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Secure random number generation from parity
symmetric radiations
Toyohiro Tsurumaru1, Toshihiko Sasaki 2✉ & Izumi Tsutsui3

The random number generators (RNGs) are an indispensable tool for information security.

Among various approaches, the radioactive decay has been considered as a promising

candidate of RNGs for over half a century, on account of its seemingly unpredictable decay

timings as quantum phenomena. However, the security of these radioactive RNGs has not

been proven so far. Here we prove the security by a change of tactics, that is, by rewriting

decay timings into decay directions, which allows us to ensure the secrecy with the help of

the parity invariance deeply rooted in the fundamental law of nature. Our result demonstrates

that the foundational properties of particle physics, such as the symmetry of interactions, can

be used as a firm basis for the RNGs.
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In information technology, random number generators (RNGs)
refer in general to devices that output numbers distributed in a
certain range uniformly. If one wishes to use them for infor-

mation security purposes in particular, their outputs must be
secret1 as well. If, in addition, the RNG is to be usable by anyone,
these two properties need to be guaranteed by some objective
evidence.

Suppose, for instance, that one buys a dice from a not-
necessarily-reliable vendor and throws it alone in a closed room.
For this process to generate a uniform distribution, one must be
sure with evidence that the dice is fair. As for the secrecy, separate
evidence is needed to ensure that the outputs are unpredictable
and unknown to outside, even to the vendor or the manufacturer
who had all the chances to tamper with the dice such that the
outputs follow a certain pattern. But how can one find an
objective basis of secrecy that anyone can agree with? Arguably,
the most convincing basis of secrecy would be the laws of nature,
that is, if nature assures the secrecy by law, then nothing can be
utilized to predict the outputs. In this respect, the laws underlying
quantum phenomena look promising for providing a secure RNG
for which the output is rigorously proven to be secret.

The notion of secure RNG based on the laws of quantum
mechanics is not new2–16. In fact, RNGs using photons have been
studied intensively over the years, and some of them have now
been strictly proven to be secure. For example, we have the single
photon RNG which employs two complementary bases+ , × of
the polarization. Here, the legitimate user (henceforth, Alice)
generates a single photon state possessing a polarization in one
basis, say, the vertical polarization state l

�� �
belonging to basis+ ,

and then measures it in the other, diagonally slanted × basis. Alice
adopts the measurement result as the random bits.

The major concern here is that the vendor of the light source
may be an eavesdropper (henceforth, Eve). In that event, Eve
could have tampered with the source to retain correlation with
her own device, and may have access to the random bits as a
result.

The security against such an eavesdropper can still be argued as
follows. Being a pure state, the initial state l

�� �
cannot be

entangled with any state on the outside, and hence has no cor-
relation with Eve’s device. When the state is measured in the
complementary basis × , each measurement result,⤡ or⤢ ,
occurs with probability one half exactly. Thus the random bits are
distributed uniformly, and they are uncorrelated with Eve.
Unfortunately, the single photon RNGs have a practical drawback
because the energy of the photon used in a typical device is
minute and, accordingly, the detector must be highly sensitive.
For this reason, the single photon RNGs are subject to constraints
for reduction both in their size and cost.

Besides the single photon RNGs, there exists another type of
RNG methods which also exploit quantum phenomena, that is,
those using radiations from nuclear decays17–22. In these radio-
active RNG methods one detects radiations and adopts the tim-
ings of the detections as random numbers. These methods,
proposed prior to the single photon RNGs17, have the advantage
that their device, which can be as small and simple as that of a
single photon RNGs, requires no power supply22–25 for its
(radioactive) source. Radioactive RNG chips of a few square
millimeters have already been manufactured using 241Am26–28.

However, there is no rigorous security proof for the radioactive
RNGs so far, despite that it has been known for more than half a
century that they generate a uniform distribution19. The basic
reason for this dissatisfying situation is that the decay-timing
properties, which are essential for the security proof, are difficult
to obtain in a precise manner with the phenomenological models
such as Gamow’s theory29,30 for nuclear decays, where adjustable

parameters are introduced to describe the exponential decays
pertinent to various transitions realized physically.

Here we show, nevertheless, that the radioactive RNG can
admit a rigorous security proof from the standpoint of the uni-
versally composable security31, provided that the radioactive
decay is parity symmetric, i.e., invariant under space inversion. In
fact, such cases are available generically for a nuclide (such as
241Am) that exhibits alpha decays caused by the parity-
conserving strong interaction. The device structure we assume
is as simple as before, consisting only of a radiation source with
one or two detector(s) allowing for the parity symmetry to ensure
the required security.

