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Why Monte Carlo simulations?

e Gauge/gravity duality:
quantum field theories = classical gravity
strong coupling, large N

e matrix models
non-perturbative formulation of string theories
play the role of lattice gauge theories for QCD

« | will explain the basic ideas and techniques
necessary for matrix model simulations
(in fact, simpler than field theories)
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Does 4d space-time emerge”?

e |IB matrix model (Ishibashi-Kawai-Kitazawa-Tsuchiya '97)
non-perturbative formulation of superstring theory

1 1
S = Ntr {_Z[XH’ XI/]2 + Elba(rli)aﬁ[xﬂﬂ wﬁ]}

e “moment of inertia” tensor

1
Ty = NTI’(XMXV) 10x 10 real symmetric matrix

Eigenvalues: A1 > Ao > -+ > A1
order parameter for the SSB of SO(10)

Does a phenomenon such as

(A1) = (A2) = (A3) = (Ag) > (As)
occur inthe N — oC limit SO(10)—S0(4)




The aim of these lectures

® Satisfy your curiosity
Indeed MC studies of models with 16 SUSY is made possible only recently.

® Convince you that “MC sim.” in general
is a powerful and (in fact) rather easy method

Once you know how to use it, you can add it in your “tool box™!
Not necessarily mean that you have to do it yourself.
You can also ask some students or experts to do it for you!

® Enable you to read papers based on MC with a lot of technical terms
some good ones must be useful for you to gain new insights
into the physics you are interested in.

| believe, for further developments of string theory,
Monte Carlo approach should really play an important role
(Like lattice simulation in QCD!)

| hope these lectures help you participate in such a development.



References

e H.J. Rothe (2005):
Lattice Gauge Theories —— An Introduction

e T. DeGrand, C. De Tar (2006):
Lattice Methods For Quantum Chromodynamics

Advertisement :

| am planning to write a review article on
MC simulations focusing on matrix models
based on the present lecture.

Any requests or suggestions would be very helpful!
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1. The principle of Monte Carlo simulation
“Simulating” Gaussian matrix model

2. How to generate an ensemble for a general model
algorithm
detailed balance AND ergodicity

3. Basic algorithms for simulating bosonic models
heat-bath algorithm, Metropolis algorithm

examples: bosonic IKKT model, one-matrix model
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4. Basic algorithms for fermions

hybrid Monte Carlo algorithms
example: 4d version of IKKT model (supersymmetric)

5. An overview of previous works and future prospects



1. The principle of Monte Carlo simulation



1. The principle of Monte Carlo simulation

. Gengrate conflgura_\t_lons {C cnsermble €
with the probability « @

» real positive
dp O el 1
J d¢ ~ 15 o[

no. of COIIﬁgS. IN the ensemble g

e By increasing n, one can obtain VEVs as
accurate as one wishes.

(0) =

Possible error due to finite n (finite statistics)
= statistical error
can be estimated from the fluctuations of O[C]



“Simulating” Gaussian matrix model
the simplest possible example

¢ : N x N hermitian matrix

1
Z:/dqbe_s, S = Ntrg?

1
= E/dgb(’)e_s Vacuum Expectation Value
- <1trq52> =1 <1trq§4> =24 - . etcC
Exact results : { =1, N N2 ) :
= (1 <i<N)
e o Th bl b
Kt ¥ L. e ensemble can be
%ij = T BN (1<i<j<N) | optained by just
generating A;, X;;, Yy,
1 as Gaussian variables.
== Z(A )7+ D (X7 + DY
2 Z<_} ?<J 1 _1332
p(r) = —=—e"2

V2r



Generating Gaussian variables

e Random number generator
the heart of MC sim.

generates a sequence of random numbers within
the range [0,1) with uniform probability

Suppose z ,y € [0,1) are 2 such numbers.

. 3 "

. . . — 1 —5L
= Generating Gaussian variables pla) = NoT
r = v—2lnzx £ = rcoséh ST
0 = 2my 7 = rsinf
dz d L oo - 5 87 38
x = — —— | rdr
i 2T P 2
1 ¢2 e -
N N [ sk uf 91 § ,7 are independent
2T Gaussian variables




2. How to generate an ensemble for a
general model algorithm




How to generate an ensemble for a
general model? —— “algorithm”

e Define the transition probability P[C — C']
e Given an initial config. Co
one can generate (probabilistically)
Co—C1— - —=Ch_1 >Cp —>Chypr — -

wr[C] : probability of obtaining C at n-th step
Wy 41[C] = > wn[C'1 P[C" = C],  wol[C] = dc,c,
C!
We want to choose P[C — C'] in such a way that
—S[C]




