefully treated.

• Chiral extrapolations. The dynamical simulations with physical u and d quark mass is
quite difficult. Usually simulations are done at rather large quark mass region, around

ms/2 ∼ ms, and the result is extrapolated to the chiral limit. A guide of the extrapolation
is provided by the chiral perturbation theory (ChPT). However, fit of the result according

to the prediction of ChPT is highly nontrivial, and usually produces large systematic
errors.

• Number of dynamical flavors. If one chooses quenched or Nf = 2 simulations, the result

of course suffer from the errors from the number of dynamical flavors. Without extrapo-
lation or interpolation, estimate of this systematic uncertainty is difficult to control. In
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particular, the finite temperature phase transition is a most severe case, since even the

order of transition changes with the number of active dynamical flavors.

• Renormalization constants. The matrix elements are related to the continuum quan-
tities with renormalization. If the renormalization is performed perturbatively, say at
one-loop level, α2 error exists. When nonperturbative renormalization is applied, the

renormalization constant suffer from the systematic errors as same as of other observed
quantities.

4 Foundation of Monte Carlo simulation

Monte Carlo simulation in general means a class of numerical algorithms which use random
numbers. (Remember numerical integration of analytically nonintegrable functions.) However,

for statistical mechanical system, one cannot give a required distribution of states from the
beginning. One can determine only the values of Hamiltonian for given states. Therefore,

we need an algorithm to obtain an ensemble in which each configuration appears with the
Boltzmann weight, by starting from arbitrary initial configuration. In this section, we establish
the principles to construct such an algorithm.

4.1 Important sampling

Let us consider a general system with degrees of freedom φ (collective notation) and its Hamil-
tonian H. For a canonical ensemble, an expectation value of physical quantity A is represented

as

〈A〉 =
1

Z

∑

states

A[φ]e−βH[φ], (32)

where the sum is taken over all possible states. As the number of the degrees of freedom

increases, number of possible states rapidly increases, and taking the sum over all the states
becomes unrealistic.

On the other hand, in the above equation, the Boltzmann weight e−βH[φ] can be regarded

as a probability measure. If the state configuration {φi} can be generated with this Boltz-
mann weight, one can obtain a statistical mechanical average 〈A〉 by averaging A[φ] over these
configurations:

〈A〉 ' 1

Nsample

∑

i

A[φi], (33)

where φi is i-th field configuration generated with probability e−βH[φ]. In this method, config-

urations largely contributing to 〈A〉 are devotedly generated, so the efficient computation can
be achieved. This kind of algorithm is called an important sampling.

4.2 Markov process

To perform the important sampling, one needs to generate field configurations appearing with
Boltzmann weight, we need an algorithm such that we can start with arbitrary initial state,
and then evolve the state so as to appear with probability of Boltzmann weight. Among this

kind of process, so-called Markov process has particular importance. In this process, next
generated state depends only on the present state. Namely, one do not need to store the

history of previous states. If one can generate configurations as a Markov process, and if these
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configurations reach thermal equilibrium (appearing with Boltzmann weight), one can calculate

statistical quantities by important sampling.
To construct such a process, the algorithm to change the states must satisfy two conditions,

‘ergodicity’ and ‘detailed balance’, as explained in the following.

4.3 Master equation and ergodicity

Let us consider a system composed of N finite states. For example, n Ising spin system is
composed of N = 2n distinct states. To express the evolution of the system, we introduce a
‘time’ argument t, which not necessarily coincides with the physical time, but is just introduced

to describe the simulation process. Expressing the probability of the system being a state i at
time t as Pi(t), the conservation of the probability requires

∑

i

Pi(t) = 1. (34)

For a Markov process, the probability of the system being the state i at the time t + ∆t
(after 1 time step) is described by so-called Master equation:

Pi(t+ ∆t) = Pi(t) −
∑

j 6=i

Pi(t)wi→j∆t+
∑

j 6=i

Pj(t)wj→i∆t. (35)

wi→j expresses the transition probability in unit time from a state i to a state j. The second
term in RHS of Eq. (35) stands for the process from the state i to one of other (N − 1) states,
and the third term stands for the process one of other (N − 1) states to the state i.

In matrix representation, Eq. (35) is represented as

~P (t+ ∆t) = L~P (t) (36)

where ~P (t) is N -dimensional vector having Pi(t) as components, and L is N×N matrix having
components

Lij = wj→i∆t (i 6= j) (37)

Lii = 1 −
∑

j 6=i

wi→j∆t. (38)

From the conservation of probability,
∑

i

Lij = 1. (39)

By definition of the transition probability,

Lij ≥ 0 (40)

must hold. A matrix L satisfying these two condition is called probability matrix. After s

steps, the probability distribution of the system is given by

~P (t+ s∆t) = Ls ~P (t). (41)

Now let us consider the limit of s→ ∞. If the probability distribution approaches to certain
single distribution P (eq), that Markov process is called stationary Markov process.

lim
s→∞

Ls ~P (t) = ~P (eq) (42)