Results
RNG method. We consider the following type of the radioactive
RNG method. By using a device consisting of a radiation source
and a detector D (Fig. 1), Alice executes the following procedure
(Fig. 2): Alice chooses integer parameters nfin, nthr, and N satis-
fying 0 < nfin ≤ nthr ≤N. She also selects a function fs randomly
from a predetermined set of functions F ¼ ff sg, each of which
outputs an nfin bit string (for example, F is a universal2 function
family32; also see Methods). Then, our radioactive RNG is
implemented in two steps:

(i) Measurement of decay timings: Alice measures radiations
from the source, using detector D, in time bins i= 1,…,N.
She then records the measurement result as the list of time
bins where a detection occurred; i.e. as i ¼ ði1; ¼ ; indet Þ,
with ndet being the number of detections, and ij being in the
increasing order, 1≤ i1 < i2< � � �<indet ≤N . Alice aborts if
ndet <nthr.

(ii) Randomness extraction: Alice calculates the final bits
r= fs(i) of length nfin.

The purpose of each step is as follows (Fig. 2). Step (i)
generates raw data i to be used as the source of the final bits r. For
r to be secure, not all, but a certain fraction of i need to be
unknown to Eve. The standard theoretical results say that the size
of this unknown fraction equals a quantity called the smooth
conditional min-entropy Hδ

minðIjEÞ, which is a function of the
joint state ρIE of variable i and Eve (see Methods for the rigorous
definitions).

In step (ii) she extracts these Hδ
minðIjEÞ bits that are unknown,

and generate r, which is completely unknown to Eve.
We denote the width of one time bin by Δt. In order to simplify

later presentations, without loss of generality, we assume that in
every time bin, Alice starts her measurement at the beginning of
the time bin and finishes it in a finite time ≤Δt.

A few millimeters
Radiation source

Detector

Timings of detections

Data processing (classical)

Secure random numbers

Fig. 1 Device setups for the radioactive random number generator (RNG).
The setup consists of a chip-based detector covered by a surface layer
including radioactive particles. Its typical size is a few millimeters.
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Conditions on the device. Hence the security analysis is reduced
to lower bounding Hδ

minðIjEÞ. We are concerned with the possi-
bility that the radiation source to be measured in step (i) may be
entangled with Eve, and through that entanglement Eve may
access i; i.e., Hδ

minðIjEÞ may become too small to guarantee the
security of r. The goal of this paper is to nullify such eaves-
dropping strategy by making use of the parity symmetry.

To this end, we assume the following three conditions on the
device. The first two of them, (A) and (B), in particular, are
introduced in order to realize the parity symmetry in the device.

(A) Radiation source: At the beginning of each time bin (i.e.,
immediately before Alice’s measurement), the state of
radiations is parity invariant.

(B) Detector: Detector D is housed within one hemisphere
around the source.

(C) Effect on radiations by measurements: Effect on radiations
in the vicinity of D, caused by Alice’s measurement of a
time bin i, is washed away by the beginning of the next time
bin i+ 1.

In addition, we introduce the following notions for later
convenience.

(D) Detections, ‘double’ events and dark counts: Except with
probability δ, there are at most ndouble‘double’ events, and at
most ndark time bins where dark counts occur. Here the
‘double’ events are defined as follows: Suppose that, in
addition to the actual detector D, there is another detector
D0 that constitutes a parity symmetric configuration
together with D. Then ‘double’ events are those for which
detector D and D0 both detect the signal.

Note that the number ndouble of these events can be bounded from
above by that of multi-particle events, nmulti. Therefore, one does
not actually implement the extra detector D0, if nmulti is known.

The statements of condition (A) and (D) require some
explanation, which we give now. In regards to condition (A),
there are four types of fundamental interactions (electromagnetic,
weak, strong, and gravitational interactions). Since α-decay and γ-
decay are caused, respectively, by the strong interaction and the
electromagnetic interaction, and not by the weak interaction, its
radiation is parity (space inversion) invariant. This provides us
with an ideal basis for supporting the randomness we hoped for,

as it is ensured by a symmetry principle afforded by the
fundamental particle interactions. Let HA be the Hilbert space
describing radiated particles in the vicinity of detector D. Also, let
HE be that describing all degrees of freedom of Eve (cf. Fig. 2).
We assume that in HA the parity operator PA is well defined and
satisfies P2

A ¼ 1. (Throughout the paper, we use the convention of
omitting the identity operators included in a tensor product;
hence e.g., PA is an abbreviation of PA⊗ 1E.) Under this setup, we
say that the joint state ρAE(t) of HA and HE at time t is parity
invariant, if it satisfies

PAρAEðtÞPA ¼ ρAEðtÞ: ð1Þ
Condition (A) says that the parity invariance (1) holds at the
beginning of each time bin, i.e. at t= 0, Δt,…, (N− 1)Δt.

