Development of Hybrid Structure for the ATLAS barrel Silicon Microstrip Tracker

Takahiko Kondo, KEK

representing

T. Kohriki, Y. Ikegami, S. Terada, T. Kondo, N. Ujiie, Y. Unno,
KEK, National High Energy Accelerator Research Organization, Japan
K. Hara, H. Kobayashi, T. Akimoto, S. Shinma, Y. Kato
Tsukuba University, Japan

1

Hybrid of the barrel ATLAS SCT

ATLAS Barrel SCT

Barrel module parameters

- Sensors : 63.56 x 63.96 mm², p-in-n, single-sided
- **Strip directions : ±20 mrad**
- Operating temperature : 7°C
- Total chip power : 6.0 W nom., 8.1 W max.
- Thermal runaway heat flux: > 240 mW/mm² at 0°C
- Mechanical precisions :
 - back-to-back: < 5 mm (in-plane lateral), < 10 mm (in-plane longitudinal), < 50 mm (out-of-plane)
 - Fixation point: < 30 mm (in-plane)
- Radiation length: $< 1.2\% X_0$

Cooling block

Flow paths of heat

Carbon-carbon material

Thermal conductivity	(// fiber)	700 +- 20) W/mK
	(^ fiber)	35 +- 5	W/mK
Density		1.9	g/cm ³
Young's modulus (// fiber)		294	Gpa
Tensile strength (// fiber)		294	Mpa
Thermal expansion coeff. (// fiber)		-0.8	ppm/C
	(^ fiber)	10	ppm/C
Resistivity (// fiber)		2.5 x 10	-6 W m

Layer structure of Cu/Polyimide flex circuit

Layout of the flexible circuits: top to bottom

Glue & cure press for Cu/polyimide flex and CC bridge

Curing at 125°C for 2 hrs

Module assembly

Fixtures at the Japanese module assembly site

Module of the ATLAS barrel SCT Si strip sensor $(64 \times 64 \text{ mm}^2)$ Hybrid structure -**TPG** baseboard THE REAL PROPERTY OF STREET, DO & BeO facings 10 20 30 40 50

Thermal Properties

Simulated thermal profile with Q_{chip} =6W

bulk heat generation (mW/mm²@0°C)

Mean Noise Occupancy, all channels module 20220170100018, measured warm

Median charge and S/N vs bias voltage (mod 3 was irradiated to 3x10¹⁴ p/cm²,)

Summary of Electrical Performance

For non-irradiated modules :

- ♦ noise ~ 1350e at ~0°C, S/N > 14
- ◆ noise occupancy ~10⁻⁵ at 1 fC threshold
- ♦ threshold uniformity < 4 mV (~0.08fC)</p>
- timewalk : ~ 3 ns

For irradiated modules :

- ♦ noise ~ 2050e at ~0°C, S/N ~ 10
- ♦ noise occupancy ~ 3x10⁻⁵ at 1 fC threshold
- ♦ threshold uniformity < 12 mV</p>

Conclusions

- A hybrid structure with Cu/polyimide flexible circuits with reinforcing Carbon-carbon bridges was successfully developed at KEK/Tsukuba, for the ATLAS barrel SCT module.
- All electrical performance (with ABCD3T), mechanical precision and thermal property, including radiation hardness, satisfy the severe LHC requirements.
- Ready for mass production.