How to generate an ensemble for a
general model? —*algorithm” (cont’d)

folCl= Sl
:

Taking the n — oo limit,

: ZP[C’ — C]  necessary condition

C!
I summing over C’

detailed balance :
e_S[C]P[C — ' = e=51C] P[C" — C] a stronger condition

the flow of probability is balanced between
arbitrary pairs of configurations



How to generate an ensemble for a
general model? —*algorithm” (cont’d)

Choose P[C — C'] to satisfy also :

Ergodicity

For arbitrary pairs of configs. C ,C’

there is a finite probability of moving from C to '’
within finite steps unless e=°l¢'l =0

Theorem:

lim wn[C] x e~ 5LC]
n—oo

If | the detailed balance | are satisfied,
the ergodicity

Various choices for P[C — C'] lead to various algorithms.



Thermalization and auto-correlation

O[Cn] h 1 history of an observable

! y R I"'=" 1
i "] r — <O> ~ — Z O[C]

| | nNcee

36 1 L 1 L 1
(_)W 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 n

hermalization lim wn[C] x e”

n—oo

One has to discard sufficiently many configs.
generated before “thermal equilibrium” is achieved

e auto-correlation

should be taken into account in estimating statistical errors
jack-knife method

Efficiency = CPU time required to produce an independent config.



3. The basic algorithms for simulating
bosonic models



Heat bath algorithm

e Divide the whole system into sub-systems

with the probability Pi[C — C'] o« e=S[CT
which satisfies the detailed balance

el p 10 = ¢ = e ¥l pi ¢! = ]

e Repeat this for each sub-system =) One sweep



bosonic IKKT model
(Hotta-J.N.-Tsuchiya NPB 545 ("99)

A, (u=1,---,D) N x N traceless hermitian
1
S = —ZNtI’[Au,Ay]Q
1
= N ; [—Qtr(G’W)Q + 2tr(AZ A7)
u<v
Gu =1{Au, Av} © hermitian

Introduce auxiliary variables:

Quv (u<v) : N x N hermitian

S=NY [ tr(Qu)? — tr(QuGu) + 2tr(A2A2)
u<v



bosonic IKKT model (cont’d)

e Updating Qv

§=NY [ tr(Qu)? — tr(QuGu) + 2tr(A2A2)]
p<v

—N N tr(Qu — Guw)? + (Q-indep.)
p<v

Just the same as in the Gaussian matrix model !

Generate normal Gaussian variables
Ap..f/.-z' .
(Quv)ii = \/N (G )ii (1<i<N)

L/, _I_?’ L,
(Quv)ij = “U\/W”U“F(Gw)w (1<i<j<N)




bosonic IKKT model (cont’d)
e Updating Ay

S = NY [ tr(Quv)” — tr(QuuGu) + 2tr(AZA7 ]
p<v
— [2 tr(SuA2) — tr(TMAM)} + (A, -indep.)
Su = D A7
v O(N?)
T[.L — Z(AVqu+QuVAV) calculations
VFE
(Au)11,---,(Au) NN can be updated simultaneously.
(Aﬂ)iliz’ cee (Aﬂ)in_lin ,where 11, ---1n, are all different,

can be updated simultaneously*.
Both by generating Gaussian variables.

(* Repeat until all the off-diagonal elements get updated.)



bosonic IKKT model (cont’d)

dynamical variables no. of ari’_chmetic operations
for updating
Qv O(N?) A
diagonal O(NQ) > one sweep
A'u { off-diagonal @ )
"

dominant part

1 5 1 .
exact result: <N tr(Fuv) > =D (1 — ﬁ) Fuy =1 [Ap, Avl

Exercise 1) Write a code and plot the history of %tr(ﬂw)2
2) Check that the ensemble average agrees with
the exact result within the statistical error

See Hotta-J.N.-Tsuchiya (’99) for <%tr(A“)2> etc.



Metropolis algorithm

Less efficient than heat bath algorithm,
but applicable to any model.
Important idea for including fermions.

e Generate a trial config. C’
from the previous config. C

with the probability f(C — C')
obeying f(C — ch = f(c' =) reversibility
e Accept C’ with the probability min(1,e 2")
AS = S[C'] — S[C]
otherwise stay with C

e One can again divide the system into
sub-systems, and visit each of them sequentially.



One-matrix model
Kawahara-J.N.-Yamaguchi, JHEP 0706 (CO7)

Solvable in the large N limit. Eigenval. Dist.