Next we discuss the feasibility of each of the conditions
given above.

First, condition (A) is widely believed to be true for a nuclide
which decays by parity-conserving interactions (e.g., strong and
electromagnetic interactions, as in the α- and the γ-decays)33. It
has been well-tested through the measurement of the energy
spectrum and the angular distribution of the decay with the
comparison to the phenomenological model29,30.

However, as we deal here with an RNG, we must be aware of a
possible scenario where such a choice may not be sufficient for
guaranteeing condition (A). For instance, the nuclide could have
been tampered with by Eve, before purchased by Alice, to the
extent of destroying the parity invariance. We point out that, even
in that event, Alice can still verify condition (A) by performing a
random sampling test on the source, that is, she measures the
radiation from the source and checks if the results, such as the
energy spectrum and the angular distribution, are always
consistent with condition (A). As far as the nuclei remain to be
in the quantum domain and described by the standard nuclear
theory, this is enough for ensuring condition (A). One may,
however, go beyond and wonder if Eve could generate the
seemingly parity invariant measurement results with a determi-
nistic source supplied by some classical means. Although highly
inconceivable given the fact that nuclear decay is intrinsically
quantum and does not allow any classical intervention, this
possibility will still be disposed of by examining the parity
eigenvalue of the radiation state, i.e., if it has a definite parity,
either ‘even’ or ‘odd’, under the operation PA. This is analogous to

Fig. 2 Procedure of randomness extraction. The purpose of randomness extraction is to extract from a measurement result i, which may be partially
known to Eve, random bits r completely unknown to Eve. In the above picture, i being partially known to Eve is expressed by its being a mixture of black
(unknown) and white (known) elements. The number of unknown bits equals the smooth conditional min-entropy Hδ

minðIjEÞ, a function of ρIE.
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the tomography performed when we examine whether the source
emitting polarized photons⤡ and⤢with equal probability is
operated deterministically or not. In that case, finding the state to
be in a definite polarization, either ↕ or↔ , ensures that the
source is a superposition of⤡ and⤢ , and this corresponds to
finding the radiation to be in either ‘even’ or ‘odd’ state in our
case of nuclear decay.

Second, condition (B) can always be verified visually.
Third, condition (C) is a pure assumption, but it is commonly

presupposed in the literature of quantum key distribution and
physical RNGs including the single photon RNG mentioned in
the Introduction.

Finally, the parameters in condition (D) can be estimated as
follows. For the dark counts ndark, we simply recall that their rate
can generally be bounded from the property of detector D, and
hence the number ndark in total round of N can be statistically
evaluated by the standard interval estimation methods.

As for the number of ‘double’ events ndouble, the most
straightforward evaluation method is to install the additional
detector D0 (which is supposed to be parity symmetric to D)
mentioned in condition (D), and count the number of
coincidence events where both D and D0 click. In case D and
the actual detector installed for D0, which we denote by D″, is not
quite parity symmetric to D and does not share exactly the same
properties, we may consider the completely positive maps
(elements of completely positive instruments) M0

D and M
00
D

describing D0 and D″, respectively. With this, if we have, e.g.,
M

00
D >M0

D (or M
00
D �M0

D is a positive map), then we find an
upperbound for ndouble from the coincidence counts measured
with D and D″.

We also mention that, although somewhat artificial, one may
simplify the process by imposing an additional assumption
(which amounts to relaxing the security assumptions to some
extent) that the source behaves the same way regardless of
whether the user is estimating the parameters or not. This allows
us to estimate the rate of ‘double’ events ndouble at any time, such
as at the time of shipment from the factory or at the initial setting
before the actual use, based on the standard interval estimation
methods again.

Security of measurement result i. Under these conditions, the
security of measurement result i can be guaranteed as follows.

