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Abstract We propose a general framework of the quantum/quasi-classical trans-
formations by introducing the concept of quasi-joint-spectral distribution (QJSD).
Specifically, we show that the QJSDs uniquely yield various pairs of quantum/quasi-
classical transformations, including the Wigner-Weyl transform. We also discuss the
statistical behaviour of combinations of generally non-commuting quantum observ-
ables by introducing the concept of quantum correlations and conditional expecta-
tions defined analogously to the classical counterpart. Based on these, Aharonov’s
weak value is given a statistical interpretation as one realisation of the quantum
conditional expectations furnished in our formalism.

1 Introduction

Since the advent of quantum theory founded nearly a century ago, non-commutativity
of quantum observables has undoubtedly been in the centrepiece of the theory mark-
ing its departure from classical theory. The hallmark of this is Heisenberg’s uncer-
tainty relation [1], which has later been elaborated from operational viewpoints by
taking account of the measurement device by Ozawa [2, 3]. At the same time, the
non-commutativity has been one of the major sources of troubles we face when we
try to interpret their measurement outcomes in a sensible manner. This has natu-
rally led to various attempts of ‘quantisation’ of classical systems, most notably in
terms of non-commuting Hilbert space operators, or conversely of ‘quasi-classical’
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interpretation of quantum systems in terms of commuting quantities familiar to us
in classical theory.

The study on quantum and quasi-classical transformations has a long history dat-
ing back to the early days of quantum mechanics. Wigner and Weyl were among the
prominent figures who have made much contribution in this effort bearing the the-
ory of Wigner-Weyl transform [4, 5]. Historically, however, all these contributions
in this area have been made more or less in a heuristic manner, and apparently their
systematic treatment is still underdeveloped, not to mention a transparent overview
of the relations among the various proposals of the transformations made so far.

On the other hand, in recent years we have witnessed the rise of interest in an
issue related, at the roots, to the interpretation of measurement outcomes under non-
commutativity. It is the novel quantity called the weak value,

Aw :=
⟨ψ ′,Aψ⟩
⟨ψ ′,ψ⟩

(1)

which has been proposed by Aharonov and co-workers [6] based on their time-
symmetric formulation of quantum mechanics [7]. The weak value is a physical
quantity that characterises the value of the observable A in the process specified by
an initial (pre-selected) state |ψ⟩ and a final (post-selected) state |ψ ′⟩. Unlike the
standard measurement outcomes given by one of the eigenvalues of an observable
A obtained in an ideal measurement, the weak value admits a definite value and is
considered to be meaningful even for a set of non-commutable observables. The
relation between the weak value and the quasi-classical transformations has been
argued earlier, specifically with the Kirkwood-Dirac distribution [8, 9].

One of the aims of our present paper, expounded in Section 2, is to propose
a general framework of the quantum/quasi-classical transformations by introduc-
ing the concept of quasi-joint-spectral distribution (QJSD). Specifically, we show
that the QJSDs, of which definition shortly follows, uniquely yield various pairs of
quantum/quasi-classical transformations, and that notable previous proposals of the
transformations belong to this framework as special cases. Another aim, to which
Section 3 is devoted, is to discuss the statistical behaviour of combinations of gener-
ally non-commuting quantum observables. Specifically, we introduce the concept of
quantum correlations and conditional expectations, which are defined in analogue
to the classical counterpart, and see how these concepts play together. Based on
these, we finally endow Aharonov’s weak value with a statistical interpretation as
one realisation of the quantum conditional expectations furnished in our formalism.

Mathematical Notations Employed

Throughout this paper, we denote by K either the real field R or the complex field
C. Since our primary interest is on quantum mechanics, Hilbert spaces are always
assumed to be complex. Conforming to the convention in physical literature, we de-
note the complex conjugate of a complex number c ∈C by c∗, and an inner product
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⟨ · , · ⟩ defined on a complex linear space is anti-linear in its first argument and linear
in the second. For simplicity, we adopt the natural units where we specifically have
h̄ = 1, unless stated otherwise.

2 Quantisation and Quasi-classicalisation via QJSDs

For commuting quantum observables, a ‘trivial’ method of quantum and quasi-
classical transformation is available, where the former is known as the functional
calculus whereas the latter is known as the Born rule. These maps are both known to
be characterised by the joint-spectral measure (JSM) of the observables concerned,
and they are understood to be adjoint operations to each other. On the other hand,
the problem becomes non-trivial when non-commuting observables are put in to
consideration, primarily due to the lack of the JSM.

In this section, we first propose a novel approach to the problem of quantum/quasi-
classical transformations by introducing the concept of quasi-joint-spectral dis-
tributions (QJSDs), which are intended as non-commuting generalisations to the
JSMs of commuting observables. Just as the JSM induces a unique adjoint pair of
quantum/quasi-classical transformation for commuting observables, QJSDs induce
various adjoint pairs for non-commuting observables. Specifically, we see that there
exists inherent indefiniteness in the possible definition of QJSDs, each leading to
different possible transformations, in which the Wigner-Weyl transform belongs as
a special case.

2.1 Preliminary Observations

As a prelude to our study, we first review some basic facts in quantum theory re-
garding the spectral theorem of self-adjoint operators, the functional calculus and
the Born rule. In what follows, we consider a finite combination of simultaneously
measurable observables, and observe that both the functional calculus and the Born
rule can respectively be understood as the trivial realisation of quantisation and
quasi-classicalisation, in the sense that the former allows us to map real functions
(i.e., classical observables) to self-adjoint Hilbert space operators (i.e., quantum ob-
servables), and the latter defines a map from density operators (i.e., quantum states)
to probability distributions (i.e., classical states). We then point out that the func-
tional calculus and the Born rule are adjoint notions to each other. These rather
trivial observations shall be the guiding line for our further study in considering the
non-trivial problem of quantisation and quasi-classicalisation for the general case
involving combination of non-commuting quantum observables.
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2.1.1 Spectral Theorem for Self-adjoint Operators

A basic but important result of functional analysis (i.e., linear algebra for arbitrary-
dimensions) regarding self-adjoint operators is the spectral theorem, which states
that for a self-adjoint operator A on a Hilbert space H , there corresponds a unique
spectral measure EA such that

A =
∫
R

a dEA(a) (2)

holds. In simple terms, the spectral measure

EA(a) =

{
0 (a is not an eigenvalue of A)
Pa (a is an eigenvalue of A)

, a ∈ R (3)

of A is a map from the eigenvalues a of A to the orthogonal projections Pa on the cor-
responding eigenspaces. For the case where the eigenvalues are all non-degenerate,
the spectral measure is simply nothing but EA(a) = Pa = |a⟩⟨a|, where |a⟩⟨a| is
the orthogonal projection on the 1-dimensional subspace of H spanned by the
eigenspace corresponding to the eigenvalue a. In this case, the integral (2) formally
reduces to the familiar form

A =
∫
R

a|a⟩⟨a| da. (4)

For the case in which the Hilbert space H under consideration is moreover finite-
dimensional, the spectral theorem is nothing but the eigendecomposition theorem

A =
n

∑
i=1

ai|ai⟩⟨ai|

valid for Hermitian matrices A, and the spectral measure EA(ai) = |ai⟩⟨ai| reduces
to the collection of orthogonal projections corresponding to the eigenvectors ai of
A. Simply put, spectral theorem is thus a generalisation of the eigendecomposition
theorem for the infinite dimensional case, and the spectral measures are in turn the
generalisation of orthogonal projections onto the corresponding eigenspaces. The
primary advantage of this generalisation becomes apparent when infinite dimen-
sional Hilbert spaces must be taken into consideration1.

Joint-spectral Measures

Now, suppose one is given an ordered combination

1 A self-adjoint operator defined on infinite dimensional Hilbert spaces may sometimes fail to have
any eigenvalues in the sense that A|ψ⟩ = a|ψ⟩ holds for some non-zero vector |ψ⟩ ∈ H , as most
famously exemplified by the position operator x̂ and the momentum operator p̂ of a free particle.
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AAA := (A1, . . . ,An), 1 ≤ n < ∞ (5)

of a finite number of pairwise strongly commuting2 distinct self-adjoint operators
(i.e., simultaneously measurable quantum observables) on H . An important fact
regarding strongly commuting self-adjoint operators is that, one may uniquely con-
struct the joint-spectral measure (JSM) of the combination

EAAA(aaa) =
n

∏
i=1

EAi(ai), aaa := (a1, . . . ,an) ∈ Rn (6)

that fully describes their joint behaviour, where each EAi is the unique spectral mea-
sure corresponding to Ai, (1 ≤ i ≤ n). One then trivially has

Ai =
∫
Rn

ai dEAAA(aaa), 1 ≤ i ≤ n, (7)

if one is to reclaim the original self-adjoint operators.