N 1
S:—(—trgb2—|——tl’¢4) 1 XN
(z) = — 0z — A\;)
¢ =UANUT, A=diag(\y, --,A\n) o]
Integrating over U, one obtains g
s _ Ny (L2 La) P2 IR
S = g%:( )\z +4)\z> %}ng\z A]' 3 2 4 E 1 2 3

Figure 1: The eigenvalue distribution p{r) is plot-

Up date A\ 1 ted for g = 0.5,1.0,2.0,3.0 with N = 32. The curves

represent the exact results (3.2), (3.3) obtained in
the planar large-N limit.

Choose the trial value for \]
randomly within a fixed interval [— X, X].
Calculate A S and perform the Metropolis reject/accept.

Repeat this for A2 , -, AN O(N?) calculations




Summary of the first part

® Monte Carlo simulation
Euclidean path integral formalism
Calculation of VEVs, correlation fns, etc.
by generating configs. and taking average.

® heat bath algorithm : efficient, but not general
Metropolis algorithm : less efficient, but general
iImportant idea for including fermions

® Simulating bosonic models is very easy.
Do try : Gaussian matrix model (< a few hours)
bosonic IKKT model, one-matrix model
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A brief review of the first part (ch.1,2,3)

e Generate configurations{C
_ N @ ensemble &
with the probability feal positive
dp ©e=sldl 1

no. of COIIfigS. in the ensemble &

 Define the transition probability P[C — C']
e Given an initial config. Co

one can generate (probabilistically)
Co—Cy = —=Cyp_1 —=>Cph—=>Chyq — -

(0) =

detailed balance :

=Sl plo = ' = eS¢ ple’ = ¢




Various “algorithm?”
the choice of P[C — O]

e Heat bath algorithm

=@ c@ ... oy
¢’ = {eW)c@, ... oy

with the probability P;[C — '] & e=51C]

e Metropolis algorithm

propose a trial config. C’ with probability f(C — C")
such that f(C — C") = f(C' = C) reversibility
Accept C’ with the probability min(1, e_AS)

AS = S[C] — S[C]

otherwise stay with C



Plan of this lecture
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1. The principle of Monte Carlo simulation
“Simulating” Gaussian matrix model

2. How to generate an ensemble for a general model
algorithm
detailed balance AND ergodicity

3. Basic algorithms for simulating bosonic models
heat-bath algorithm, Metropolis algorithm

examples: bosonic IKKT model, one-matrix model
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4. Basic algorithms for fermions

hybrid Monte Carlo algorithms
example: 4d version of IKKT model (supersymmetric)

5. An overview of previous works and future prospects



4. The basic algorithms for fermions



How to treat fermions in simulations
St = —1iM;;[PlY;

There is no way to put Grassmann variables, as they are,
on a computer!

Zs = /d¢ di) =S¢l ,¢]
= det M[d] fermion determinant

One has to simulate : size : N o no. of d.o.f.

Serr[9] = Spl¢] — In detM[g])

requires O(N3) arithmetic operations

matrix models - N «x N2
field theories : NxV=LD

One needs clever techniques to deal with them efficiently.



Hybrid Monte Carlo (HMC) algorithm

e.g.) bosonic IKKT model
1
S[A] = —4Ntr[A;uaAu]2

iIntroduce auxiliary variables
Xy (u=1,---,D) : N x N hermitian

54, X] = _ tr(X,)? + S[A]

As a particular way of proposing a trial config.
In Metropolis algorithm, we consider

an auxiliary classical dynamics regarding

Xy, @ the conjugate momentum of A,
S[A, X] : the Hamiltonian



HMC algorithm (cont’d)

54, X] = _ tr(X,)? + S[A]

Hamiltonian eq. Molecular Dynamics
~dA,  OS[A, X] _
— —
J & OXp “force term”
dXp _ 95[A, X] _ 9S[A] main part of
_ dr OAL 0A, The calculation
Solve it for a fixed "time"” interval T
(A, X) — (A, X") One trajectory
old config. trial config.

reversibility OK
S[A, X] = S[A’, X'] = always accepted



HMC algorithm (cont’d)

e Can one keep on generating new configs.
by the Molecular Dynamics alone?

NO! Ergodicity problem
e.g.) Configs. with different S cannot be reached.

==) refresh momenta X after each trajectory

514, X] = _tr(X,)2 + S[A]

One can update X by generating Gaussian variables.

