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Physical Aspects of Singularities in Quantum Mechanics
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Quantum singularities on a line furnish a rich variety of exotic phenomena in physics, such
as spectral duality, Berry phase, scale anomaly, supersymmetry, or even quantum copy through
tunneling, which are normally found in more complex systems. How these can appear out of
the simple setup of a line system with just a point singularity will be sketched, starting from
the basics of how to treat singularities in quantum mechanics.
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1. Introduction

Singularities in quantum mechanics arise in various
situations, for instance, as defects in a homogeneous ma-
terial or divergent points in the potential describing a
system. On a line (i.e., in one dimension), quantum me-
chanics is known to admit physically distinct singulari-
ties which form a four parameter family1,2) given by the
unitary group U(2). The diversity of the quantum sin-
gularities leads to several exotic phenomena, including
duality in spectrum, Berry phase, scale anomaly and su-
persymmetry.3–5) Below, some of these will be discussed
briefly after presenting how the U (2) family arises for
the description of a singularity. Further, we argue that
quantum copy (copy of the profile of an arbitrary state)
may be possible when combined with caustics realized
under a singular potential.

2. U(2) Family of Singularities

Given a system of a line −∞ < x < ∞ with a point
singularity, say at x = 0, the first question one has to
address is how to specify the physical nature of the sin-
gularity in quantum mechanics. On the most general
basis, the answer is given from the requirement of uni-
tarity (probability conservation), or equivalently the self-
adjointness of the Hamiltonian,

H = − ~2

2m

d2

dx2 , (1)

defined on the line with the singularity removed, namely
on x 6= 0. This implies that the probability current
j(x) = − i~

2m ((ψ∗)′ψ − ψ∗ψ′) (x) be continuous at the
singular point x = 0, and the most general solution for
this is expressed by the connection condition,6,7)

(U − I)Ψ + iL0(U + I)Ψ′ = 0. (2)

Here U is a matrix, called characteristic matrix belonging
to U (2), L0 6= 0 is a real constant and

Ψ =
(

ψ(+0)
ψ(−0)

)
, Ψ′ =

(
ψ′(+0)

−ψ′(−0)

)
, (3)
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are vectors defined from the boundary values of the
wave function ψ(±0) = limx→±0 ψ(x) and their deriva-
tives. The U(2) arbitrariness for the solution suggests
that there exist the U (2) family of singularities allowed
quantum mechanically, characterized by the connection
condition (2). For instance, for U = σ1 (where σi are
Pauli matrices) the connection condition (2) reduces to
ψ(+0) = ψ(−0), ψ′(+0) = ψ′(−0), that is, it represents
the ‘free system’ where there is no singularity. On the
other hand, the choice U = −I leads to the Dirichlet
condition ψ(+0) = ψ(−0) = 0 while U = I gives the
Neumann condition ψ′(+0) = ψ′(−0) = 0.

We also mention that, if the system has impenetrable
boundaries such as the infinite potential wall, we need
an additional U(1) parameter to each of the boundaries
to specify the boundary condition there.

When the singularity arises as a divergent point of a
potential, on the other hand, it may be possible that the
wave function (and/or its derivative) also diverges there.
If this happens, then the above prescription to specify the
singularity becomes ill-defined. However, even in such
cases the Wronskian W [φ,ψ](x) = φ(x)ψ′(x)−ψ(x)φ′(x)
evaluated for two arbitrary states φ and ψ remains well-
defined, and this suggests that we may furnish the con-
nection condition (2) in terms of the generalized bound-
ary vectors8)

Ψ =
(

W [ψ, ϕ1]+0
W [ψ,ϕ1]−0

)
, Ψ′ =

(
W [ψ,ϕ2]+0

−W [ψ, ϕ2]−0

)

(4)

using some states ϕ1, ϕ2 for ‘reference’ to provide the
Wronskians. In fact, for a suitable choice of the reference
states the generalized boundary vectors (4) reduce to (3)
if the states ψ are well-defined at the singularity. In this
sense, the boundary vectors (4) furnish a generalization
of (3) to cases where the latter is ill-defined.