2.1.2 Functional Calculus

An important fact regarding spectral measures is that it induces a map from the
space of functions to Hilbert space operators. Indeed, under the same situation as
above, the JSM of the ordered combination (5) induces a map that maps a function
f defined on Rn to the operator

fEAAA :=
∫
Rn

f (aaa) dEAAA(aaa) (8)

on H . The map f 7→ fEAAA is one realisation of the functional calculus, which is a
general term that points to a map from functions to operators satisfying certain alge-
braic properties. In fact, under some appropriate conditions, one finds that there is a
one-to-one correspondence between functional calculi and spectral measures. In our
context, we view the functional calculus as the trivial way to quantise classical ob-
servables (i.e., real functions) into quantum observables (i.e., self-adjoint operators).
In what follows, we may occasionally write the image of the functional calculus by
either of the following notations: fEAAA = fAAA = f (AAA) = f (A1, . . . ,An).

2 We say that a pair of self-adjoint operators A and B strongly commutes, if and only if they
commute in the level of spectral measures. In a laxer notation, this is to say that

EA(a)EB(b) = EB(b)EA(a), a,b ∈ R

holds. Strictly speaking, strong commutativity is generally stronger than mere commutativity when
unbounded operators are concerned, but we do not intend to delve into the intricacies, which are
not essential for our discussion.
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2.1.3 Born Rule

The Born rule is the corner stone of the probabilistic interpretation of quantum mea-
surements, which states that, given a density operator (i.e., mixed quantum state) ρ
on H and a combination (5) of simultaneously measurable observables, the joint
behaviour of the measurement outcomes is described by the joint-probability distri-
bution

ρEAAA(aaa) := Tr[EAAA(aaa)ρ] (9)

defined for the combination of simultaneously measurable observables concerned
on the state. In our context, we view the Born rule as the trivial realisation of
quasi-classicalisation of quantum states (i.e., density operators) into classical states
(i.e., probability distributions). In what follows, we occasionally denote the resulting
probability distribution by either of the following notations: ρEAAA = ρAAA = ρ(A1,...,An).

2.1.4 Adjointness of the Functional Calculus and the Born Rule

An important observation we point out here that is crucial for our further discussion
is that, both quantisation (functional calculus) and quasi-classicalisation (Born rule)
are adjoint notions.

Dual Pair

To see this point, we first prepare some necessary terminologies and notations. Let
L(H ) denote the space of all bounded linear operators on the Hilbert space H , and
let N(H ) denote the space of all nuclear operators (or, better known as trace-class
operators) on H . Bounded quantum observables A ∈ L(H ) and quantum states
ρ ∈ N(H ) belong to the respective spaces. On the product space L(H )×N(H )
is defined a bilinear form

⟨X ,N⟩Q := Tr[XN], X ∈ L(H ), N ∈ N(H ) (10)

that maps a pair of bounded linear operator and a nuclear operator to the trace of
their product. In mathematics, a triple consisting of a pair of linear spaces X , Y and
a bilinear form ⟨ · , · ⟩ : X ×Y →K satisfying the conditions

∀x ∈ X \{0}, ∃y ∈ Y ⟨x,y⟩ ̸= 0,
∀y ∈ Y \{0}, ∃x ∈ X ⟨x,y⟩ ̸= 0,

(11)

is called a dual pair. The triple (L(H ),N(H ),⟨ · , · ⟩Q) is one typical realisation of
a dual pair, which are the familiar tools we use to describes quantum measurements.

On the other hand, let S (Rn), (1 ≤ n < ∞) denote the n-dimensional Schwartz
space, which is the space of all smooth functions that, even being multiplied by
any polynomials after being differentiated arbitrarily many times, they ‘vanish at
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infinity’. Also, let S ′(Rn) denote the continuous dual of the Schwartz space, which
is called the space of tempered distributions. The space of tempered distributions is
an extension of the familiar space of density functions or complex measures: every
probability density function is a complex measure, and every complex measure is a
tempered distribution, while the converses are not always true3. It reveals that the
spaces of density functions or that of complex measures is not sufficient in properly
handling quasi-probability distributions for non-commuting observables.

Now, if we allow ourselves some abuse of notation, we may formally treat a
tempered distribution φ ∈ S ′(Rn) as a function φ(xxx) on Rn, and define the bilinear
form

⟨ f ,φ⟩C :=
∫
Rn

f (xxx)φ(xxx) dmn(xxx), f ∈ S (Rn), φ ∈ S ′(Rn) (12)

where we have introduced the renormalised Lebesgue-Borel measure

dmn(xxx) := (2π)−n/2dxn. (13)

For brevity, we occasionally write dm1 = dm whenever there is no risk for confu-
sion. This renormalisation is mostly of aesthetic purpose, whose advantage becomes
apparent when we introduce the Fourier transformation later in our discussion.
Equipped with the bilinear form, the triple (S (Rn),S ′(Rn),⟨ · , · ⟩C) also qualifies
as a dual pair that becomes a tool in describing classical measurements.

Adjointness of the Transformations

Given an ordered combination of simultaneously measurable quantum observables
(5), let

ΦEAAA : S (Rn)→ L(H ), f 7→ fEAAA (14)

denote the functional calculus4 of the ordered combination (5) of self-adjoint oper-
ators defined in (8), and in turn let

Φ ′
EAAA

: N(H )→ S ′(Rn), ρ 7→ ρEAAA (15)

denote the Born rule5 described in (9). It can be demonstrated that both (14) and (15)
are continuous linear maps between the respective spaces equipped with the usual

3 The space of density functions on Rn is a proper subspace of the space of complex measures.
An example of this is the delta measure, which is well-defined as a measure but not as a density
function. The space of complex measures on Rn is also a proper subspace of the space of tempered
distributions. An example for this is the derivative of the delta measure, which is well-defined as a
tempered distribution but not as a complex measure.
4 Note that the image of a Schwartz function under the functional calculus (14) is a bounded
operator with the operator norm ∥ f (A)∥ ≤ supx∈Rn | f (x)|, hence the map is well-defined.
5 The image of a nuclear operator under the Born rule (15) belongs to the space of complex mea-
sures, which can be uniquely embedded into the space of tempered distributions. In this sense, we
extend the codomain of the map (15) and understand their images to be tempered distributions,
rather than complex measures, for later convenience.
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topologies. One then readily observes by the following straightforward computation

⟨ΦEAAA( f ),ρ⟩Q := Tr[ fEAAA ρ]

=
∫
Rn

f (aaa) dTr[EAAA(aaa)ρ]

=
∫
Rn

f (aaa)ρEAAA(aaa) dmn(aaa)

= ⟨ f ,Φ ′
EAAA
(ρ)⟩C, f ∈ S (Rn), ρ ∈ N(H ) (16)

that the functional calculus (14) and the Born rule (15) are adjoint maps to each
other. This relation can be illustrated by the following diagram:

L(H ) oo
dual pair

// N(H )

Φ ′
EAAA

Q
uasi-C

lassicalisation

��

S (Rn)

ΦEAAA

Q
ua

nt
is

at
io

n
OO

oo
dual pair

// S ′(Rn)

Here, the top row denotes the dual pair of quantum observables and quantum states,
whereas the bottom row depicts the classical counterpart. The left column consists of
(quantum and classical) observables, whereas the right column consists of (quantum
and classical) states.

2.2 Quantisation and Quasi-classicalisation via QJSDs

In the previous subsection, we have reviewed the very basics of the spectral theo-
rem, the functional calculus and the Born rule defined for commuting observables,
and have seen that the functional calculus (i.e., quantisation) and the born rule (i.e.,
quasi-classicalisation) are adjoint operations to each other. The next step is to gen-
eralise our whole arguments into the case for non-commuting observables.

2.2.1 Introducing Quasi-joint-spectral Distributions (QJSDs)

The key observation to make here is that, it was the JSM that uniquely gave rise to
the adjoint pair of the desired maps. A straightforward idea for our current problem
would be thus to introduce non-commuting analogues to the JSM.
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Strong Commutativity in the Fourier Space

As a preparation to our further discussion, we review the characterisation for strong
commutativity of spectral measures in their Fourier spaces. Let A be self-adjoint,
and let EA be its spectral measure. We call the operator valued function

(FEA)(s) :=
∫
R

e−isa dEA(a) = e−isA, s ∈ R, (17)

the Fourier transform of EA. It is a basic fact of functional calculus that one may
characterise the strong commutativity of self-adjoint operators by the Fourier trans-
forms of their spectral measures: a pair of self-adjoint operators A and B strongly
commutes if and only if the Fourier transforms of the respective spectral measures

eitAeisB = eisBeitA, s, t ∈ R (18)

commute.