13



Then

L~P (eq) = ~P (eq) (43)

holds.
The eigenvalues of L have the following properties. For eigenvalues of L, λi (i = 1, ..., N),

|λi| ≤ 1 holds. In addition, λi = 1 is always an eigenvalue of probability matrix L. With
this property and Eq. (42), ~P (eq) is (right) eigenvector of L with eigenvalue 1. If the state
corresponding to this eigenvalue 1 is nondegenerate, the stationary distribution ~P (eq) uniquely

exists and stationary Markov process is obtained.
Let us consider the case that for a step number s larger than certain value, if all the

components of Ls have positive definite values. Then from the Perron-Frobenius theorem, the
largest eigenvalue of L is nondegenerate and for other eigenvalues |λ| < 1. This condition
means that a transition from an arbitrary state to an arbitrary state is possible. This property

is called ‘ergodicity’.

4.4 Detailed balance condition

For stationary state, Eq. (43) holds. By expressing with components,

LijP
(eq)
j = P

(eq)
i . (44)

Substituting Eqs. (37) and (38) into this equation, one obtains the detailed balance condition,

P
(eq)
i wi→j = P

(eq)
j wj→i, (45)

where P
(eq)
i is probability of the state i in the equilibrium state, and given by Boltzmann weight

(normalization is irrelevant)
P (eq)(i) = exp[−βH(i)]. (46)

Thus constructing an algorithms for which the transition probability w(i → j) satisfies the

relation (45), one can generate an ensemble with Boltzmann weight as a stationary Markov
process. In the following, two such algorithms are introduced.

Metropolis algorithm

The Metropolis algorithm is a general procedure to generate an algorithm satisfying the
detailed balance condition. The Metropolis algorithm is less efficient comparing the next
heat-bath algorithm, but can be applied in the cases where the latter algorithm is not

possible to construct.

In the Metropolis algorithm, for a configuration {φ} to be updated, one first consider
a candidate configuration after update {φ′}. This candidate configuration is generated
with uniform probability. Computing the values of Hamiltonian for {φ} and {φ ′}, one

accept this candidate configuration {φ′} with the probability

P = min
{

1, e−β(H[φ′]−H[φ])
}

(47)

as the new configuration. If {φ′} is rejected, the new configuration is set to the same as
the old one {φ}.
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Heat-bath algorithm

In some cases, such as when the Hamiltonian is expressed as a sum of local terms, the
heat-bath method may be possible to be constructed. Let us consider a case that one
wants to update the degree of freedom φi. The Hamiltonian is decomposed into the

the Hamiltonian includes φi, expressed H(φi;φj 6=i), and the rest which plays no role in
updating φi. The local Hamiltonian H(φi;φj 6=i) includes the interaction with this degree
of freedom. Then the degrees of freedom other than φi are treated as the heat-bath, and

if φi is updated with probability exp(−βH[φi;φj 6=i]), this method is called the heat-bath
algorithm. By iterating such a local update (sweep), one can update whole the system.

5 Hybrid Monte Carlo algorithm for quenched simulation

In this section, we construct the hybrid Monte Carlo (HMC) algorithm to update the gauge

field in the quenched approximation. To update quenched gauge configuration, one can employ
(pseudo-) heat-bath algorithm. However, since HMC is a standard algorithm for the dynamical
simulations, here we introduce HMC for quenched case, while the efficiency is less than the

heat-bath algorithm.
The HMC algorithm is developed by combining two algorithms proposed for dynamical sim-

ulations: the Langevin algorithm and the microcanonical algorithm. In addition, a Metropolis
test performed at the end of the evolution of the fields removes finite step size errors.

5.1 Langevin Algorithm

Langevin algorithm was originally proposed by Parisi and Wu (1981), and applied to full QCD
simulation by Fukugita and Ukawa, Botrouni et al. In the following, first we consider a bosonic
system with finite degree of freedom.

Let us consider a system with coordinate: qi(i = 1, .., N) described by action S[q]. An up-
date algorithm is needed which satisfies the ergodicity and the detailed balance. We introduce

a new ‘time’ variable (simulation time) τ , which labels elements of a Markov chain. Let us
consider the following differential equation which relates τn+1 = (n+ 1)εL and τn+1 = nεL (εL
: Langevin time step):

qi(τn+1) = qi(τn) + εL

(

−∂S[q]

∂qi
+ ηi(τn)

)

. (48)

where {ηi(τn)} is Gaussian distributed random variables independent of each other,

P ({ηi(τn)}) =
∏

i

√

εL
4π

exp

[

−εL
4
ηi(τn)2

]

. (49)

In the limit of εL → 0, Eq. (48) approaches Langevin equation

dqi
dτ

= −∂S[q]

∂qi
+ ηi(τ). (50)

Setting η̃i =
√

εL

2 ηi Eqs. (48) and (49) is written as

qi(τn+1) = qi(τn) − (2εL)
1

2

∂S[q]

∂qi
+

√
2εLη̃i(τn), (51)

P̃ ({η̃i}) =
∏

i

1√
2π

exp

[

−1

2
η̃ 2

i

]

. (52)
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This form is convenient for later use in the molecular dynamics.