Theorem 1. The smooth min-entropy Hδ
minðIjEÞ of i, conditioned

on Eve’s degree of freedom E, is bounded as

Hδ
minðIjEÞ≥ nthr � ndouble � 2ndark: ð2Þ

By combining the leftover hashing lemma34 and Theorem 1,
we can guarantee the security of r as follows.

Corollary 1. For a given security parameter ε > 0, the sequence of
the final bits r is ε+ δ-secure, if Alice uses a universal2 hash
function f32 for randomness extraction, and if its output length
nfin satisfies

nfin ≤ nthr � ndouble � 2ndark � 2log2
1
ε
þ 2: ð3Þ

Recall that ndouble and ndark depend on δ through condition
(D). Hence the right hand side of (3) depends on both ε and δ.

Proof of Theorem 1. The outline of the proof is as follows. On
one hand in the actual implementation, we use detection timings
as the origin of randomness. On the other hand in the security
analysis, we instead analyze the absence/presence (denoted by
zi= 0, 1) of detection in each time bin i. This is possible since

they are merely two different formats of the same measurement
results. Now, by temporarily limiting ourselves to an ideal
situation that the radiation consists of one particle and also that
the detector has a unit efficiency with no dark count and covers
the entire lower hemisphere, we show that variables zi correspond
to measuring the direction, up or down, in the radiation. Hence,
measuring a parity symmetric radiation in this setting means
measuring a parity invariant state using a pair of projectors
interchangeable under parity operation. It then follows that the
values zi= 0, 1 occur with an equal probability, and in addition,
the resulting (sub-normalized) states on Eve’s side remain fixed
irrespective of the values zi. In other words, Eve can gain no
information of zi by any measurement, which establishes the
security we want. The security in non-ideal situations can also be
shown by essentially the same argument.

In order to simplify the analysis, we use the virtual protocol
approach (also known as game transform in modern crypto-
graphy). In this approach, instead of analyzing the actual RNG
directly, one modifies it and construct a virtual RNG, as well as a
quantity H0 arising there which lower bounds Hδ

minðIjEÞ. Then
analyzing the virtual RNG, one obtains a lower bound on H0,
which also lower bounds Hδ

minðIjEÞ by definition. With the virtual
RNG and H0 designed properly, this allows one to obtain a lower
bound on Hδ

minðIjEÞ by a simpler analysis. We stress that virtual
RNGs will only be used for simplifying the theoretical analysis,
and never need to be implemented in practice.

As the first example of such virtual RNGs, we consider the case
where Alice records the measurement result i in a different
format z= (z1,…, zN) where zi= 0 (zi= 1) indicates the absence
(presence) of a detection in time bin i (Fig. 3). In other words,
Alice records measurement results zi of all time bins i= 1,…,N,
instead of timings i where a detection occurs. It is straightforward
to see that i and z are in a one-to-one correspondence, and are
thus equally unknown to Eve,

Hδ
minðIjEÞ ¼ Hδ

minðZjEÞ: ð4Þ
Thus to lower bound Hδ

minðIjEÞ, it suffices to bound Hδ
minðZjEÞ;

this is an example of the quantity H0, mentioned above.
Next we will modify this virtual RNG outputting z further,

such that the parity transform PA, is related to bit flips of zi. Then
we will make use of this relation to lower bound Hδ

minðZjEÞ.

Ideal situation. To elucidate this relation with a situation sim-
plified from the actual one (Fig. 4(a)), we temporarily idealize
conditions (A) and (B) as follows.

(A') At the beginning of each time bin, the state of radiations is
parity invariant and consists of exactly one particle.

(B') Detector D is perfect (i.e., with a unit efficiency and no dark
counts) and covers exactly the entire lower hemisphere
(Fig. 4(b)). Hence D goes off iff one particle or more go
downward.

Fig. 3 Correspondence between detection timings and measurement
results. This exemplifies how measurement results of all time bins
z= (z1,…, zN) and detection timings i ¼ ði1; ¼ ; indet Þ can be determined
from the detections by the detector D. There is a one-to-one
correspondence between z and i.
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Then we can modify our radioactive RNG further such that bit
flips of zi and PA become equivalent.

To see this, first note that detector D alone can determine
whether the particle went upward or downward. Indeed, if D
detected the particle (zi= 1), it means that it went down due to
(B’); and if not (zi= 0), two conditions together say that it
went up.