Hence the name : “hybrid” Monte Carlo



HMC algorithm (cont’d)

e In practice, Hamilton eq. should be discretized.

reversibility —»  should be respected
S[A, X] = S[A, X'] —»  will be sacrificed
2

Metropolis procedure :
accept ( A’,X’ ) with the probability min(1,e™

AS = S[A", X'] — S[A, X]

Then the detailed balance will still be satisfied.

o

AS)

leap-frog discretization

N




4d version of IKKT model

Ambjorn-Anagnostopoulos-Bietenholz-
Hotta-J.N. JHEPO7,013 ("00)

A, (u=1,---,4) : NxNt

raceless hermitian

Vo , Ve (a=1,2) : N x N traceless matrices
with Grassmann entries

Sp[A] = —3 N tr[A,, A))?
St A]

_@aaMaab[jwbﬁ

Maoc,b,@ = (rﬁb)aﬁtr(ta[Aua tb])
2(N?2 —-1) x 2(N? —1) mat

7 = f dA e—SblA]

—(ru)aﬁ tr(WalAp, Wﬁ])

Vo = Zwaata
a

Vo = ) tad
rix a @&j

generators of SU(N)

real positive



4d version of IKKT model (cont’d)

e apply HMC
S[A] = Sp[A] — In det M[A]
% = —ﬁ “force term”
dT OA
_ _9%% . oM
- 0A, DA,

needs to be calculated
at each Molecular Dynamics step

At the end of each trajectory,

det M needs to be calculated
comp. effort |c.f.)bosonic models
matrix models : N o« N? O(N°) O(N3)
field theories: N x V = LD O(VQ) O(V)




pseudo-fermions

a crucial trick for further efficiency

e Represent fermion determinant by
Integration over auxiliary bosonic variables

det M[A] x dedF*e_F*’C[A]F
real positive
D = MTM . all the eigenvalues > 0

K[A] = D[A] /2

rational approx. .
S a; ,b; . real positive

e~1/2 ~ ag + Z b can be optimized
Z_137"" for e <o <1

Q
K=D Y2 ~a0+ Y a;(D+b)7 !
i=1




pseudo-fermions (cont’d)

e Apply HMC to the whole system
SprlA, F, F*] = Sp[A] —aoF™F

Q
— N a; F*(D[A] + b)) 1F
1=1

the main task boils down to solving linear eq.
(D[A] +0b;) G, = F  foragivenF

instead of calculating det M |, M1

Gy

Conjugate gradient method

m) iterative multiplication of (6[—@4- b;)

matrix models : O(N>)
field theories : O(V)

comparable to bosonic models!

arithmetic operations



Multi-mass CG solver

e Actually, one does not have to solve
(D[A] + b)) G; = F
for each of b; (i=1,---,Q) separately.

Solve it for the smallest b; with the CG method

==  The solution for larger b, can be obtained
as a by-product of the CG procedure.
Jegerlehner, hep-lat/9612014
Thus, one can save the factor of Q.

c.f.) typically @ ~ 10

Hybrid Monte Carlo
rational approximation
multi-mass CG solver

Rational Hybrid Monte Carlo

} Clark-Kennedy-Sroczynski(CO5)

The standard algorithm for
QCD, SUSY theories



5. An overview of previous works
and future prospects



An overview of previous works
and future prospects

e Bosonic models can be studied very easily.
e applications:
Including Myers terms to bosonic IKKT model

2,
S3 = 3 PN ey tr(ApAvAy) fuzzy sphere
1 collapses
gauge theories on a fuzzy sphere 2 ‘N=8 - ]
= 4 | N=16 ——
Iso-Kimura-Tanaka-Wakatsuki, = N=32 o
Nucl.Phys.B604,121 ('01) o 3 classical
%5 one-loop —
—— 2 L
fuzzy sphere becomes unstable :_Z-
as the coupling becomes strong. V 17

Azuma-Bal-Nagao-J.N.,
JHEP 05,005 ("04)



An overview of previous works
and future prospects (cont’d)

Field theories on a non-commutative torus
can be formulated non-perturbatively using matrix models

Ambjorn-Makeenko-J.N.-Szabo, JHEP 05,023 (C0O0)