It is not difficult to show that this algorithm satisfies the detailed balance in the limit of
εL → 0. In practice, however, εL is finite and data should be extrapolated to εL → 0 limit.
This is time consuming. On the other hand, this algorithm updates all the degrees of freedom

simultaneously, and hence suited to update a system described by a non-local action.

5.2 Molecular Dynamics

The fundamental idea is based on the fact that the Euclidean path integral formulation and
4-spatial dimension classical mechanical system have the same form. The Hamiltonian is con-

sidered to govern an new ‘time’ variable (simulation time). Assuming the ergodicity to the
classical mechanical system and remembering that in the thermodynamic limit a canonical

ensemble becomes a micro-canonical ensemble, the expectation values of an observable is cal-
culated as a time average along a ‘classical’ trajectory corresponding to an energy which is
determined with the parameters of the system.

In the molecular dynamics (MD), configurations are generated in deterministic manner,
and quantum fluctuation is represented by complexity of the motion in 4-spacial dimension.
In the following, let us consider a system of scalar field φ described by the action S[φ;β] and

a parameter β.
An expectation value of an observable is represented as

〈O〉 =
1

Z

∫

DφO[φ]e−S[φ;β] (53)

Z =

∫

Dφe−S[φ;β] (54)

To define Eq. (53), we introduce a lattice and label the degree of freedom with ‘i’. Z is still
not a partition function of the classical Hamiltonian system. Canonical conjugate momenta πi

is introduced as

〈O〉 =
1

Z

∫

DφDπO[φ]e−H[φ,π;β] (55)

H[φ, π;β] =
∑

i

1

2
π 2

i + S[φ;β] (56)

Z̄ =

∫

DφDπe−S[φ,π;β]. (57)

Measure is defined as usual,

DφDπ =
∏

i

dφidπi. (58)

Since O[φ] does not depend on π, Eqs. (55) and (54) are equivalent. With the above rewriting,

the 4-dim Euclidean quantum system was represented as a classical canonical ensemble.
In the thermodynamic limit, the canonical ensemble becomes a micro-canonical ensemble

on a ‘energy’ surface in 4-spatial dimension.

Note that while as a classical micro-canonical ensemble each degree of freedom evolves
deterministically, it is fluctuating as an original quantum system. Quantities in a canonical en-

semble and a micro-canonical ensemble are labeled with subscript ‘can’ and ‘mic’, respectively.
An expectation value of an observable is expressed as

〈O〉can(β) =

∫

DφDπO[φ]
∫

dEδ(H[φ, π;β] −E)e−E

∫

DφDπ
∫

dEδ(H[φ, π;β] −E)e−E
. (59)
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〈O〉mic(E, β) =
1

Zmic(E;β)

∫

DφDπO[φ]δ(H[φ, π;β] −E), (60)

Zmic(E;β) =

∫

DφDπδ(H[φ, π;β] −E). (61)

where Zmic(E;β) is the state density at energy E. Defining the ‘entropy’ of the system as

s(E;β) = lnZmic(E;β), (62)

the expectation value is represented as

〈O〉can(β) =

∫

dE〈O〉mic(E, β) exp{E − s(E;β)}
∫

dE exp{E − s(E;β)} . (63)

When the degree of freedom of the system is sufficiently large, the above exponential factor
has sharp peak at E = Ē. Ē is given implicitly by

(

∂s(E, β)

∂E

)

E=Ē

= 1. (64)

In the thermodynamic limit,

〈O〉can(β) = [〈O〉mic]E=Ē (65)

In the microcanonical ensemble, each degree of freedom and its canonical conjugate mo-
mentum evolve in the phase space according to the Hamiltonian equation of motion.

φ̇i =
∂H[φ, π]

∂πi
, (66)

π̇i = −∂H[φ, π]

∂φi
. (67)

Assuming ergodicity, ensemble average can be replaced with the time average.

[〈O〉mic]E=Ē = lim
T→∞

1

T

∫ T

0
dτO[φ(τ)]. (68)

The trajectory in the phase space is governed by

d2φi

dτ2
= −∂S[φ]

∂φi
. (69)

Naively discretizing this equation in the ‘time’ direction,

φ̈(τn) = [φ(τn+1) + φ(τn−1) − 2φ(τn)]/(∆τ)2 (70)

leads to

φi(τn+1) = φi(τn) − ε2
1

2

∂S[φ]

∂φi(τn)
+ επi(τn), (71)

πi(τn) =
1

2ε
(φi(τn+1) + φi(τn−1)) , (72)

where ε = ∆τ = τn+1 − τn is micro-canonical time step. Note that the similarity between
this equation and Langevin equation (51). These equations takes the same form by setting πi

random variables and ε2/2 = εL.
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In practical simulation, Hamilton equation is solved with the Runge-Kutta algorithm. Com-

paring the traveling distance of configurations, (ε2/2 = εL) the micro-canonical case is O(nε)
while the Langevin case O(

√
nε). The latter is because of the stochastic nature. The micro-

canonical travels further, while it also has uncertainties that thermodynamic limit is nontrivial

for small lattices, and ergodicity is not incorporated in the algorithm. Combining advantages
of these two algorithms, one reaches the hybrid algorithm mentioned next.