These results zi= 0, 1 can alternatively be obtained by a pair of
perfect detectors, D↓ and D↑, each exactly covering the upper and
the lower hemispheres (Fig. 4(c)). Thus we can define another
virtual RNG satisfying (4).

Virtual RNG 1: Using D↓ and D↑, Alice measures the source in
time bins i= 1,…,N, and records the result as wi∈ {↑, ↓}. She
then lets zi= 0, 1 if wi= ↑, ↓.

Detectors D↑, D↓ are ‘covariant’ under PA; that is, if we let E
"
A,

E#
A be projection operators on the upper and the lower

hemispheres corresponding to D↑, D↓, they satisfy

PAE
"
APA ¼ E#

A: ð5Þ

Hence PA is equivalent to the flip of arrows wi= ↑, ↓, and thus to
the bit flip of zi.

Next we use this parity covariance to show that wi are secure.
Recall that ρAE before measurement is always parity invariant.
Hence each wi is the result of measuring a parity invariant state
ρAE using parity covariant projections E"

A, E
#
A. Thus wi= ↑, ↓

occur with an equal probability, and in addition, the resulting
(sub-normalized) states on Eve’s side are a fixed state, irrespective
of wi,

trAðE#
AρAEÞ ¼ trAðPAE

#
APAPAρAEPAÞ

¼ trAðE"
AρAEÞ

ð6Þ

due to properties (1) and (5). In other words, all elements of
w= (w1,…, wN) are distributed uniformly, and Eve gains no
information of it by any measurement. In terms of the min-

entropy, this means

Hδ
minðZjEÞ ¼ Hδ

minðWjEÞ ¼ N: ð7Þ
This completes the proof of Theorem 1 for the ideal situation.

General situation. We proceed to the proof of the general situa-
tion. We again construct a virtual RNG where a correspondence
between bit flips of zi and PA holds. Alice again uses a detector
pair D↓ and D↑ with D↓ being the actual detector D and D↑ being
the parity transformed image of D (Fig. 4(d)).

As we no longer impose conditions (A’) and (B’), it is possible
that none or both of this detector pair, instead of one, go off in a
time bin. Hence each wi takes four values, wi∈ {↑, ↓, none,
double} (Table 1, 1st row).

In this case, the output zi of D (=D↓) alone can be emulated
from wi, by ignoring outputs of D↑ (Table 1, second row). Thus
we can define a virtual RNG as follows.

Virtual RNG 2: Using D↓ and D↑, Alice measures the source in
time bins i= 1,…,N, and records the result as wi∈ {↑, ↓, none,
double}. She then lets zi= g(wi), using function g specified in the
second row of Table 1, where the output g(wi) satisfies

HminðZjEÞ ¼ HminðgðWÞjEÞ: ð8Þ
We will use a similar argument to the one in the ideal situation

to bound the right hand side of (8) by exploiting the relation
between measurement results and the parity transform PA.
However, the argument needs to be modified, as the relation is
not the same as in the ideal situation.

That is, unlike in the ideal situation, the bit flip of zi and PA
may not be equivalent in general. This is because zi= 0, 1 may
come from measurement results wi= ‘none’ or ‘double’, whose
quantum measurements are not in general covariant under PA.
On the other hand, measurements of wi= ↑ and ↓ are still
covariant under PA, by definition of D↓, D↑.

Hence if we evaluate the min-entropy of wi in single detection
events (i.e., time bins i where wi= ↑ or ↓; see Table 1, 3rd row),
we have the ideal situation again, and the security can be shown
by the same reasoning as before. The min-entropy thus obtained
lower bounds HminðgðWÞjEÞ on the right hand side of (8), since in
general, the entropy of a part is not greater than that of the total.
As a result, HminðgðWÞjEÞ is lower bounded by the number of
single detection events. (For the rigorous proof of statements
made in this paragraph, see Methods.)

We can bound the number of single detection events as follows.
The number D of the detection events is no larger than the sum of
the number of the single detection events and the ‘double’ events.
The ‘double’ events can occur if the multiparticle emission or the
dark count occurs in either detector. Then due to condition (D),
the number of single detection events can be further lower
bounded by nthr− ndouble− 2ndark, except for probability δ, and
we obtain Theorem 1.