Fourier Transform of JSM

Let us first compute the Fourier transform of the JSMs. Given the JSM EAAA of an
ordered combination of strongly commuting self-adjoint operators, let

(FEAAA)(sss) :=
∫
Rn

e−i⟨sss,aaa⟩ dEAAA(aaa)

= e−i⟨sss,AAA⟩

=
n

∏
i=1

e−isiAi , sss ∈ Rn (19)

denote the Fourier transform of EAAA. Here, ⟨sss,aaa⟩ := ∑n
i=1 siai denotes the standard

inner product on Rn, and ⟨sss,AAA⟩ := ∑n
i=1 siAi. We also note that the last line of the

above equality is due to the iterated application of the Lie-Trotter-Kato product
formula.

Hashed Operators

From now on, we generalise the use of the notation AAA so that it may also admit
ordered combinations of generally non-commuting distinct self-adjoint operators.

To this end, we introduce, in a less formal way, the hashed operator

#̂AAA(sss) :=
{

a suitable ‘mixture’ of the ‘disintegrated’

components of the unitary groups e−is1A1 , . . . ,e−isnAn
}
, sss ∈Kn (20)
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of the operators concerned. Here, by ‘disintegration’ we mean breaking each of the
unitary operators e−iskAk into chunks of operator valued functions Tk,ιk(sk), (ιk ∈ Ik)
such that

∏
ιk∈Ik

Tk,ιk(sk) = e−iskAk (21)

holds. A straightforward example of this is provided by

Tk,ιk(sk) := e−iskλιk A, (22)

where λιk ∈ R are real numbers satisfying the normalisation ∑ιk
λιk = 1. Then, by

‘mixture’ we imply that a hashed operator #̂AAA(sss) is constructed as a product of all
components Tk,ιk(sk), (ιk ∈ Ik, k = 1, . . . ,n) in arbitrary orders. We may also allow it
to be given by convex combinations of two hashed operators #̂AAA and #̂′AAA as

#̂′′AAA(sss) = λ #̂AAA(sss)+(1−λ ) #̂′AAA(sss). (23)

Examples of the hashed operators pertaining to the simplest case AAA = (A,B) are thus
given by

#̂AAA(s, t) =



e−itBe−isA,

e−isAe−itB,
1+α

2 · e−itBe−isA + 1−α
2 · e−isAe−itB, α ∈ C

∏N
k=1 e−isλkAe−itµkB,

(
∑N

k=1 λk = 1, ∑N
k=1 µk = 1

)
,(

e−isA/Ne−itB/N
)N

,

e−i(sA+tB) = limN→∞
(
e−isA/Ne−itB/N

)N
.

(24)

In general, either or both of the parameters s, t can be made to even admit complex
numbers. One such example is given by

#̂κ
AAA(s, t) = e−i⟨ 1−κ

2 ,s⟩Ae−itBe−i⟨ 1+κ
2 ,s⟩A, κ ∈ C, s ∈ C, t ∈ R, (25)

where ⟨κ,s⟩ = κ1s1 +κ2s2 is understood as the standard inner product defined on
R2, where κ = κ1 + iκ2 (κ1,κ2 ∈ R) and s = s1 + is2 (s1,s2 ∈ R) are complex num-
bers identified as vectors on R2.

The precise definition as to what types of construction one may allow for hashed
operators will depend on the context and the properties that one would like them to
retain. For example, the evaluation of the operator norm of the hashed operator∥∥#̂AAA(sss)

∥∥= 1 (26)

can be guaranteed if we restrict ourselves to the specific type of construction that
only allows hashed operators to be defined in the form of products of (22), since in
that case #̂AAA(sss) becomes a unitary operator. If we moreover consider their convex
combinations (23), the equality in (26) generally becomes an inequality

∥∥#̂AAA(sss)
∥∥≤
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1. If we moreover allow complex numbers to be chosen as λ in (23), the operator
norm of #̂AAA(sss), while still being bounded, may exceed 1.

Hashed Operator of Commuting Observables

One readily realises that the hashed operators (20) are, while differing in their rep-
resentations, unique if and only if the self-adjoint operators concerned are all si-
multaneously measurable. In that case, it is easy to see that the hashed operators all
reduce to the same Fourier transform (19) of the JSM.

Quasi-joint-spectral Distributions

Under the same conditions as above, let us choose any hashing #̂AAA introduced in
(20), and introduce the quasi-joint-spectral distribution6 (QJSD) of the ordered pair
AAA defined by its inverse Fourier transform

#AAA(aaa) := (F−1 #̂AAA)(aaa)

:=
∫
Kn

ei⟨aaa,sss⟩ #̂AAA(sss) dmn(sss), aaa ∈Kn. (27)

Due to the bijectivity of the Fourier transformation, to each QJSD corresponds a
unique hashed operator, and hence QJSDs are highly non-unique in the case a given
ordered combination AAA is non-commutative. The QJSD is unique if and only if AAA
admits simultaneous measurability, and in such case, the unique QJSD actually re-
duces to the JSM itself

#AAA = EAAA. (28)

By construction and the observations made above, one may surmise that the
QJSDs serve as generalisations of the JSM to generally non-commuting observ-
ables. Indeed, QJSDs share some of the basic properties one finds in common with
the standard JSM. The primary fact we mention is the normalisation property: the
total integration of any QJSD reduces to the identity Id, as one readily finds through
the following formal computation∫

Kn
#AAA(aaa) dmn(aaa) =

∫
Kn

e−i⟨000,aaa⟩ #AAA(aaa) dmn(aaa)

= (F #AAA)(000)

= #̂AAA(000) = Id. (29)

6 The reason for our choice of the nomination quasi-joint-spectral distributions, rather than mea-
sures, lies in the fact that, in contrast to the JSMs, QJSDs does not necessarily lie in the space of
operator valued measures (OVMs). In fact, we understand them as members of the operator valued
distributions (OVDs), which is an operator analogue of generalised functions (distributions). The
space of OVDs is larger than the space of OVMs, and the latter can be embedded into the former.
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In fact, this is actually a corollary to a more stronger property regarding the
marginals ∫

K
#AAA(aaa) dm(ak) = #AAAk(a1, . . . ,ak−1,ak+1, . . . ,an), (30)

where AAAk := (A1, . . . ,Ak−1,Ak+1, . . . ,An), 1 ≤ k ≤ n, denotes the ordered combina-
tion of the self-adjoint operators that lacks the kth component of the original ordered
combination AAA, and #AAAk denotes the QJSD of AAAk defined by

#̂AAAk(s1, . . . ,sk−1,sk+1, . . . ,sn) := #̂AAA(s1, . . . ,sk−1,0,sk+1, . . . ,sn), (31)

which corresponds to the hashing constructed by ‘taking away’ all the disintegrated
components of the kth member e−iskAk from the original hashing #̂AAA. To see this, let
Hk denote the l. h. s. of (30). The Fourier transform of Hk then reads

(FHk)(s1, . . . ,sk−1,sk+1 . . . ,sn)

=
∫
Kn−1

k−1

∑
i=1

n

∑
i=k+1

e−isiai

(∫
K

#AAA(aaa) dm(ak)

)
dmn−1(a1, . . . ,ak−1,ak+1 . . . ,an)

=
∫
Kn

k−1

∑
i=1

n

∑
i=k+1

e−isiaie−i0·an #AAA(aaa) dmn(aaa)

= #̂AAA(s1, . . . ,sk−1,0,sk+1 . . . ,sn)

= (F#AAAk)(s1, . . . ,sk−1,sk+1 . . . ,sn), (32)

and by the injectivity of the Fourier transformation, one concludes Hk = #AAAk .

Reclaiming the JSMs

A straightforward but important corollary to the above property is the following
observation. Let

BBB = (Ai1 , . . . ,Aik) (33)

be an order-preserving (i.e., 1 ≤ i1 < · · · < ik ≤ n) subset of AAA consisting of k (1 ≤
k ≤ n) numbers of pairwise strongly commuting distinct members, and let

BBBc := (A j1 , . . . ,A jn−k) (34)

denote its order-preserving (i.e., 1 ≤ j1 < · · · < jn−k ≤ n) complement consisting
of n− k numbers of the members of AAA that do not belong to BBB. Then, an iterated
application of (30) leads to

EBBB(bbb) =
∫
Kn−k

#AAA(aaa) dmn−k(bbb
c), (35)
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where bbb := (ai1 , . . . ,aik) and bbbc := (a j1 , . . . ,a jn−k) denotes the variables correspond-
ing to the respective order-preserving subsets7. This implies that, if one ‘integrate-
outs’ all the variables corresponding to the complement BBBc, one may reclaim the
authentic JSM of B.