Spontaneous breakdown of translational symmetry
due to UV/IR mixing effect

(2+1)d scalar field theory (2+2)d U(1) gauge theory
, 0.7
[}f} T T T T ! - ..l',_ ! ! ! !
0.5 | 06F 2 e .
I minimum at 05| -
.| non-zero mom. ~a { Y |
m 0.3 = = i) a
a 03} ) . : -
0.2 = v A :
02 | ' Wilson line carryin
0.1 =5 T 04 | | 'non-zefo momentum
% 01 0.2 03 01 0.5 0 loaah "Besedvonguaniio o0 pes o
2 0 05 1 15 2 25 3 35
p
Bietenholz-Hofheinz-J.N., Bietenholz-J.N.-Susaki-Volkholz,

JHEP 06,042 ('04) JHEP 10,042 ('06)



An overview of previous works
and future prospects (cont’d)
e 1d SUSY gauge theories at finite temperature
Anagnostopoulos-Hanada-J.N.-Takeuchi, Phys.Rev.Lett.100,021601(°08)
Fourier mode simulation using RHMC algorithm

‘ The first non-perturbative studies of
a system with 16 supercharges

Gauge/gravity correspondence
We can “study” gravity from gauge theory !

Testing the correspondence 30
{ at the operator level sl | /]
In the case with less SUSY 0 % |

20 _ {r g

15 [ 0.8

E/N?

Extension to higher dimensions
various proposals Ne12 At |
using lattice approach st L e

Kaplan, Sugino, Catterall,... 0 ' —

10 +

0.0 1.0 2.0 3.0 4.0
T




An overview of previous works
and future prospects (cont’d)

“Partial use” of Monte Carlo simulation

High temperature expansion of 1d SUSY gauge theory

E/N?

Kawahara-J.N.-Takeuchi, JHEP 12,103 (°07)

e,
— —
23

At high T, one can integrate out

all the modes except

the bosonic zero mode

2minT (n=0,%+1,£2,---) bosons

2mirT  (r = :I:%, :I:%, cee) fermions

m) bosonic IKKT model

35 : : 00
leading
| next-leading(b) -------- -4 B o
30 next-leading(s) - "r‘,es >0 5 g
finite T sim.(b) —e— iy ;
25t finite T sim.(s) —&— AT 40
o :
20 | _ ot < 304 bosonic
- bosonic e = (—
e A 20 =~ Isading
- next-leading(b) --------
. X 1oL next-leading(s) -~ - 1
- finite T sim.(b) —e—
finite T sim.(s) —=—
0.0 ‘ ‘ | |
50 0.0 1.0 2.0 4.0
T

5.0



An overview of previous works
and future prospects (cont’d)

plane wave matrix model p:Mass parameter

At large 1, one can integrate out
all the modes except the |gauge field moduli.

1

only O(N) d.o.f.

distribution of the gauge

field moduli (trivial vac.) free energy
0.001 ; : . :
0.45 - . .
T=0.075 .
04 | e TROOT6 o Of = = = sz 5 1 N=3
0.35 £ . R TR sy
P h -U. - b Ty
0.3 - 4" Gﬁmm‘ 1 e
ﬁ;’p,JF—" ﬂ,;,h o x\ - a. ‘
025 | F;’a E@E £ -0.002 | i =2
02 . - -
1 oe Laeuossoesfaesossanossacas B e vovsonoo] oo0s|  trivial vac.—y |
HA Al .
L ] 0004 | MV T
0.05 ‘dp qEI_ 7 — n=3 &
] i ! 2l & 1 1 1 1
0 oy mooo's nom ol A 1 1 1 lo g o b -
3 2 4 0o 1 2 3 007 0072 0074 0076 0078 0.8
T

Kawahara-J.N.-Yoshida JHEP 06,052 ('06)



An overview of previous works
and future prospects (cont’d)

e |[KKT model, BFSS model

Fermion determinant (Pfaffian) becomes complex, but

Zo = /dA e~ %l det M[4]

can be simulated in the same way (e.g., RHMC).

The effect of the phase can be included by sign problem

the reweighting method, but . _
(O e both (Oe' )y and (e')g
= 0 becomes exponentially small

T
Caple as N increases

(O)

An idea to sample efficiently the region in the config. space,
where the fluctuation of [ is not so violent.

Anagnostopoulos-J.N. Phys.Rev.D66,106008 ('02)



An overview of previous works
and future prospects (cont’d)

e Monte Carlo simulation

a powerful method to study strongly coupled systems
from first principles

As such, one should be able to find many more places
for applications in string theory.

If you think you’ve found one,
you can try it out yourself
(I gave you all the basics. More detalils in text books)
Oor you can contact us.
(We can tell you whether it is feasible or not.
We may also collaborate if you wish.)

| hope MC sim has the potential to revolutionize
the research of string theory (as in the case of QCD) !
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