5.3 Hybrid Algorithm

Hybrid algorithm is an algorithm which has advantages of the Langevin and molecular dynamics
algorithms. In equation of MD, setting the time step as εL = ε2/2 and taking the momenta
{πi} to be random variable with probability density

P ({η̃i}) =

(

∏

i

1√
2π

)

exp

[

−
∑

i

1

2
π 2

i

]

, (73)

it takes the same form as the Langevin equation. In fact if the ‘time’ evolution of the Hamil-
tonian (57) is ergodic, the momenta distribute with the above probability. Then the hybrid
algorithm is obtained as: configurations are generate with MD with probability α, or Langevin

with (1 − α).
In the following, let us consider in more detail in the case of scalar field. Equation of motion

is Hamiltonian form, (66), (67). Discretizing with a time step ε, Taylor expand φi(τ + ε) and

πi(τ + ε) to the order of ε2.

φi(τ + ε) = φi(τ) + εφ̇i(τ) + ε2

2 φ̈i(τ) +O(ε3)

πi(τ + ε) = πi(τ) + επ̇i(τ) + ε2

2 π̈i(τ) +O(ε3)
(74)

Eq. of motion leads to φ̇i(τ) = πi(τ), φ̈i(τ) = π̇i(τ) = − ∂S
∂φi(τ) ,

π̈i(τ) = −
∑

j

∂2S

∂φi(τ)∂φj(τ)
πj(τ). (75)

The RHS is represented in the leading order of ε as

∑

j

∂2S

∂φi(τ)∂φj(τ)
πj(τ) =

1

ε

(

∂S

∂φi(τ + ε)
− ∂S

∂φi(τ)

)

+O(ε2). (76)

Substituting this form into (74),

φi(τ + ε) = φi(τ) + ε
(

πi(τ) − ε
2

∂S
∂φi(τ)

)

+O(ε3)
(

πi(τ + ε) − ε
2

∂S
∂φi(τ+ε)

)

=
(

πi(τ) − ε
2

∂S
∂φi(τ)

)

− ε ∂S
∂φi(τ+ε) +O(ε3)

(77)

In the parenthesis, the momentum is at +ε/2 step forward. Therefore up to O(ε3), Eq. (77) is
equivalent to

φi(τ + ε) = φi(τ) + επi(τ + 1
2ε)

πi(τ + 3
2ε) = πi(τ + 1

2ε) − ε ∂S
∂φi(τ+ε)

(78)

This equation is solved iteratively.
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In the hybrid algorithm, momentum variables is refreshed at the beginning of M.D. chain.

Starting the iteration at time τ , {πi(τ)} is chosen randomly as a Gaussian ensemble. First
πi(τ + ε/2) is determined by being evolved half-time step.

πi(τ +
1

2
ε) = πi(τ) −

ε

2

∂S

∂φi(τ)
+O(ε2) (79)

This generated O(ε2) error. However, this occurs only at the beginning of M.D. step. The

accumulated error after the evolution of the length 1/ε is also O(ε2), so the observable has
O(ε2) error.

Hybrid Monte Carlo algorithm is constructed by adding a Metropolis test at the end of

molecular dynamics of the hybrid algorithm. By this Metropolis test, the detailed balance
condition is hold for arbitrary finite time steps (for proof, see e.g. Rhote (1992)). Therefore

systematic errors due to the finite time step disappear and the extrapolation in ε is no longer
needed.

Hybrid Monte Carlo algorithm is summarized as follows.

(1) Choose the initial configuration {φi} in some way.
(2) {πi} is randomly chosen as an Gaussian ensemble

(3) πi is evolved by half step.
(4) φiandπi are evolved by certain steps. (The last step of πi is with half the step size.)

(5) New configuration {φ′i, π′i} accepted with probability

P = min

{

1,
e−H[φ′

i
,π′

i
]

e−H[φi,πi]

}

. (80)

(6) Return to (2).

Note that when the candidate configuration is rejected at (5), the old configuration is adopted
as the product of this trajectory.

In the hybrid Monte Carlo algorithm, whole the configuration is updated at the same time

(in contrary to the local update algorithms such as heat-bath algorithms).
The value of Hamiltonian is in principle kept constant along the trajectory in the phase

space. In practice, due to the finite step size, there is an O(ε2) difference in the values of
Hamiltonian on the old and new (candidate) configurations. The Metropolis acceptance test
cures this breaking of energy conservation so as to ensures the detailed balance. Thus for not

small enough ε, acceptance rate would be small. For efficient numerical simulations, appropriate
value of ε and length of molecular dynamics evolution should be chosen.

In the molecular dynamics evolution is not performed and momentum is refreshed on every

time, {φi} is updated with

φi(n+ 1) = φi(n) − ε2

2

∂S

∂φi(n)
+ εηi(n), (81)

which is equivalent to the Langevin step with the εL = ε2/2.