3. Spectral Space

To discuss the physical content of the singularities on
a line, it is convenient to introduce the following decom-
position of the characteristic matrix,3,4)

U = V −1DV, (5)
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with the parametrization,

D =
(

eiθ+ 0
0 eiθ−

)
, V = ei µ

2 σ2ei ν
2 σ3 (6)

where θ± ∈ [0, 2π) and µ ∈ [0, π], ν ∈ [0, 2π). Our
motivation behind this decomposition comes from the
fact that the parity P and the half-reflection R,

P : ψ(x) → (Pψ)(x) := ψ(−x), (7)

R : ψ(x) → (Rψ)(x) := [Θ(x) − Θ(−x)]ψ(x), (8)

induce the change in the boundary condition as

U
P−→ σ1 U σ1, U

R−→ σ3 U σ3, (9)

and yet the energy eigenstates remain to be the eigen-
states under the new boundary conditions∗. This implies
that one can actually change V in (6) in the decomposed
U without changing the spectrum. In other words, the
energy spectrum of the system is determined solely by
the two angle parameters (θ+, θ−) in D in the character-
istic matrix U . From these spectral parameters, we we
may define the more convenient scale parameters,

L(θ±) = L0 cot
θ±

2
. (10)

These appear, for instance, in the bound states ψ±(x) ∝
e−|x|/L(θ±) which exist if L(θ+) > 0 and/or L(θ−) > 0.

From the foregoing argument we realize that the pa-
rameter space U(2) can be regarded as the product of the
spectral space, given by the torus† T 2 ' U(1) × U (1) =
{(θ+, θ−)} in D, and the remaining non-spectral space,
given by the sphere S2 parametrized by µ and ν in V .
These two parameters represent the phase shift at the
singularity and the degree of mixture of the limiting val-
ues of the state at x = ±0. This characterization of
the parameters remain to be true even if there exists an
symmetric potentials V (−x) = V (x) on top of the sin-
gularity.

4. Duality, Berry Phase, Supersymmetry

We now discuss some of the physically interesting phe-
nomena occurring under the family of singularities men-
tioned in the Introduction.

4.1 Duality
To discuss the spectral duality, for definiteness let us

restrict ourselves to parity invariant singularities. Since
the parity transformation P induces the change (9), par-
ity invariant singularities are characterized by those U
satisfying σ1 U σ1 = U . The general solution is given by

U = U (θ+, θ−) = ei(θ+P+
1 +θ−P−

1 ), (11)

where we have used P±
1 = 1±σ1

2 , which is obtained by
setting the isospectral parameters (µ, ν) = (π/2,0) in

∗ Together with the product Q = iPR, the three discrete trans-
formations {P, Q, R} form an su(2) ispospectral algebra.4)

† In fact, one can show that the spectrum is unchanged under the
interchange of the parameters, and hence the actual parameter
space is given by a Möbius strip with boundary.9)

(6). Then we notice that the free system U = σ1 is
realized in this parity invariant subfamily of singularities
at (θ+, θ−) = (0, π). This suggests that, in order to
measure the strength of the interaction at the singularity,
one may define the ‘coupling constants’ by

g+(θ+) := tan
θ+

2
, g−(θ−) := cot

θ−

2
, (12)

so that g+(0) = g−(π) = 0 at the free point. Now con-
sider the half reflection R in (8), which induces the ex-
change θ+ ↔ θ− through (9). But since R preserves
the spectrum, spectral duality must hold in the system,
that is, the spectrum is unchanged even if we exchange
the parameters (θ+, θ−) which causes the corresponding
transformation of the coupling constants. In particular,
if the parameters fulfill θ+ = θ− ± π, then we find the
reciprocal behaviour

(g+(θ+), g−(θ−)) R−→ (−1/g+(θ+), −1/g−(θ−)). (13)

This shows that the system has the spectral duality be-
tween the strong versus weak couplings.

4.2 Berry phase
Nest, we consider the opposite situation, that is, the

case where the spectral parameters are fixed to the free
point (θ+, θ−) = (0, π) whereas the isospectral parame-
ters (µ, ν) are free to vary. The resultant subfamily is
the scale invariant subfamily consisting of singularities
invariant under the Weyl scale transformation,

Wλ : ψ(x) −→ (Wλψ)(x) := λ
1
2 ψ(λx), (14)

for real λ. For the sake of discussion, we shall make
the entire spectrum discrete by placing infinite potential
walls at x = ±l and impose the Dirichlet boundary con-
ditions there (i.e., we put the particle in the box [−l, l]).
The energy eigenstates are

ψn(x) = c+(µ) ξ+
n (x) + c−(µ)eiν ξ−

n (x), (15)

where we have used c±(µ) = cos µ
2 ∓ sin µ

2 and

ξ±
n (x) =

√
1
l

sin kn(x ∓ l)Θ(±x), (16)

with kn =
(
n − 1

2

)
π
2l for n = 1, 2, 3, . . . . Let us now vary

the isospectral parameters (µ, ν) along a loop C on the
isospectral sphere S2. After completing one cycle of the
variation, each eigenstate must return to the initial one
up to an phase pertinent to the state, ψn → eiγ(C)ψn.
This phase γ(C) is the Berry phase, which in this case
can be evaluated by γ(C) =

∮
C

A with the Berry con-
nection,

A = i〈ψn|dψn〉 = −1
2
(1 + sin µ) dν, (17)

where d is the exterior derivative in the parameter space.
Note that the curvature F = dA is just the magnetic field
of the Dirac monopole, F = − 1

2 cos µ dµdν.
A similar observation of states under a cyclic change

can be made on the spectral torus, rather than the
isospectral sphere. There, one finds non-Abelian an-
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holonomy (Abelian anholonomy is the Berry phase)
where now each level do not return to the initial one
after completing one cycle, even though the entire spec-
trum returns to the initial one.