Fig. 4 Schematic layouts for the actual, idealized and virtual radioactive
random number generators (RNGs). Panel (a) on the left shows the side
view of our radioactive RNG. We assume that the detector D is housed
within one (the lower) hemisphere (condition (B)). Panels (b), (c) and (d)
depict theoretical models introduced for simplifying the description of the
security proof, although these three never need to be implemented in
practice. Panel (b) depicts the idealized setting satisfying conditions (A')
and (B'), where the detector D alone can determine the direction, up or
down, of the emitted particle. Similarly, panel (c) depicts the setting with
two idealized detectors placed above and below the source. The layout
given in (c) is, in effect, equivalent to the that given in (b) of the virtual RNG
using two ideal detectors. Likewise, the layout depicted in (d) describes the
virtual RNGs corresponding to the case (a).

Table 1 Relation between variables used in the proof of the
general situation.

wi ↑ none ↓ double

zi= g(wi) 0 1
~wi ¼ hðwiÞ single none single double

The output from detector pair D↓, D↑ in the time-bin i is represented as wi. The variable
zi(= g(wi)) gives the output of the actual detector D= (D↓) that can be emulated from wi; this
corresponds to ignoring outputs of D↑. The variable ~wið¼ ðhðwiÞÞÞ denotes how many detectors
went off out of D↓ and D↑.
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As an example, we consider the performance of the RNG
which has a prototype26 based on 241Am. In this RNG, the length
of each time bin is 1 millisecond and the detection rate is about
0.055 per time bin. We may thus assume that it can be bounded
by 0.05 from below and by 0.06 from above. Choosing the
number N= 105 for the total rounds, we consider the protocol
ϵ0-secure with ϵ0 ¼ 2�50 following the standard practice and set
nthr=N × 0.05. Although the rate of ‘double’ events is not
measured directly, it is reasonable to estimate that the rate is
bounded from above by (0.06)2/2 per time bin, since each nucleus
decays independently and identically. This implies that, except
with probability ϵ0=2, there are at most 305 ‘double’ events in N
rounds35. The dark count rate is negligible and can be put to zero
in effect, because the energy of α-decay of 241Am is around 5
MeV, which is much higher than the typical energy 1 eV of the
optical photon. To sum up, the parameters in condition (D) are
found to be δ ¼ ϵ0=2; nthr ¼ 5000; ndouble ¼ 305; ndark ¼ 0. Set-
ting the parameter ϵ ¼ ϵ0=2 in Corollary 1, we find that this
protocol is ϵ0-secure and generates a random number of the
length nfin= 4595 unless the protocol is aborted.

Conclusions
With the help of the parity symmetry, we solved the problem on
the security of the radioactive RNG which had remained open
over half a century, and further showed that this type of RNG can
realize the universally composable security.

Unlike the model dependent description of decay-timing
properties, the parity symmetry inherent to the system is much
easier to handle from the first principle. When combined with the
purely quantum nature of nuclear decays, it leads to the detection
outcomes with intrinsic randomness. This is analogous to the
high speed RNG36, where the laser phase fluctuations arising
from spontaneous emissions, which are purely quantum, are
responsible for the randomness. These two RNGs are different in
strategy in that, while our radioactive RNG exploits the parity
invariance, the optical quantum RNG36 uses a theoretical model
of laser emission as the basic ingredient.

We stress that our proof method is quite distinct from those
previously employed for photon RNGs. This can be seen most
clearly in the property that one does not need any condition on
the state ρAE except for the parity invariance Eq. (1). This gives a
major merit to our method, exempting us from discussing any
other properties, let alone an actual realization of the state ρAE. It
should be noted that the condition in Eq. (1) is much stronger
than PAρA(t)PA= ρA(t) which cannot ensure the security by itself.

We also note that, since previous arguments17–22 on radiation
RNGs employed phenomenological models, it was impractical to
assume any reliable conditions on the state ρAE (such as being the
coherent state) at an arbitrary accuracy. In contrast, the parity
invariance we used is a fundamental property of particle inter-
actions and, as such, it can provide a robust basis for ensuring the
security of random numbers.

Methods
Definition of security and the leftover hashing. We review definition of the
security of RNG, as well as techniques for guaranteeing it.

The sequence of final bits r is secure when it is distributed uniformly and
unknown to Eve. This can be formalized as follows. Given an actual state ρRE, we
define the corresponding ideal state to be ρidealRE ¼ 2�nfinIR � ρE , ρE ¼ trAðρAEÞ,
where r is distributed uniformly and is completely unknown to Eve. HR is the
Hilbert space of the memory storing r. However, as it is practically difficult to
always guarantee this ideal situation, it is customary to relax this notion and say
that r is ε-secure if

1
2 ρRE � ρidealRE

�� ��
1
≤ ε; ð9Þ

where kAk1 ¼ tr
ffiffiffiffiffiffiffiffiffi
AAyp� �

denotes the L1-norm of an operator A. Intuitively, this

says that the actual state cannot be discriminated from the ideal state except with

probability ε. This notion of security using parameter ε is often called the
universally composable security31.