5.4 SU(3) case

In this section, let us consider a HMC algorithm for SU(3) gauge field in the quenched approx-
imation. The action is given as

SG = β
∑

n

∑

µ>ν

(1 − 1

3
Re Tr[Uµ(n)Uν(n+ µ̂)U †

µ(n+ ν̂)U †
ν (n)]). (82)
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The first term gives a constant contribution and is neglected in the simulation. Thus hereafter

we adopt the action

SG = −β
3

∑

n

∑

µ>ν

Re Tr
[

Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n)
]

= −β
6

∑

n

∑

µ>ν

Tr
[

Uµν(n) + U †
µν(n)

]

, (83)

where Uµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n).

The link variable is represented as Uµ(n) = exp[iAa
µ(n)ta]. ta is SU(3) generator satisfying

Tr[tatb] = δab. Defining as

dUµ(n)

dτ
= iȦa

µ(n) taUµ(n) ≡ iHµ(n)Uµ(n), (84)

Hµ(n) = ha
µ(n) ta ( ha

µ(n)ta ∈ R ), (85)

Hµ(n) is a hermitian and traceless matrix. Since Ȧa
µ(n) = ha

µ(n), ha
µ(n) is a conjugate field to

Aa
µ(n). Kinetic part is

∑

n,µ,a

1

2
ha

µ(n) =
1

2

∑

n,µ

Tr[HH†]. (86)

Therefore Hamiltonian is represented as

H[H,U ] =
1

2

∑

n,µ

Tr[HH†] + SG

=
1

2

∑

n,µ

Tr[HH†] − β

6

∑

n

∑

µ>ν

Tr
[

Uµν(n) + U †
µν(n)

]

. (87)

We need an equation of motion for Hµ(n). To obtain it, the above Hamiltonian is differentiated

with respect to ‘time’.

Ḣ = Tr

[

∑

Ḣ H −
∑ β

6

(

U̇µν(n) + U̇ †
µν(n)

)

]

(88)

∑

n,µ>ν

(

U̇µν(n) + U̇ †
µν(n)

)

=
∑

n,µ

[

U̇µ(n)V †
µ (n) + Vµ(n)U̇ †

µ(n)
]

(89)

=
∑

n,µ

[

iHµ(n)Uµ(n)V †
µ (n) − iVµ(n)U †

µ(n)Hµ(n)
]

. (90)

Thus we have

Ḣµ(n) = −iβ
6

[

Uµ(n)V †
µ (n) − h.c.

]

, (91)

for which hermiticity of Ḣµ(n) is satisfied while the traceless is not ensured. Requiring the

RHS being traceless, the degrees of freedom on both the sides become same, and the equation
of motion for Hµ(n) becomes

iḢµ(n) = −β
3

[

Uµ(n)V †(n)
]

AT
, (92)
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where subscript ’AT’ denotes anti-hermitian and traceless and for arbitrary matrix A

[A]AT =
1

2
(A−A†) − 1

6
Tr(A−A†). (93)

Since we have obtained the canonical equation of motion for SU(3) gauge field as

U̇µ(n) = iHµ(n)Uµ(n) (94)

iḢµ(n) = −β
3

[

Uµ(n)V †(n)
]

AT
, (95)

we can update the gauge field with the hybrid method. First, as the Langevin step, ha
µ(n) is

chosen randomly as a Gaussian ensemble with 〈h2〉 = 1. Then as the MD step, U and H are

updated according to the above equation of motion. Descretizing with a finite ’time’ step ε,

U(τ) = exp[iεH(τ +
1

2
ε)]U(τ) (96)

iH(τ +
3

2
ε) = H(τ +

1

2
ε) − ε

β

3

[

Uµ(n)V †(n)
]

AT
. (97)

Here we omit site and direction indices for simplicity. For U , one needs to approximate the

exponential function of matrix by expanding to some degree.1 To keep the error in MD evolution
O(ε2), one needs an expression at least correct to the order of ε2. If this approximation

is not sufficient, the updated U goes out of SU(3), then reunitarization is necessary. (The
reunitarization is easily done by e.g. Gram-Schmidt orthogonalization.)

6 Solving quark propagator

To calculate the observables containing fermion fields, such as two-point correlation function
of hadrons, one needs to determine the quark propagator. The quark propagator is the inverse

of fermion operator. One needs to solve the linear equation

D(x, y)Sq(y, z) = δx,z. (98)

Since the Dirac operator D(x, y) has degrees of freedom of color, spin, and site, and thus
huge matrix. Thus holding all the component of the matrix D is not realistic. Since D(x, y) is

sparce matrix, iterative solver is well applicable. Most typical approach is Conjugate Gradient
(CG) algorithm.

6.1 CG algorithm

The CG algorithm is applicable to positive definite matrix. Instead of Eq.(98), one solves

(D†D)(x, y)Sq(y, z) = D†(x, y)δy,z . (99)

Conjugate Gradient (CG) algorithm is one of most popular algorithm to solve a linear

equation,
Ax = b, (100)

1Alternative way to compute this exponential has also been proposed.
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where b is the source vector b ∈ V = RN , and A is N ×N matrix. To obtain x = A−1b is the

problem to be solved.
CG algorithm is one of the Krylov subspace algorithm. The k-th Krylov subspace is define

as

Kk(A, v0) = span{Akv0; k = 0, . . . , k − 1} (101)

where v0 is certain initial vector, and A is a matrix. The family of the Krylov subspace method
approximately solve Eq. (98) in Kk(A, v0).