2.2.2 Quantisation and Quasi-classicalisation

Now that we have constructed the QJSDs, which could be understood as non-
commutative analogues to the standard JSM, we shall now embark on the construc-
tion of quantisation and quasi-classicalisation regarding combination of observables
that may fail to be measured simultaneously.

Quantisation of classical Observables

For an ordered combination of (generally non-commuting) distinct quantum observ-
ables AAA, let #AAA be any QJSD of one’s choice. Guided by a straightforward analogy of
the functional calculus originally defined for the commutative case, we thus define
the map

Φ#AAA : f 7→ f#AAA :=
∫
Kn

f (aaa)#AAA(aaa) dmn(aaa) (36)

that maps a Schwartz function f ∈ S (Kn) to a bounded8 linear operator f#AAA ∈
L(H ). We call the map (36) the quantisation pertaining to the QJSD #AAA, and in
turn call the image Φ#AAA( f ) the quantisation of f . Occasionally, we denote the quan-
tisation of f by either of the following notations: f#AAA = f (#AAA). We may sometimes

7 Here, we adopt the convention ∫
Kn−k

#AAA(aaa) dmn=k(bbb
c) = #AAA(aaa)

for the case k = n.
8 The quantisation of a Schwartz function f is formally defined as a unique bounded map f#AAA such
that the equality

Tr
[

f#AAA ρ
]

:=
∫
Rn

f̌ (sss)Tr
[
#̂AAA(sss)ρ

]
dmn(sss)

holds for all ρ ∈ N(H ), where f̌ denotes the inverse Fourier transform of f . The r. h. s of the
above equation is well-defined, since∣∣∣∣∫Rn

f̌ (sss)Tr
[
#̂AAA(sss)ρ

]
dmn(sss)

∣∣∣∣≤ ∥ f̌∥1 ·M∥ρ∥nuk

is finite. Here, ∥ · ∥1 and ∥ · ∥nuk respectively denote the L1 norm of integrable functions and the
nuclear norm (alias trace norm) of nuclear operators, and ∥#̂AAA(sss)∥ ≤ M, sss ∈Kn is the upper bound
of the operator norm of the hashed operator. The existence and uniqueness of such an operator f#AAA ∈
L(H ) is due to the fact that the space of continuous linear functionals on N(H ) is isomorphic
to the space of bounded operators N(H )′ ∼= L(H ). The continuity of the linear functional ρ 7→
Tr[ f#AAA ρ] follows directly from the above evaluation.
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even omit AAA and write f#, when the observables concerned are obvious from the
context.

Quasi-classicalisation of quantum States

Conversely, we also allow ourselves to be guided by a straightforward analogy of
the Born rule and intend to extend it to the non-commutative case. We thus define
the map

Φ ′
#AAA

: ρ 7→ ρ#AAA(aaa) := Tr [#AAA(aaa)ρ] , aaa ∈Kn (37)

that maps a density operator ρ ∈ N(H ) to a tempered distribution ρ#AAA ∈ S ′(Kn).
We call the (image ρ#AAA of the) map (37) the quasi-classicalisation (of ρ) pertaining
to the QJSD #AAA. Specifically, for a density operator ρ ∈ N(H ), i.e., a positive nu-
clear operator with the normalisation condition Tr[ρ] = 1, we occasionally call the
distribution ρ#AAA the quasi-joint-probability (QJP) distribution of AAA on ρ pertaining
to the QJSD #AAA. Note that, in general, the corresponding QJP distributions may be
negative or even complex valued.

Adjointness of Quantisation and Quasi-classicalisation

As one may surmise, quantisation (36) and quasi-classicalisation (37) are adjoint
operations to each other, as one may readily check by the formal computation

⟨Φ#AAA( f ),ρ⟩Q := Tr[ f#AAA ρ]

=
∫
Kn

f (aaa)Tr [#AAA(aaa)ρ] dmn(aaa)

=
∫
Kn

f (aaa)ρ#AAA(aaa) dmn(aaa)

= ⟨ f ,Φ ′
#AAA
(ρ)⟩C, f ∈ S (Rn), ρ ∈ N(H ). (38)

This relation can be illustrated by the following diagram:

L(H ) oo
dual pair

// N(H )

Φ ′
#AAA

Q
uasi-classicalisation

��

S (Kn)

Φ#AAA

Q
ua

nt
is

at
io

n

OO

oo
dual pair

// S ′(Kn)
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Note again that, as maps, quantisation (36) and quasi-classicalisation (37) are
uniquely dictated by the choice of the QJSD #AAA. Even for the same classical ob-
servable f ∈ S (Kn), its quantisation generally differs f#AAA ̸= f#̃AAA

given a distinct
choice of the QJSD #AAA ̸= #̃AAA, and the same is also true for the quasi-classicalisation
of quantum states ρ ∈ N(H ).

2.3 Quantum/Quasi-classical Representations

Since quantisation and quasi-classicalisation are adjoint notions to each other, they
are different facets of a single entity. In this sense, we occasionally use the term
quantum/quasi-classical representations or transformations referring to the adjoint
pair. In general, these representations are non-unique, and each of the representa-
tions can be specified by the choice of the QJSD, whose indefiniteness originates
directly from the non-commutative nature of the observables concerned.

2.3.1 Transformation of Representations

We may define transformations of QJSDs in various manners. In some cases, it
may occur that a group of quantisation/quasi-classical representations could be un-
derstood as being equivalent to each other in the sense that they can be mutually
transformed into one another. Given an ordered combination AAA of quantum observ-
ables, it is an interesting question to ask ourselves how many QJSDs there are (or in
other words, the way of ordering of non-commuting observables) that are essentially
distinct to each other up to isomorphisms.

The Simplest Case

The simplest case for this is when two QJSDs, while being distinct in their form
as hashed operators, are identical. Needless to say, this is trivially always the case
when all the members of the ordered combination AAA pairwise strongly commute. As
an example of less trivial cases, let XXX = (Q,P) be an ordered pair of self-adjoint
operators such that the members satisfy the Weyl representation

e−isQe−itP = e−iste−itPe−isQ, s, t ∈ R (39)

of the canonical commutation relation (CCR). Then, by a simple observation, one
verifies that the hashed operators of the form



16 Jaeha Lee and Izumi Tsutsui

e−i t
2 Pe−isQe−i t

2 P = e−i s
3 Qe−i t

2 Pe−i s
3 Qe−i t

2 Pe−i s
3 Q

= e−i t
4 Pe−i s

3 Qe−i t
4 Pe−i s

3 Qe−i t
4 Pe−i s

3 Qe−i t
4 P

= · · ·

= e−i(sQ+tP)

= · · ·

= e−i s
4 Qe−i t

3 Pe−i s
4 Qe−i t

3 Pe−i s
4 Qe−i t

3 Pe−i s
4 Q

= e−i t
3 Pe−i s

2 Qe−i t
3 Pe−i s

2 Qe−i t
3 P

= e−i s
2 Qe−itPe−i s

2 Q, s, t ∈ R, (40)

are all identical. Here, the equality in the center is due to the product formula proven
by Lie-Trotter-Kato, and the overline on the operator sQ+tP denotes its self-adjoint
extension. Although they differ in their representation as mixtures, their correspond-
ing QJSDs are identical, and thus all the quantisation/quasi-classical representations
induced could be naturally understood as being equivalent.

Affine Transfromations

As another example, let T : Kn →Kn be a linear map, and consider the affine map

Tbbb : aaa 7→ T aaa+bbb (41)

defined for bbb∈Kn. We then introduce the affine transform of a QJSD #AAA with respect
to the affine map (41) by

(Tbbb#AAA)(aaa) := #AAA
(
T−1

bbb aaa
)
, aaa ∈Kn. (42)

If T is a bijection (i.e., detT ̸= 0), both Tbbb#AAA and #AAA are invertible to one another and
thus essentially contain the same information of the combination AAA of the observ-
ables concerned. It is to be noted that the affine transform of a QJSD is generally not
a member of the QJSDs. Indeed, while the total integration of (42) reduces to the
identity Id by definition, it most importantly fails to satisfy the marginal properties
(30) in general. Even so, affine transforms of a QJSD give rise to adjoint pairs of
quantisation and quasi-classicalisation in an extended sense, which are respectively
defined by

Φ(Tbbb#AAA)
: f 7→ f(Tbbb#AAA)

:=
∫
Kn

f (aaa)(Tbbb#AAA)(aaa) dmn(aaa) (43)

and
Φ ′

(Tbbb#AAA)
: ρ 7→ ρ(Tbbb#AAA)

(aaa) := Tr[(Tbbb#AAA)(aaa)ρ]. (44)

The adjointness of these operations

⟨ f(Tbbb#AAA)
,ρ⟩Q = ⟨ f ,ρ(Tbbb#AAA)