The conditional min-entropy HminðIjEÞρIE of a sub-normalized state ρIE is

defined to be the maximum real number λ, satisfying 2�λII � σE ≥ ρIE for a
normalized state σE34,37. We abbreviate HminðIjEÞρIE as HminðIjEÞ, whenever the
subscript ρIE is obvious from the context. The smooth conditional min-entropy
Hδ

minðIjEÞρIE is the maximum value of Hminð�ρAEjEÞ�ρIE of sub-normalized states �ρIE
that are δ-close to ρIE in terms of the purified distance37.

If Alice performs randomness extraction using a universal2 function family F 32,
the security of its output r satisfies the following.

Lemma 1. (Leftover hashing lemma (LHL,34)) Suppose a random function fs is
universal2; i.e., f s 2 F is chosen with a probability p(s) satisfying

8x; y; x ≠ y; ∑
s
pðsÞδf sðxÞ;f sðyÞ ≤ 2

�nfin : ð10Þ

Then, we have

∑
s
pðsÞ ρRE � ρidealRE

�� ��
1
≤ 2δ þ 2

1
2½nfin�Hδ

minðIjEÞ�: ð11Þ

By combining this lemma and Theorem 1, we obtain Corollary 1.

Detailed descriptions of Radioactive RNG and Virtual RNG 2. We here give a
detailed mathematical description of Radioactive RNG and Virtual RNG 2. We will
describe Virtual RNG 2 only, but the same description applies also to Radioactive
RNG if one neglects output of virtual detector D↑ (cf. Table 1, 1st and 2nd rows).

Description of the procedures of Virtual RNG 2. We will denote by �D the mea-
surements setup consisting of detector pair D↑, D↓. We denote four output patterns
of from �D in one time bin by w 2 W, where W :¼ f";#; none; doubleg (Table 1,
1st row). For the convenience of the security proof, we classify w by how many of
the detector pair D↑, D↓ go off in the time bin, using symbols
~W :¼ f none ; single; doubleg, where ‘single’ event means w= ↑ or ↓. A function h
can be defined corresponding to this classification (Table 1, third row).

We continue to describe radiated particles by the Hilbert space HA . In addition,
we introduce HB to describe the radiation source.

We describe the quantum process (measurement and time evolution) occurring
inside the RNG device, during the beginnings of adjacent time bins, by a
completely positive map Mw

AB : HA �HB ! HA �HB . That is, if Alice measures
the state σABE(jΔt) at the beginning of time bin j+ 1 and obtains output w, the state
at the beginning of next time bin is σwABEððjþ 1ÞΔtÞ ¼ Mw

ABðσABEðjΔtÞÞ.
(We here extend the convention for operators, introduced above Eq. (1), to

maps of states, and omit the identity operation included in a tensor product; hence
e.g., Mw

AB ¼ Mw
AB � idE with idE being the identity operation in HE .)

Hence if Alice started Virtual RNG 2 with the state ρABE(0), and measured
w1,…,wj in time bins 1,…, j, the (sub-normalized) state at the beginning of time
bin j+ 1 takes the form

ρ
ðw1 ;¼ ;wjÞ
ABE ðjΔtÞ :¼ M

wj

AB � � � � �Mw1
ABðρABEð0ÞÞ: ð12Þ

When Virtual RNG 2 is finished, the joint state of the memory that stores the
entire measurement result w= (w1,…,wN) and of Eve takes the form

ρWE ¼ ∑
w2WN

wj i wh jW � ρwE ; ð13Þ

ρwE ¼ ρðw1 ;¼ ;wN Þ
E ¼ trAB ρðw1 ;¼ ;wN Þ

ABE ðNΔtÞ
� �

ð14Þ

Parity invariance of the measurement result wi. In this setting, we can argue that ρwE
are invariant under flips of arrows ↑ and ↓ included in wi, by essentially the same
argument as in Eq. (6).