We assume that the vector space is real, and the matrix to be solved is symmetric and
positive definite. The linear equation (98) can be solved by minimizing

S(x) =
1

2
||x̂− x||2A ≡ 1

2
(x̂− x,A(x̂− x)), (102)

where (a, b) is an inner product of vectors a and b, and x̂ = A−1b is the true solution. We

iteratively approximate the solution of Eq. (98) as {xi} (i = 0, 1, . . .), and generate new xi+1

from xi as

xi+1 = xi + λipi, (103)

where pi is a correction vector defined later. Here let us suppose that pi is given, and obtain
λi which minimizes Eq. (102).

From the extremum condition of S(xi+1) for λi,

λi =
(pi, b−Axi)

(pi, Api)
=

(pi, ri
(pi, Api)

(104)

where we introduce the residual vector ri = b−Axi. This type of algorithms which determine
the solution based on minimization is called gradient method. The essential point for the CG
method lies how to choose the correction vector pi. Before constructing pi, however, let us

prove a useful relation,
(pk, rk+1) = 0. (105)

Proof:

(pk, rk+1) = (pk, b−Axk+1)

= (pk, b−Axk − λkApk)

= (pk, rk) − λ(pk, Apk)

= 0.

In the last line, λk = (pk, rk)/(pk, Apk) was used. (QED)

For linearly independent p0, . . . , pN−1,

x = x0 + λ0p0 + · · · + λjpj + · · · + λN−1pN−1 (106)

then xj = x0 +λ0p0 + · · ·+λjpj. CG method chooses pj such that {pj} are orthogonal to each

other with respect to A, i.e.,

(pi, Apj) = 0 for i 6= j. (107)

First let us prove that if (pj , Apk) = 0 for j 6= k, (pi, rk+1) = 0 for i = 0, 1, . . . , k. This is

generalization of Eq. (105) to i < k.
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Proof:

xk+1 = xi+1 +

k
∑

j=i+1

λjpj

rk+1 = b−Axk+1

= b−A(xi+1 +
k
∑

j=i+1

λjpj)

= ri+1 −
k
∑

j=i+1

λjApj

(pi, rk+1) = (pi, ri+1) −
k
∑

j=i+1

λj(pi, Apj) (second term vanishes by assumption)

= (pi, b−Axi − λiApi)

= (pi, ri) − λi(pi, Api)

= (pi, ri) −
(pi, ri)

(pi, Api)
(pi, Api)

= 0.

(QED)

Let us take
pk = rk + µk−1pk−1 (108)

where from the condition 0 = (pk−1, Apk) = (pk−1, Ark) + µi−1(pk−1, Apk−1),

µk−1 = − (pk−1, Ark)

(pk−1, Apk−1)
. (109)

With this construction of pk, the following relations hold.

(ri, rj) = 0 for (i 6= j),

(pi, Apj) = 0 for (i 6= j).

Proof: By induction. Assume that

(ri, rj) = 0 for i 6= j, i, j ≤ k. (110)

then using

(pi, rk+1) = 0 for i ≤ k, (111)

0 = (pi, rk+1) = (ri + µi−1pi−1, rk+1)

= (ri, rk+1).

That is

(ri, rj) = 0 for i 6= j, i, j ≤ k + 1. (112)

and Eq.(110) is proved by induction (QED).
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6.2 Krylov subspace method

The CG algorithm drastically improved large linear problems. CG algorithm composes the

approximate solution xi in the subspace spanned by r0, Ar0, A
2r0, ..., Ai−1r0. After invention

of CG method, this kind of algorithms has been extensively investigated, and called Krylov
subspace method [32]. The Krylov subspace provides powerful framework for iterative solver.

While CG method is applicable to a positive definite matrix, there are other Krylov subspace
methods which is applicable to nonhermitian matrices. In particular, GMRES, MR, BiCGStab

methods are popular algorithms in lattice QCD simulations.

7 Dynamical simulations

In this section, HMC algorithm described in Sec. 5 is extended to the case with two dynamical

flavors of degenerate masses.

7.1 Pseudofermion

Let us consider a QCD system containing the standard Wilson fermions. Lattice action:

Seff = SG −
∑

f

ln det(
1

2κ
Kf [U ]), (113)

where SG is the gauge field action and the Wilson-Dirac operator is

Knm[U ] = δnm · 1 − κ
∑

µ

[(1 − γµ)Uµ(n)δn+µ̂,m + (1 + γµ)U †
µ(n− µ̂)δn−µ̂,m]. (114)

(The redefinition of the normalization of the fermion field is not done.) For two degenerated
flavors,

Seff = SG − ln

(

det
1

2κ
Kf [U ]

)2

. (115)