⟩C (45)
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can be readily confirmed by a simple computation. To see how the quantum/quasi-
classical representations corresponding to affine transforms relate to the original
representation, we first observe

f(Tbbb#AAA)
:=
∫
Kn

f (aaa)(Tbbb#AAA)(aaa) dmn(aaa)

=
∫
Kn

f (Tbbbaaa)#AAA(aaa) dmn(aaa)

= ( f ◦Tbbb)#AAA

=: (T ∗
bbb f )#AAA (46)

and

ρ(Tbbb#AAA)
(aaa) = ρ#AAA

(
T−1

bbb aaa
)
,

=: Tbbb∗ρ#AAA (47)

where

T ∗
bbb f := f ◦Tbbb, (48)

Tbbb∗ρ := ρ ◦T−1
bbb , (49)

respectively denote the pullback of a function f and the pushforward of a distribu-
tion ρ by the affine map Tbbb. The relation can thus be illustrated by the following
diagram

L(H ) oo
dual pair

// N(H )

Φ ′
#AAA

zzvv
vv
vv
vv
vv
vv
vv

Φ ′
(Tbbb#AAA)

��

S (Kn) oo
dual pair

//

Φ#AAA

ccHHHHHHHHHHHHHH

S ′(Kn)

Tbbb∗

$$H
HH

HH
HH

HH
HH

HH
H

S (Kn)

Φ(Tbbb#AAA)

OO

oo
dual pair

//

T ∗
bbb

;;wwwwwwwwwwwwww
S ′(Kn)

As a simple concrete example, we consider the simplest case AAA = (A,B). Below,
we see that all the members #κ

AAA of the subfamily of the QJSDs of the form (25) are
linear transforms of #i

AAA for the specific choice κ = i. To see this, consider the matrix

T̃κ :=
(

1 κ1
0 κ2

)
(50)

defined for each κ = κ1 + iκ2, (κ1,κ2 ∈ R), and the linear transformation Tκ :=
T̃κ ×Id on C×R defined by Tκ(a, b) := (T̃κ a, b). Then, a simple computation yields
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F
(
Tκ #i

AAA
)
(s, t) =

∫
C×R

e−i⟨s,Tκ a⟩e−itb #i
AAA(a,b) dm2(a,b)

= #̂i
AAA(T

′
κ s, t)

= F#κ
AAA(s, t), (51)

where T ′
κ denotes the adjoint matrix of Tκ . We thus conclude

Tκ #i
AAA = #κ

AAA. (52)

Since detTκ = κ2, it is straightforward to see that all the members #κ
AAA of the QJSDs

for the choice Imκ ̸= 0 are equivalent to one another by linear transformations.

Convolutions

As another important class of transformations, we consider the convolution

(h∗#AAA)(aaa) :=
∫
Kn

h(aaa−aaa′)#AAA(aaa′) dmk(aaa′) (53)

of a QJSD #AAA and a function h with the total integration of unity. The Fourier trans-
form of the convolution reads

F (h∗#AAA)(sss) = ĥ(sss) #̂AAA(sss)

=
∫
Kn

h(kkk)e−i⟨sss,kkk⟩ #̂AAA(sss) dmn(kkk)

=
∫
Kn

h(kkk) #̂AAA+kkk(sss) dmn(kkk), (54)

where AAA+ kkk := (A1 + k1 · Id, . . . ,An + kn · Id) denotes the ordered combination of
the normal operators defined as the parallel translation of AAA towards the direction
kkk ∈Kn. From this, the convolution

h∗#AAA =
∫
Kn

h(kkk)#AAA+kkk dmn(kkk) (55)

could be understood as the ‘weighted average’ of the family of QJSDs #AAA+kkk of
the ordered combination AAA + kkk of normal operators, or equivalently, the parallel
translation

#AAA+kkk = τkkk#AAA, (τkkkaaa := aaa+ kkk) (56)

of the original QJSD #AAA, with respect to the ‘weight function’ h.
It is important to note that, in general, the convolution (53) itself is not necessarily

a QJSD of AAA. Indeed, consider the most extreme case where all the members of AAA
pairwise strongly commute. In such case, the unique QJSD of AAA is the JSM EAAA, so
in order for the convolution h∗EAAA = EAAA to be the unique QJSD of AAA, we must have
h = δ000 ⇔ ĥ = 1. In a more general setting, a necessary condition for h∗#AAA to satisfy
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the marginal condition (35) is given by9

∫
Kn−k

h(aaa) dmn−k(bbb
c) = δ000(bbb), (57)

where BBB is an order-preserving subset (33) of AAA consisting of k (1 ≤ k ≤ n) numbers
of its pairwise strongly commuting distinct members, BBBc the order-preserving com-
plement (34) of BBB, and bbb ∈ Kk, bbbc ∈ Kn−k are their corresponding variables. Here,
δaaa, denotes the delta distribution centred at aaa ∈Kn, which is a generalised function
symbolically defined as

δaaa(xxx) =

{
∞, (xxx = aaa)
0, (xxx ̸= aaa)

(58)

in the usual manner.
On the other hand, the convolution still gives rise to the adjoint pair of represen-

tations in an extended sense in a similar manner to the affine transforms of a QJSD.
In order to see its relation to the original representation, we first observe that

f(h∗#AAA)
:=
∫
Kn

f (aaa)(h∗#AAA)(aaa) dmn(aaa)

=
∫
Kn
(h̃∗ f )(aaa)#AAA(aaa) dmn(aaa)

=: (h̃∗ f )#AAA , (59)

where h̃(aaa) := h(−aaa) denotes the transpose of h. One also finds

ρ(h∗#AAA)
= h∗ρ#AAA . (60)

The adjointness of these operations⟨
f(h∗#AAA)

,ρ
⟩

Q =
⟨

f ,ρ(h∗#AAA)

⟩
C (61)

can be readily confirmed by a simple computation. The diagram

9 Here, we adopt the convention ∫
Kn−k

h(aaa) dmn−k(bbb
c) = h(aaa)

for the case k = n.
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L(H ) oo
dual pair

// N(H )

Φ ′
#AAA

zzvv
vv
vv
vv
vv
vv
vv

Φ ′
(h∗#AAA)

��

S (Kn) oo
dual pair

//

Φ#AAA

ccHHHHHHHHHHHHHH

S ′(Kn)

h∗

$$H
HH

HH
HH

HH
HH

HH
H

S (Kn)

Φ(h∗#AAA)

OO

oo
dual pair

//

h̃∗

;;wwwwwwwwwwwwww
S ′(Kn)

gives a visual summary as to how the quantum/quasi-classical representation cor-
responding to the convolution of the QJSD #AAA with the function h relates to the
original representation. One readily sees that the two representations corresponding
to #AAA and h∗#AAA are equivalent if the map h∗ : f 7→ h∗ f is a bijection.

2.3.2 Faithfulness of the Representations

For a fixed AAA, we say that the quantum/quasi-classical representation pertaining to a
given choice of QJDS #AAA is faithful, if either of the following equivalent10 conditions
are met:

1. The quantisation Φ#AAA has a dense range, i.e.,

ranΦ#AAA = L(H ). (62)

2. The quasi-classicalisation Φ ′
#AAA

is injective, i.e.,

ρ#AAA = σ#AAA ⇔ ρ = σ , (ρ,σ ∈ N(H )) (63)

In physical terms, this is to say that every quantum operator X = lim fi(#AAA) can be
represented by limits of quantised operators if and only if no two quantum states
give rise to the same QJP distribution. In general, the larger the number of observ-
ables belonging to the ordered combination AAA becomes, the closer the representation
approaches to faithfulness.

2.3.3 Realness of the Representations

Among the various candidates of representations, ‘real’ representations are often-
times prized. To state the precise definition, we first need some preparations. Given
a QJSD #AAA, the conjugate of #AAA is formally defined by

10 The proof for the equivalence of the conditions can be carried out by applying the Hahn-Banach
theorem on locally convex spaces.
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#∗AAA(aaa) := #AAA(aaa)∗, aaa ∈Kn, (64)

where the asterisk on the r. h. s. denotes the adjoint of #AAA(aaa). The Fourier transform
of the conjugate of a QJSD reads

(F#∗AAA)(sss) :=
∫
Kn

e−i⟨sss,aaa⟩#AAA(aaa)∗ dmn(aaa)

=

(∫
Kn

e−i⟨−sss,aaa⟩#AAA(aaa) dmn(aaa)
)∗

= #̂AAA(−sss)∗

=: #̂†
AAA(sss), (65)

where we have introduced the involution #̂†
AAA of the hashed operator #̂AAA in the last

equality. It is not difficult to see that involutions of hashed operators are again hashed
operators, hence a conjugate of a QJSD is a QJSD.