To see this, first note that condition (A) asserts that

~PAðρ
ðw1 ;¼ ;wjÞ
ABE ðjΔtÞÞ ¼ ρ

ðw1 ;¼ ;wjÞ
ABE ðjΔtÞ: ð15Þ

Also note that the following relation holds for maps M"
AB and M#

AB ,

M"
AB � ~PA ¼ M#

AB; ð16Þ

where ~PAðρAÞ :¼ PAρABEPA. Eq. (16) holds for the following two reasons: (i) Due to
the construction of �D, obtaining the measurement result ↓ is equivalent to first
applying the parity transform and then obtaining ↑. (ii) Due to condition (C), the
effect caused on radiations by the measurement of a time bin i (which may depend
on results wi= ↓, ↑) is washed away before the measurement of the next time bin
i+ 1 starts.
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From relations (15), (16), we see that the (sub-normalized) state at the beginning of
time bin j+ 1 satisfies

ρ
ðw1 ;¼ ;wj�1 ;#Þ
ABE ðjΔtÞ
¼ M#

ABðρ
ðw1 ;¼ ;wj�1Þ
ABE ððj� 1ÞΔtÞÞ

¼ M"
AB � PAðρ

ðw1 ;¼ ;wj�1Þ
ABE ððj� 1ÞΔtÞÞ

¼ M"
ABðρ

ðw1 ;¼ ;wj�1Þ
ABE ððj� 1ÞΔtÞÞ

¼ ρ
ðw1 ;¼ ;wj�1 ;"Þ
ABE ðjΔtÞ:

ð17Þ

Further, combining this with Eq. (12), we see that ρwE are invariant under flips of arrows
↑ and ↓ included in wi. Or in terms of classification ~W ¼ f none ; single; doubleg

ρwE ¼ ρw
0

E if hðwÞ ¼ hðw0Þ; ð18Þ
where h(w)≔ (h(w1),…, h(wN)). That is, ρwE , ρ

w0
E are equal, if it holds for all time bin i

that the number of detectors that went off in time bin i is equal, hðwiÞ ¼ hðw0Þ 2 ~W.

Supplement to the proof of Theorem 1. We argued that the right hand side of (8)
is lower bounded by the number of single detection events. The argument made
there was in fact rather intuitive and not sufficiently rigorous. Below we give a
rigorous proof.

Under these settings, we consider the following virtual RNG. This corresponds
to the situation where Alice intentionally reveals h(w) to Eve.

Virtual RNG 3: After executing Virtual RNG 2, Alice tells Eve h(w).
The min-entropy corresponding to this case lower bounds the right hand side of

(8), since Eve’s ambiguity never increases on receiving an extra information h(w).

HminðgðWÞjEÞ ≥HminðgðWÞjhðWÞ; EÞ: ð19Þ
After Virtual RNG 3, Alice and Eve both know the classical random variable
~w ¼ hðwÞ, so the overall state becomes a classical ensemble of those labeled by ~w.
Thus it suffices to analyze each ~w separately. We rephrase this rigorously34 (See
Lemma 3.1.8) as

HminðgðWÞjhðWÞ; EÞ ≥ min
~w

HminðgðWÞjhðWÞ ¼ ~w;EÞ; ð20Þ

where the minimum is evaluated for all values of ~w possible, i.e., all ~w 2 ~WN

satisfying PrðhðwÞ ¼ ~w j ρWEÞ> 0.
HminðgðWÞjhðWÞ ¼ ~w; EÞ on the right hand side of (20) measures the fraction

of g(w) unknown to Eve, under the restriction that w takes values satisfying
hðwÞ ¼ ~w. As can easily be seen by definition of functions g and h in Table 1, under
this restriction, function g becomes one-to-one, and thus the min-entropies of g(w)
and w are equal,

HminðgðWÞjhðWÞ ¼ ~w; EÞ ¼ HminðWjhðWÞ ¼ ~w; EÞ: ð21Þ
The right hand side of (21) can be evaluated using the parity symmetry (18). Let

sð~wÞ be the number of ‘single’ symbols included in ~w (i.e., the number of single
events), then there are 2sð~wÞ values of w satisfying hðwÞ ¼ ~w. Because of (18), Eve’s
(sub-normalized) states ρ~wE are equal for all these values of ~w, and thus the
corresponding entropy takes the value

HminðWjhðWÞ ¼ ~w; EÞ ¼ sð~wÞ: ð22Þ
Finally, combining Eqs. (19)–(22) together, we obtain

HminðgðWÞjEÞ≥ min
~w

sð~wÞ: ð23Þ
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