As an important feature of K[U ],

detK[U ] = detK†[U ], (116)

and for κ < 1/8,
detK[U ] > 0 (117)

holds. This condition is with rigorous proof, and in practical case κ < κc would replace. Then

detK[U ] =
√

detQ[U ], (118)

where

Q[U ] = K†[U ]K[U ] (119)

is positive definite and Hermite. Therefore an effective action for Nf degenerate flavors is
written as

Seff = SG − Nf

2
ln det(

1

4κ2
Q[U ]). (120)
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In the following we consider Nf = 2 case:

exp{−Seff} = det(
1

4κ2
Q[U ]) · exp{−SG}. (121)

det 1
4κ2Q is represented as

det(
1

4κ2
Q[U ]) =

1

det 4κ2Q−1
=

∫

Dφ∗Dφ exp{−4κ2
∑

ij

φ∗iQ
−1[U ]ijφj} (122)

where i and j label site ⊗ color ⊗ spinor space component. Partition function is represented

Z =

∫

DU detQ[U ]e−SG[U ]

=

∫

DUDφ∗Dφ exp{−SG[U ] − 4κ2
∑

ij

φ∗iQ
−1[U ]ijφj}. (123)

Changing the pseudo-fermion field (it is after all irrelevant) as 2κφ→ φ,

Z =

∫

DUDφ∗Dφ exp{−SG −
∑

ij

φ∗iQ
−1[U ]ijφj}. (124)

Here we define

SPF =
∑

ij

φ∗iQ
−1[U ]ijφj . (125)

Update is done with the hybrid Monte Carlo algorithm. For this purpose, for each of U ,

φ, and φ† canonical conjugate fields should be introduced so as to define the corresponding
Hamiltonian. However, φ, φ† can be treated as a background field during molecular dynamics
evolution and can be given at the Langevin step by heat-bath algorithm. Namely, U and its

conjugate H are evolved under fixed configuration of φ and φ†. Since

Q−1 = (K†K)−1 = K−1K†−1, (126)

introducing
ξ = K†−1φ, (127)

e−SPF = e−ξ∗ξ (128)

holds. Thus generating ξ with the distribution probability e−ξ∗ξ, φ is given as φ = K†ξ under
which U and H are evolved with molecular dynamics.

7.2 Hamilton equation

A conjugate matrix field H to U is introduced so as to satisfy U̇ = iHU . Hamiltonian is (with
neglecting the constant term)

H[U,H] =
1

2

∑

n,µ

[

Hµ(n)H†
µ(n)

]

+ SG + SPF (129)

=
1

2

∑

n,µ

[

Hµ(n)H†
µ(n)

]

− β

6

∑

n,µ>ν

Tr(Uµν + U †
µν) +

∑

i,j

φ∗iQ
−1
ij φj . (130)

25



Since φ is fixed during MD chain as background field,

d

dτ
φ = 0. (131)

Thus

d

dτ
H[U,H] =

∑

n,µ

Tr[Ḣµ(n)Hµ(n) − β

6
(U̇µ(n)Vµ(n) + h.c.)] +

∑

i,j

φ∗i (
d

dτ
Q−1

ij )φj . (132)

One needs to compute d
dτ
Q−1

ij . Since

d

dτ
(QQ−1) =

d

dτ
Q ·Q−1 +Q · d

dτ
Q−1 = 0, (133)

d

dτ
Q−1 = −Q−1 d

dτ
QQ−1. (134)

Defining as
ηi = Q−1

ij φj, (135)

and with Q† = Q, one has

∑

i,j

φ∗i (
d

dτ
Q−1

ij )φj =
∑

i,j

η∗i (
d

dτ
Qij)ηj . (136)

Then
d

dτ
Q =

d

dτ
(K†K) = K† d

dτ
K +

d

dτ
K† ·K, (137)

η†
dQ

dτ
η = η†K† dK

dτ
η + η†

dK†

dτ
Kη = ζ†

dK

dτ
η + η†

dK†

dτ
ζ. (138)

where we set as ζ = Kη . Since

Knm = δnm − κ
∑

µ

[

(1 − γµ)Uµ(n)δn+µ̂,m+ (1 + γµ)U †
µ(n− µ̂)δn−µ̂,m

]

(139)

K†
nm = δnm − κ

∑

µ

[

(1 + γµ)Uµ(n)δn+µ̂,m+ (1 − γµ)U †
µ(n− µ̂)δn−µ̂,m

]

, (140)

the time derivative of K is represented as

dK

dτ
= −κ

∑

µ

[

(1 − γµ)iHµ(n)Uµ(n)δn+µ̂,m− (1 + γµ)U †
µ(n− µ̂)iHµ(n− µ̂)δn−µ̂,m

]

, (141)

ζ†
dK

dτ
η = −κ

∑

n,µ

[

ζ†n(1 − γµ)iHµ(n)Uµ(n)ηn+µ̂ − ζ†n(1 + γµ)U †
µ(n− µ̂)iHµ(n− µ̂)ηn−µ̂

]

= −κ
∑

n,µ

[

ζ†nb(1 − γµ)iHµ(n)ba(Uµ(n)ηn+µ̂)a − (ζ†n+µ̂U
†
µ(n))b(1 + γµ)iHµ(n)baηn,a

]

= −κ
∑

n,µ

iHµ(n)ba
[

ζ†nb(1 − γµ)(Uµ(n)ηn+µ̂)a − (ζ†n+µ̂U
†
µ(n))b(1 + γµ)ηn,a

]

. (142)
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Here a, b are the color indices and the spinor components are understood to be contracted.