We say that a QJSD #AAA is real if #∗AAA = #AAA holds. By the bijectivity of the
Fourier transformation, a QJSD is real if and only if its Fourier transform (i.e.,
the corresponding hashed operator) is a self-involution. Examples of real QJSDs
of AAA = (A,B) are those whose corresponding hashed operators read

#̂(s, t) =



1
2 · (e

−isBe−isA + e−isAe−itB)

e−i s
2 Ae−itBe−i s

2 A

e−i t
2 Be−isAe−i t

2 B

e−i s
3 Ae−i t

2 Be−i s
3 Ae−i t

2 Be−i s
3 A

e−i t
4 Be−i s

3 Ae−i t
4 Be−i s

3 Ae−i t
4 Be−i s

3 Ae−i t
4 B

e−i(sA+tB)

s, t ∈ R,

were the overline on the operator sA+ tB denotes its unique self-adjoint extension.
Colloquially speaking, a QJSD is real if its corresponding hashed operator is ‘sym-
metric’ in its form. We call the quantum/quasi-classical representation real, if the
corresponding QJSD is real. Real representations have the following convenient
properties:

1. The quantisation f#AAA of a real function f ∈ S (Kn) is always self-adjoint.
2. The quasi-classicalisation ρ#AAA of a density operator ρ ∈ N(H ) is always real.

Real representations thus have a formal advantage of taking a classical observables
into self-adjoint operators, and a quantum state into real QJP distribution, which
some may find favourable above non-real representations.

2.3.4 Relation to some prior Works

The study on quantum-classical transformation has a long history. In this passage,
we investigate the relation of the formalism of QJSDs presented in this paper to
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some of the prior works on this topic. In this passage, we are specifically interested
in the choice XXX = (Q,P), where Q and P are operators satisfying the Weyl represen-
tation (39) of the CCR.

The Theory of Wigner and Weyl

We first point out that the Weyl map and the Wigner map are respectively the quan-
tisation Φ#XXX and the quasi-classicalisation Φ ′

#XXX
pertaining to the QJSD WXXX of XXX

corresponding to the hashed operator of the form

ŴXXX (s, t) := e−i(sQ+tP). (66)

In fact, since the hashed operator (66) is equivalent to any choice of the form (40),
the Wigner-Weyl transformation is the quantum/quasi-classical representation per-
taining to any of the choices. It is easy to see from the self-involutive form of the
hashed operator (66) that the Wigner-Weyl transformation is real. It is widely known
that the Wigner map is injective, which is equivalent for its adjoint map (i.e., the
Weyl map) to have a dense range: in the terminology of this paper, the Wigner-Weyl
transformation is faithful.

In order to confirm the claim, we first compute the quantisation of functions with
respect to the QJSD corresponding to (66). The quantisation of f ∈ S (R2) reads

fWXXX :=
∫
R2

f (q, p) WXXX (q, p)dm2(q, p)

=
∫
R4

f (q, p)ei(qs+pt) ŴXXX (s, t)dm2(q, p,s, t)

=
∫
R4

f (q, p)e−is(Q−q)e−it(P−p)eist/2dm2(q, p,s, t)

=: WXXX ( f ), (67)

where the last equality is precisely the definition of the Weyl quantisation of f . Here,
note that we have used the relation

e−itP/2e−isQe−itP/2 = eist/2e−isQe−itP (68)

in order to obtain the third equality. As for the quasi-classical representation of a
quantum state, we assume without loss of generality that H = L2(R), and that
Q = x̂, P = p̂ are respectively the familiar position and momentum operators. For
better readability, we moreover restrict ourselves to the case that ρ = |ψ⟩⟨ψ| for
some wave-function ψ ∈ L2(R). Then, the Fourier transform of ρWXXX reads
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(FρWXXX )(s, t) = Tr
[
ŴXXX (s, t)ρ

]
= ⟨eitP/2ψ,e−isQe−itP/2ψ⟩

=
∫
R

e−isqψ∗(q+ t/2)ψ(q− t/2) dm(x)

=
∫
R

e−i(sq+t p)
(∫

R
ψ∗(q+ t/2)ψ(q− t/2)eipt dm(t)

)
dm2(q, p)

=
(
FW ρ

XXX

)
(s, t), (69)

where
W ρ

XXX (q, p) :=
∫
R

ψ∗(q+ t/2)ψ(q− t/2)eipt dm(t) (70)

is the Wigner function of the wave function ψ ∈ L2(R). Due to the injectivity of the
Fourier transformation, we conclude ρWXXX =W ρ

XXX . The proof for the general case goes
essentially the same.

QSJDs generated by Convolution

We next consider the problem of generating a family of QJSDs of XXX by means of
the convolution of WXXX with functions. This setting has been previously examined by
Cohen et al. [10] with the intention of constructing a family of generalised phase
space distribution functions. For the convolution h ∗WXXX to be a QJSD of XXX , one
sees from the result (57) that the condition ĥ(0, t) = ĥ(s,0) = 1, s, t ∈ R is neces-
sary. Specifically, we demonstrate below that, under the assumption that the Fourier
transform

ĥ(s, t) = ĝ(st/2) , s, t ∈ R (71)

of the function h can be represented by a function g :R→R with the total integration
of unity, the convolution (55) becomes a QJSD of the pair XXX . Indeed, observe that
since

F (h∗WXXX )(s, t) =
∫
R

g(κ)e−iκst/2 ŴXXX (s, t) dm(κ), (72)

we have
h∗WXXX =

∫
R

g(κ)#κ
XXX (s, t) dm(κ), (73)

where we have used the parametrised family #κ
XXX , κ ∈ R, of the QJSD of XXX corre-

sponding to the hashed operators of the form

#̂κ
XXX (s, t) := e−iκst/2 ŴXXX (s, t)

= e−i 1−κ
2 sQe−itPe−i 1+κ

2 sQ, (74)

which was originally introduced in (25) for general AAA = (A,B). Hence, as the
‘weighted average’ of the parametrised families of the QJSDs of XXX , the convolution
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(73) itself is a QJSD of XXX . Each choice of the function g yields distinct representa-
tion. Among the well-known representations are those proposed by:

1. Weyl [4] and Wigner [5]

g(k) = δ0(k) ⇔ ĝ(ω) = 1 (75)

2. Kirkwood [11] and Dirac [12]

g(k) = δ±1(k) ⇔ ĝ(ω) = e∓iω (76)

3. Margenau and Hill [13]

g(k) =
(δ−1(k)+δ+1(k))

2
⇔ ĝ(ω) = cosω (77)

4. Born and Jordan [14]

g(k) =

{
1
2 , (|k| ≤ 1)
0, (|k|> 1)

⇔ ĝ(k) =
sinω

ω
(78)

which all belongs to the same class generated by convolutions.

The Theory of Hushimi and Glauber-Sudarshan

In the previous paragraph, we have considered the problem of constructing various
QJSDs of XXX by means of convolution. In a broader perspective, however, the con-
volution h ∗WXXX itself need not be a QJSD of XXX in the sense that it gives rise to the
adjoint pair of representations in an extended sense. If the map h∗ : f 7→ h ∗ f is
bijective, both the original QJSD and the convolution contain the same amount of
information of XXX , and a sufficient condition for this is ĥ > 0.

As for the choice of the function h, which may from the result (55) be interpreted
as the ‘weight function’ of the family of QJSDs, we typically consider the normal
distribution (i.e., Gaußian function)

G(xxx) := e−∥xxx∥2/2n
, xxx ∈ Rn, (79)

where ∥xxx∥ :=
√

∑n
i=1 |xi|2 denotes the Euclidean norm of an n-dimensional vector

xxx ∈ Rn. Since the normal distribution never satisfies the condition (57), the convo-
lution G ∗ #XXX of a normal distribution with a QJSD of XXX is not a QJSD of XXX in
general. However, since the Fourier transform of a normal distribution is another
normal distribution, hence Ĝ > 0, the original QJSD #XXX and the convolution G∗#XXX
are equivalent to each other. We thus introduce two operator valued distributions
(OVDs) HXXX and GSXXX that are uniquely specified through the relations
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HXXX = G∗WXXX , (80)
WXXX = G∗GSXXX . (81)

By the above argument, we see that all WXXX , HXXX and GSXXX contain the same informa-
tion in the sense that they can be transformed to one another by convolution with
normal distributions, and thus the adjoint pairs of quantum/quasi-classical repre-
sentations which they yield are all equivalent. In this paper, we casually call the
QJSD WXXX the Wigner-Weyl type, and the OVDs HXXX and GSXXX the Hushimi and the
Glauber-Sudarshan type, respectively. From the result (60), one sees that the quasi-
classical representation of a density operator ρ ∈ N(H ) pertaining to the respective
representations are related to each other by

Hρ
XXX = G∗W ρ

XXX , (82)

W ρ
XXX = G∗GSρ

XXX . (83)

As we have seen in the previous passage that W ρ
XXX (q, p) is the Wigner function of

ρ , we here learn that the distributions Hρ
XXX (q, p) and GSρ

XXX (q, p) are precisely the
Hushimi Q-function [15] and the Glauber-Sudarshan P-function [16, 17] of the
quantum state ρ , respectively.
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3 Some Applications: Quantum Correlations, Conditional
Expectations and the Weak Value

We now seek application of the formalisms we have constructed in the previ-
ous chapter. By its nature, the framework of quantisation/quasi-classicalisation by
QJSDs should become useful in analysing problems where non-commutativity of
quantum observables is concerned. In this section, we specifically focus on ‘cor-
relations’ and ‘conditioning’ between (generally non-commuting) quantum observ-
ables induced by QJSDs. Due to the non-commuting nature of quantum observables,
there are various candidates of quantum correlations and conditional expectations.
Specifically, we see that Aharonov’s weak value [7] can be identified as one realisa-
tion among various candidates of quantum conditional expectations.