4.3 Supersymmetry
The spectral duality under the exchange θ+ ↔ θ− im-

plies that, when θ+ = θ−, there will be degeneracy in
the energy levels, and this in turn suggests that the sys-
tem may accommodate supersymmetry (SUSY). In fact,
there exists a class of systems with a point singularity
possessing SUSY. To see this, it is convenient to regard
the line system as a set of two half lines, and use, instead
of the wave function ψ(x) and the Hamiltonian H in (1),
those expressed in the two-component vector space,

Ψ(x) =
(

ψ+(x)
ψ−(x)

)
, H = − ~2

2m

d2

dx2 ⊗ I, (18)

where we have defined ψ+(x) = ψ(x) for x > 0 and
ψ−(−x) = ψ(x) for x > 0 and I is the 2 × 2 identity
matrix. Upon this reformulation, we consider the super-
charge,

Q = −iλ
d

dx
⊗ σ~a + 1 ⊗ σ~b (19)

with λ = ~/2
√

m and

σ~a =
3∑

i=1

aiσi, σ~b =
3∑

i=1

biσi, |~a| = 1, ~a ·~b = 0,

(20)

with real vectors ~a, ~b. The conditions (20) assure the
relation 2Q2 = H + |~b|2 and, hence, if we absorb the
constant |~b|2 into the Hamiltonian (which causes just
the corresponding constant energy shift), we obtain, for
properly chosen set of supercharges Qi for i = 1, . . . , N
(in case the system admits more than one supercharges),
the standard SUSY algebra,

{Qi, Qj} = H δij . (21)

An important point, however, is that for the system to be
supersymmetric the supercharge Q must leave the con-
nection conditions invariant, at least for energy eigen-
states. This is seen to be the case if one of the two
spectral parameter is π and the other non-zero, e.g.,
θ+ = θ 6= 0 and θ− = π, and further if the supercharge
takes the form Q = V −1q(α, c; θ)V with

q(α, c; θ) = −iλ
d

dx
⊗ e−i α

2 σ3σ1e
i α

2 σ3

+ 1 ⊗
[
− λ

L(θ)
e−i α

2 σ3σ2e
i α

2 σ3 + c σ3

]
,

(22)

where L(θ) is the scale parameter defined in (10). Since
α is arbitrary, we find that there are two independent
supercharges, i.e., the system has an N = 2 SUSY.

For extension, one may consider systems with two in-
finite walls as we did in discussing the Berry phase, or
double the number of lines. One then observes by a simi-
lar argument that there do arise various types of systems

admitting N = 1, 2 or 4 SUSY, some are broken (the
ground state is not annihilated by the SUSY transfor-
mation) and some are not, and some have a number of
bound states while some have none.10)

5. Quantum Tunneling and Copy

If the singularity occurs as a divergent point of a po-
tential V (x), and if the potential is a special type allow-
ing for caustics,11) then we can find interesting phenom-
ena as a result of the combination of quantum singularity
and caustics. As an example, let us consider the poten-
tial,

V (x) =
mω2

2
x2 + g

1
x2 . (23)

which is known to admit classical caustics. In quantum
mechanics, the general solution for the Schrödinger equa-
tion Hψn(x) = Enψn(x) is given by a linear combination
of the two independent solutions,

φ(1)
n (x) := yc1−1/2e−y2/2F

(
c1 − λn

2
, c1; y2

)
, (24)

φ(2)
n (x) := yc2−1/2e−y2/2F

(
c2 − λn

2
, c2; y2

)
, (25)

where F (α, γ; z) is the confluent hypergeometric func-
tion, λn = En/~ω and we have used c1 = 1+a, c2 = 1−a
and

a =
1
2

√
1 +

8mg

~2 , y =
√

mω

~
x. (26)

We then observe that, if the coupling constant g is in the
range,

0 < g <
3~2

8m
, (27)

then we have 1
2 < a < 1, and therefore both of the two

solutions (30) are square integrable, even though φ
(2)
n

may diverge at x = 0. Demanding that the general so-
lution fulfill the connection condition (2) specified by U ,
one obtains the spectral condition,

1
c2 − c1

√
mω

~
Γ ((c1 − λn)/2)
Γ ((c2 − λn)/2)

Γ(c2)
Γ(c1)

= − 1
L(θ±)

. (28)