The last line of the above equation has a form of Tr[H × (matrix)]. Similarly,

dK†

dτ
= −κ

∑

µ

[

(1 + γµ)iHµ(n)Uµ(n)δn+µ̂,m− (1 − γµ)U †
µ(n− µ̂)iHµ(n− µ̂)δn−µ̂,m

]

, (143)

η†
dK

dτ
ζ = −κ

∑

n,µ

[

η†n(1 + γµ)iHµ(n)Uµ(n)ζn+µ̂ − η†n(1 − γµ)U †
µ(n− µ̂)iHµ(n− µ̂)ζn−µ̂

]

= −κ
∑

n,µ

iHµ(n)ba
[

η†nb(1 + γµ)(Uµ(n)ζn+µ̂)a − (η†n+µ̂U
†
µ(n))b(1 − γµ)ζn,a

]

= −κ
∑

n,µ

iHµ(n)ba
[(

(ζ†n+µ̂U
†
µ(n))a(1 + γµ)ηn,b

)∗
−
(

ζ†n,a(1 − γµ)(Uµ(n)ηn+µ̂)b
)∗]

= −κ
∑

n,µ

iHµ(n)ba
[

(ζ†n+µ̂U
†
µ(n))b(1 + γµ)ηn,a − ζ†n,b(1 − γµ)(Uµ(n)ηn+µ̂)a

]†
. (144)

Therefore

η†
dQ

dτ
η = −κ

∑

n,µ

iHµ(n)ba
[

(ζ†n+µ̂U
†
µ(n))b(1 + γµ)ηn,a − ζ†n,b(1 − γµ)(Uµ(n)ηn+µ̂)a

]

A
(145)

where [. . .]A stands for the anti-hermitian operation, i.e., [M ]A = [M −M †]/2. Defining

Rµ(n)ab =
[

(ζ†n+µ̂U
†
µ(n))b(1 + γµ)ηn,a − ζ†n,b(1 − γµ)(Uµ(n)ηn+µ̂)a

]

A
, (146)

η†
dQ

dτ
η = −2κ

∑

m,µ

iHµ(n)baRµ(n)ab (147)

= −2κ
∑

m,µ

Tr[iHµ(n)Rµ(n)]. (148)

Thus
d

dτ
H =

∑

n,µ

Tr

[

Ḣµ(n)Hµ(n) − β

3
iHµ(n)[Uµ(n)Vµ]A − 2κHµ(n)Rµ(n)

]

. (149)

Hµ(n) satisfies a differential equation

−iḢµ(n) − β

3
[Uµ(n)Vµ]A − 2κRµ(n) = 0. (150)

Since H is traceless,

iḢµ(n) = −β
3

[Uµ(n)Vµ]TA − 2κRµ(n) (151)

holds. Here, [. . .]TA stands for the traceless and anti-hermitian operation.
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A Jackknife method

The jackknife method is used to estimate an error of a quantities expressed as a complicated
function of measured observables or a result of fit. First, we consider the simplest form of the
method with a bin size 1. Let us define the average value without k-th measured value,

〈O〉k ≡ 1

M − 1

∑

i6=k

Ai. (152)

For a quantity f(O) which is a function of O, the average and error of f(O) can be calculated

as

〈f(O)〉 =
1

M

M
∑

k

f(〈O〉k) (153)

δ〈f(O)〉 =
√

(M − 1){〈f(O)2〉 − 〈f(O)〉2. (154)

Applying these formulae to O itself, one easily reproduces Eqs. (30) and (31).

Similarly, the jackknife method with bin size m is constructed as follows. Firstly all data
is decomposed into Mm = M/m bins, so that each bin having m data is labeled with b
(b = 1, ...,Mm), and the set of bins is denoted by Bb. An average value without bin b is

determined as

〈O〉b ≡
1

M −m

∑

i6∈Bb

Oi. (155)

Then the average and error of f(O) is evaluated as

〈f(O)〉 =
1

Mm

Mm
∑

b=1

f(〈O〉b) (156)

δ〈f(O)〉 =
√

(Mm − 1){〈f(O)2〉 − 〈f(O)〉2}. (157)

The jackknife method has several advantages:

• Applicable to arbitrary function of observable f(O).

• Applicable to quantities related to the variance, such as a susceptibility and a specific
heat.

• It incorporates the correlation between observables.

• By changing the size of bins, the autocorrelation autocorrelation can be estimated. This is

done observing the dependence of errors on the bin size, which disappears in the absence
of correlation.

On the other hand, jackknife method estimates a symmetric error in plus and minus, as same as
with Eqs. (30), (31). This is valid only when the error is well small compared to the fluctuation

of the observable. If it is not the case, jackknife method may fail, and more elaborated method
such as bootstrap method should be employed.
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