Complex Parametrised Subfamily

In handling relatively abstract objects as QJSDs of quantum observables, concrete
examples are always of use. To this, we occasionally consider the simplest case
where only two self-adjoint operators AAA = (A,B) are concerned, and make use of
the complex parametrised subfamily of hashed operators

#̂α
AAA(s, t) :=

1+α
2

· e−itBe−isA +
1−α

2
· e−isAe−itB, α ∈ C, (84)

and the resulting subfamily #α
AAA := F−1#̂α

AAA of QJSDs for demonstration11.

3.1 Correlations of Quantum Observables

In classical probability theory, correlation has been an important quantity in various
aspects. The definition of the quantum counterpart, however, is not so obvious, when
non-commutative observables are taken into account. In what follows, we define
a family of quantum correlation based on our framework of QJSDs of quantum
observables, and observe their very basic properties.

3.1.1 Sesquilinear Forms induced by QJP Distributions

As usual, let AAA = (A1, . . . ,An), n ≥ 1, be an ordered combination of self-adjoint
operators on a Hilbert space H , and choose a QJSD #AAA and a density operator ρ ∈
N(H ). In what follows, in order to refrain ourselves from dealing with unessential
mathematical intricacies, we assume that the resulting QJP distribution ρ#AAA can be

11 Do not confuse the subfamily introduced above with that of (25). We have used different super-
script characters κ , α as parameters to make the distinction more easier.
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represented by a density function12. This allows us to introduce a sesquilinear form

⟨g, f ⟩ρ#AAA
:=
∫
Kn

g∗(aaa) f (aaa) ρ#AAA(aaa)dmn(aaa), f , g ∈ L2(ρ#AAA) (85)

defined on the space of square-integrable functions with respect to the complex
density function ρ#AAA . By definition, we have

⟨ f , g⟩ρ#AAA
= ⟨g∗, f ∗⟩ρ#AAA

(86)

and
⟨ f , g⟩ρ∗

#AAA
= ⟨g, f ⟩∗ρ#AAA

, (87)

where the superscript asterisk denotes the complex conjugate. The following obser-
vations are direct consequences of the above properties.

1. The quantum correlation (85) is symmetric (Hermitian)

⟨ f , g⟩ρ#AAA
= ⟨g, f ⟩∗ρ#AAA

(88)

if and only if the QJP distribution ρ#AAA is real. This is guaranteed for every ρ ∈
N(H ) if and only if the choice of the QJPD #AAA is self-adjoint.

2. The quantum correlation (85) is positive definite13

∀ f ∈ L2 ⟨ f , f ⟩ρ#AAA
≥ 0,

⟨ f , f ⟩ρ#AAA
= 0 ⇔ f = 0

(89)

if and only if the QJP distribution ρ#AAA is positive. This is guaranteed for every
ρ ∈ N(H ) if and only if the QJPD #AAA is positive.

Note that the second condition (i.e., positive definiteness) is stronger that the first
condition (i.e., symmetricity), for indeed the positiveness of the QJP distributions
trivially implies its realness, and in parallel, the positiveness of the QJPDs implies
its self-adjointness.

3.1.2 Quantum Correlations

We next introduce the concept of quantum correlations based on the sesquilinear
forms defined above. In what follows, in order to ease our arguments, we confine
ourselves to the simplest case AAA = (A,B) without loss of generality. We also write
# := #AAA for better readability. Now, let f (A), g(B) be operators respectively defined
from the functions f (a) and g(b) by means of the functional calculus. We then
define the quantum correlations or quasi-correlations between the operators f (A),

12 We say that a tempered distribution u ∈ S ′(Kn) admits representation by a density function if
u(x) is actually an integrable function.
13 Here, the equality f = 0 in the second line of (89) is meant to hold ρ#AAA -almost everywhere.
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g(B) by

⟨g(B), f (A)⟩ρ# :=
∫
K2

g∗(b) f (a) ρ#(a,b)dm2(a,b) (90)

By construction, quantum correlations are dependent on the choice of the QJP dis-
tributions ρ#, which is generally non-unique due to the indefiniteness of the QJSDs.
When A and B happen to be simultaneously measurable, indefiniteness of the QJSDs
vanishes, and the quantum correlation reduces to the unique classical correlation in
the standard sense.

3.1.3 Quantum Covariances

Now that we have introduced the concept of quantum correlations, we next introduce
the concept of quantum covariances. Under the same assumptions, we introduce the
quantum covariance of the pair with respect to the QJP distribution ρ# defined as

CV[ f (A),g(B);ρ#] := ⟨g(B)−E[g(B);ρ], f (A)−E[ f (A);ρ]⟩ρ#

= ⟨g(B), f (A)⟩ρ# −E[ f (A);ρ] ·E[g(B);ρ], (91)

where E[X ;ρ] := Tr[Xρ] denotes the expectation value of X ∈ L(H ) on a density
operator ρ ∈ N(H ) as usual. The quantum covariance serves as a natural extension
to the standard covariance in classical probability theory, and they indeed coincide
when the pair of self-adjoint operators f (A) and g(B) strongly commute.

Example

As an example, let #α be a complex parametrised QJSD for α ∈ C introduced in
(84). By a simple computation, the quantum correlation of the operators A and B
reads

⟨B, A⟩ρ# :=
∫
R2

ba ρ#(a,b) dm2(a,b)

= (i∂s1)(i∂s2)(Fρ#)(sss)|sss=0

= Tr
[
{A,B}

2
ρ
]
+ iα Tr

[
[A,B]

2i
ρ
]
, (92)

where {X ,Y} := XY +Y X and [X ,Y ] := XY −Y X respectively denotes the anti-
commutator and the commutator of X and Y as usual. This computation leads to

CV[A,B;ρ#α ] = CVS[A,B;ρ]+ iα CVA[A,B;ρ], (93)

where we have introduced the standard symmetric and standard anti-symmetric
quantum covariances
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CVS[A,B;ρ] := Tr
[
{A,B}

2
ρ
]
−E[A;ρ] ·E[B;ρ], (94)

CVA[A,B;ρ] := Tr
[
[A,B]

2i
ρ
]
, (95)

for better readability.

3.2 Conditioning by Quantum Observables

In the previous passage, we have introduced quantum analogues of correlations by
means of QJP distributions. Closely related to these are quantum analogues of con-
ditional expectations.

3.2.1 Introducing Quantum Conditional Expectations

In what follows, in order to avoid distraction by unessential mathematical intrica-
cies, we impose an additional assumption that, for the given choice of the density
operator ρ ∈ N(H ), the probability of finding the outcome of B is always positive
ρB(b) > 0 on its spectrum14. The quantum correlation of both the operators f (A)
and g(B) then reads

⟨g(B), f (A)⟩ρ# :=
∫
K2

g∗(b) f (a) ρ#(a,b)dm2(a,b)

=
∫
K

g∗(b)E[ f (A)|B = b;ρ#] ρB(b)dm(b)

= ⟨g(B), E[ f (A)|B;ρ#]⟩ρB , (96)

where we have introduced the quantum conditional expectation or conditional
quasi-expectation

E[ f (A)|B = b;ρ#] :=
∫
K f (a) ρ#(a,b)dm(a)

ρB(b)
. (97)

of the operator f (A) given the outcome of B under the QJP distribution ρ#. Note
that the quantum conditional expectation E[ f (A)|B;ρ#] is defined as an (equivalence
class of) complex function(s) rather than a scalar. The normal operator

E[ f (A)|B;ρ#] :=
∫
K
E[ f (A)|B = b;ρ#](b) dEB(b) (98)

14 The spectrum of a self-adjoint operator A is defined as the largest closed subset J ⊂ R such that
EB(J) = Id holds.



30 Jaeha Lee and Izumi Tsutsui

in the last equation is the image of the functional calculus of the (equivalence class
of) function(s) (97).