This shows that, in general, there exist two series of
energy levels, one specified by L(θ+) and the other by
L(θ−). For instance, if the singularity is free, U = σ1,
then we have the two series of eigenstates,

ψ(1)
n (x) = N (1) φ(1)

n (|x|) [Θ(x) − Θ(−x)] , (29)

ψ(2)
n (x) = N (2) φ(2)

n (|x|), (30)

with the eigenvalues,

E(1)
n = (2n + 1 + a)~ω, E(2)

n = (2n + 1 − a)~ω, (31)

for n = 0, 1, . . . . Note that in the limit g → 0 (a → 1/2)
these states reduce to the familiar eigenstates of the har-
monic oscillator as expected. Such a smooth limit does
not exist for other singularities. For example, at the
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Dirichlet point U = −I , one obtains the doubly degener-
ate energy levels En = (2n + c1)~ω which do not reduce
to those of the harmonic oscillator. In passing, we point
out that this case U = −I is in fact the one adopted
conventionally to provide the connection condition when
we analyse the Calogero model.12)

Having solved the quantum system, we now examine
if the singularity, or physically speaking, the infinite po-
tential wall at x = 0, allows quantum tunneling. The
answer is yes: for the free point case U = σ1, for in-
stance, the generic state

ψ(x) =
∑

n

(c(1)
n ψ(1)

n (x) + c(2)
n ψ(2)

n (x)) (32)

has the probability current at the singularity,

j(±0) =
ia~
m

∑

n,l

{
(c(1)

n )∗c
(2)
l − (c(2)

n )∗c
(1)
l

}
, (33)

which is non-vanishing‡ in general. More direct evidence
may be gained from the transition amplitude,

K(xf , tf ;xi, ti) = 〈xf |e− i
~ H(tf −ti)|xi〉, (34)

which can be evaluated exactly in this case. We then
find that, for the transition time T := tf − ti 6= kπ/ω
(k = 0, 1, 2, . . . ), the amplitude is expressed in terms of
the modified Bessel function, and from it we learn that
the transition across the singularity is indeed allowed.

The remarkable point is that, at the periods T =
kπ/ω, the amplitude turns out to be

K(xf , tf ; xi, ti) = (−1)k cos(akπ)δ(xf − xi)

+ i(−1)k sin(akπ)δ(xf + xi).
(35)

The first term on the r.h.s. represents the classical caus-
tics corresponding to the return of the particle to its ini-
tial position, while the second term implies that the par-
ticle can reach the mirror point, too, thanks to the quan-
tum tunneling. Thus, the classical caustics phenomenon
has been modified at the quantum level, producing the
mirror image of the original profile prepared at the initial
time t = ti, with the weight factors being the functions of
the parameter a determined from the coupling constant
g (and the characteristic matrix U for the general case).
This implies that one may ‘copy’ an original profile pre-
pared on the x > 0 side, for instance, to the other x < 0
side after the periods, and that this can be done with
desirable weight factors, if one can control the relevant
parameters of the factors freely.13) This copying process
in not in conflict with the no-go theorem14) of quantum
cloning, because the process takes place in one Hilbert
space rather than two as presumed in the theorem.

6. Discussions

We have outlined above some of the interesting phys-
ical phenomena that can arise in systems with a point
singularity. It is remarkable that putting just a singular

point on a line enables us to realize those phenomena
which are usually discussed or found in more involved
systems, such as gauge field theory or string theory. It is
perhaps safe to say that the key element for those quan-
tum phenomena is not in the complexity of the system
nor in the infinity of the physical degrees of freedoms
of the system. Rather, it seems that the essence lies in
the part of the definition of the system required only for
quantum theory. Indeed, the U (2) variety of the singu-
larities derives from the demand of the self-adjointness
of the Hamiltonian operator and hence this cannot oc-
cur in classical theory. Needless to say, the variety is
meaningful only in quantum theory.

Finally, we wish to mention three possible extensions
of this work. The first is the obvious one, that is, we may
study less trivial systems — with more singular points,
non-trivial topology (quantum networks) etc. — by the
same procedure. In view of the recent rapid progress of
nano-technology, this may lead to some application in
the near future. The second is to seek novel quantum
phenomena — such as the anomalous caustics — under
singular potentials, and thereby find their possible use.
Further, one may also consider situations where the sys-
tem has a part that can be regarded as a black box, such
as one having an infinite potential finite area or a black
hole. There, normalizability of states may no longer be
required on account of the physical absence of the area
in the system, and hence our procedure to treat singu-
larities and, possibly the physical outcomes as well, may
be relevant. We expect that these will be materialized in
parallel with the advance of experiments which hopefully
confirm the theoretical predictions made in this article.
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3) I.Tsutsui, T.Fülöp and T.Cheon, J.Phys. Soc. Jpn.69 (2000)
3473.
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