Some ‘statistical’ Properties and its Interpretation

The key observation to make here is that the quantum correlation of an operator
f (A) with any operator g(B) generated by B can be reproduced by the authentic
correlation of the quantum conditional expectation E[ f (B)|B;ρ#] with g(B), which
we reiterate for emphasis as:

⟨g(B), E[ f (A)|B;ρ#]⟩ρB = ⟨g(B), f (A)⟩ρ# , ∀g ∈ L2(ρB). (99)

Also, by taking the constant function g = 1, we have

E [E[ f (A)|B;ρ#];ρ] = E [ f (A);ρ] . (100)

The above two equalities show that the quantum conditional expectation serve as the
‘approximation’ of the original operator f (A) by operators generated by B, and that
it is unique in the sense that it precisely reproduces the quantum correlation with
any other operators generated by B in place of the original f (A).

In physical terms, the quantum conditional expectation can be interpreted as the
quantum analogue of conditional expectations of the operator f (A) given the out-
come b of B under the hypothetical ‘joint’ distribution (i.e., QJP distribution) ρ#. If
the combination of the observables AAA = (A,B) happens to be simultaneously mea-
surable, the quantum conditional expectation simply reduces to the conditional ex-
pectation in the classical sense that is familiar to us. On the other hand, if some
of the pair of observables fail to admit simultaneous measurability, the quantum
conditional expectation becomes a hypothetical quantity, whose definition becomes
non-unique due to the indefiniteness of the choice of the QJPDs.

Examples

We next provide some concrete examples to actually compute the quantum condi-
tional expectations. To this end, let #α be the parametrised subfamily of QJSDs of
the ordered pair AAA = (A,B) of self-adjoint operators introduced in (84). For a given
function f (a), let

f (a) =
∞

∑
m=0

fmam (101)

denote its Taylor expansion. If we let φ(b) denote the numerator of (97), we then
have
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(Fφ)(t) =
∫
R

e−itb

(∫
R

∞

∑
m=0

fmam ρ#α (a,b)dm(a)

)
dm(b)

=
∞

∑
m=0

fm

(∫
R2

e−i(0a+tb)amb0 ρ#α (a,b)dm2(a,b)
)

=
∞

∑
m=0

fm
(
(i∂s)

m(i∂t)
0 (Fρ#α )(0, t)

)
=

∞

∑
m=0

fm

(
1+α

2
·Tr
[
e−itBAme−i0Aρ

]
+

1−α
2

·Tr
[
Ame−i0Ae−itBρ

])
=

1+α
2

·Tr
[
e−itB f (A)ρ

]
+

1−α
2

·Tr
[

f (A)e−itBρ
]
. (102)

Observing that the Fourier transform of the function b 7→ Tr [EB(b) f (A)ρ] and
b 7→ Tr [ f (A)EB(b)ρ] are respectively Tr

[
e−itB f (A)ρ

]
and Tr

[
f (A)e−itBρ

]
, one

finds that the injectivity and the linearity of the Fourier transformation leads to∫
R

f (a) ρ#α (a,b)dm(a) =
1+α

2
·Tr [EB(b) f (A)ρ]+

1−α
2

·Tr [ f (A)EB(b)ρ]
(103)

by combining the results. We thus finally have

Eα [A|B = b;ρ] := E[ f (A)|B = b;ρ#α ]

=
1+α

2
· Tr [EB(b) f (A)ρ]

Tr[EB(b)ρ]
+

1−α
2

· Tr [ f (A)EB(b)ρ]
Tr[EB(b)ρ]

= Re
[

Tr [EB(b) f (A)ρ]
Tr[EB(b)ρ]

]
+ iα Im

[
Tr [EB(b) f (A)ρ]

Tr[EB(b)ρ]

]
, (104)

where we have introduced an abbreviated symbol (the first line) for better readabil-
ity.

3.3 The Weak Value as a Quantum Conditional Expectation

As the simplest case of the examples provided in the previous Section 3.2, let us
consider the quantum conditional expectation of the function f (a,b) = a. Based on
the formula (104), one obtains

Eα [A|B = b;ρ] =
1+α

2
·Aρ

w(b)+
1−α

2
·Aρ

w(b)
∗

= Re [Aρ
w(b)]+ iα Im [Aρ

w(b)] , α ∈ C, (105)

where we have introduced the Aharonov’s weak value
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Aρ
w(b) := E1[A|B = b;ρ] =

Tr [EB(b)Aρ]
Tr[EB(b)ρ]

.

The quantity (105), defined as the complex convex combination of the weak value,
was initially proposed in [18], in which it was called the two state value. Pro-
vided that the density operator ρ = |ψ⟩⟨ψ| is an orthogonal projection onto the
1-dimensional linear subspace spanned by a unit vector |ψ⟩ ∈ H , weak value re-
duces to its familiar form

Aψ
w (b) =

⟨b|A|ψ⟩
⟨b|ψ⟩

. (106)

In this respect, the weak value admits an interpretation as one manifestation of the
possible family of quantum conditional expectations corresponding to the specific
choice #α , α = 1, of the subfamily of the QJSDs.

The interpretation of the weak value, as one of the possible candidates of quan-
tum analogues of classical conditional expectations, has been proposed earlier in
several literatures. Relevant to our framework presented here is [19], in which the
inherent non-uniqueness of the QJP distributions for non-commuting observables
is particularly emphasised, a fact which is oftentimes overlooked in discussing the
weak value. There, quantum conditional expectations are computed not only for the
Kirkwood-Dirac distribution (76), but also for several other types of QJP distribu-
tions, including the Wigner-Weyl distribution (75) and the Margenau-Hill distribu-
tion (77).

4 Summary and Discussion

In the former part of this paper (Section 2), we focused on the problem of quan-
tisation of classical observables and quasi-classicalisation of quantum states. For
the simplest case in which the observables concerned are all simultaneously mea-
surable, we reviewed that the joint-spectral measure (JSM) uniquely attributed to
the commuting observables gives rise to the unique pair of functional analysis and
the Born rule, which could respectively be considered as the trivial realisation of
quantisation and quasi-classicalisation. Specifically, by taking the duality relation
between observables and states into account, we saw that quantisation and quasi-
classicalisation are actually adjoint to one another as maps, and thus the JSM, quan-
tisation and quasi-classicalisation are all equivalent as an entity, although they may
differ in concept. In this sense, we occasionally referred to the pair of maps as
quantum/quasi-classical transformations or representations.

We next considered the general case in which observables concerned are ar-
bitrary. To this, we let ourselves be guided by the observation above, and intro-
duced the concept of quasi-joint-spectral distributions (QJSDs), which could be
interpreted as non-commutative analogues to the standard JSM. In contrast to the
commutative case, QJSDs attributed to a given set of non-commuting observables
are non-unique, and thus they give rise to various distinct pairs of quantisations and
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quasi-classicalisations. We also discussed the basic properties of QJSDs and the
transformations between them. An important implication of this framework is that,
although there may be countless possible ways to construct quantisation and quasi-
classicalisation, there is a precise one-to-one correspondence between them. These
realisations help us to understand the relation between various proposals made his-
torically, including those proposed by Wigner-Weyl, Kirkwood-Dirac, Margenau-
Hill, Born-Jordan, Hushimi and Glauber-Sudarshan.

As an application to this framework, the latter portion of this paper (Section 3)
focused on the problem of constructing quantum analogues to the classical con-
cept of correlation and conditioning. We proposed a framework to this problem by
means of QJSDs introduced earlier, and demonstrated that some of the statistical
properties familiar in classical probability theory are still preserved even under the
quantum counterpart, especially the relation between correlation and conditional ex-
pectation. We finally mentioned that Aharonov’s weak value could be interpreted as
one manifestation of quantum conditional expectations. One of the virtues of this
interpretation is that it reveals a novel aspect of the uncertainty relations [20], in the
sense that the weak value appears as the optimal choice of approximation: quan-
tum conditional expectations are best approximations of an observable by another
observable, just as classical conditional expectation is the best approximation of a
random variable by means of another.

The framework of the quantum/quasi-classical transformation proposed in this
paper may find a variety of applications. In fact, it should be obvious from our
arguments that one can always draw an analogy to various concepts and results in
classical probability theory when one considers the quantum counterparts obtained
by this method. Naturally, this will allow for an intuitive treatment of the latter based
on the statistical and geometric structures present in classical probability theory.
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