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Abstract: A novel uncertainty relation for errors of general quantum measurement is presented.
The new relation, which is presented in geometric terms for maps representing measurement,
is completely operational and can be related directly to tangible measurement outcomes. The relation
violates the naïve bound h̄/2 for the position-momentum measurement, whilst nevertheless
respecting Heisenberg’s philosophy of the uncertainty principle. The standard Kennard–Robertson
uncertainty relation for state preparations expressed by standard deviations arises as a corollary
to its special non-informative case. For the measurement on two-state quantum systems,
the relation is found to offer virtually the tightest bound possible; the equality of the relation
holds for the measurement performed over every pure state. The Ozawa relation for errors of
quantum measurements will also be examined in this regard. In this paper, the Kolmogorovian
measure-theoretic formalism of probability—which allows for the representation of quantum
measurements by positive-operator valued measures (POVMs)—is given special attention, in regard
to which some of the measure-theory specific facts are remarked along the exposition as appropriate.

Keywords: quantum foundations; quantum measurement; uncertainty relation

1. Introduction

Since its advocation nearly a century ago, the uncertainty principle has unquestionably stood
as one of the foundational pillars of quantum mechanics, marking the indeterministic nature of the
microscopic world. Soon after Heisenberg’s seminal exposition [1] in 1927, the first mathematical
formulation of the principle was presented by Kennard [2], revealing the lower bound h̄/2 of the
product of the standard deviations of the canonically conjugate pair of the position and momentum.
Inspired by Weyl’s alternative and more modern proof [3] of Kennard’s finding utilizing the
Cauchy–Schwarz inequality, Robertson subsequently obtained its generalization [4] to the product of
the standard deviations

σ(A) σ(B) ≥ |〈[A, B]〉|/2 (1)

of arbitrary observables A and B, with the lower bound being characterized by the absolute value
of the expectation value of the commutator [A, B] := AB− BA. Owing to its mathematical clarity
and broad applicability, the Kennard–Robertson inequality became a standard textbook material as a
succinct expression of quantum indeterminacy.
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Nevertheless, the Kennard–Robertson relation embraced very little, if any, notion of quantum
measurement in the strict sense, given the fact that Heisenberg—even though his own conception
of uncertainty (or ‘indeterminateness’ [5]) is difficult to precisely pin down from the rather
nebulous depiction in his writings—did entertain concepts of error and disturbance pertaining to
quantum measurement, which he exemplified with several physical models including the famous
gamma-ray microscope Gedankenexperiment. This rather unsatisfactory status encouraged the
development of alternative formulations of uncertainty relations incorporating measurement.

A popular model for the description of quantum measurement has been the indirect
measurement scheme, which explicitly considers an external quantum system of an ancillary meter
device in addition to the original quantum system of interest, thereby allowing for a physically
intuitive representation of an otherwise obscure measurement process. The Arthurs–Kelly–Goodman
relations [6,7] and the more recent Ozawa relations [8,9], along with their refinement [10] and
modifications [11,12], are among the most notable formulations that are founded on this model,
whereby their formulation of error (and disturbance) defined for measurements associated with
positive-operator valued measures (POVMs) over the real field admits an intelligible representation.
Apart form these, uncertainty relations have also been framed on the foundation of estimation
theory [13,14] in addition to having been formulated from a measure-theoretic viewpoint [15–17].

In this paper, a novel uncertainty relation that marks the trade-off relation between the errors of
quantum measurement is presented. The relation, being established upon the conceivably simplest
and most general framework of measurement, is valid for all quantum measurements of statistical
nature. Notably, it is formulated without reference to any specific measurement models whatsoever,
whereby the only objects required are the tangible measurement outcomes; this specifically entails that
the relation is operationally verifiable, the fact of which is in contrast to some alternative formulations
(including Ozawa’s) that generally require objects that the outcomes alone cannot dictate, as having
been pointed out by several authors [15,18].

Interestingly, the new relation is found to generically violate the naïve lower bound |〈[A, B]〉|/2
prescribed by the commutator of the observables to be measured, which is in line with the recent
similar findings espoused notably by Ozawa [9]. Nevertheless, Heisenberg’s spirit of the uncertainty
principle still stands strong, albeit perhaps in a laxer and more qualitative form than is commonly
conceived or was originally intended.

Beyond the orthodox relations regarding quantum indeterminacy, error, and disturbance,
the uncertainty principle was also found to be accountable for various forms of incompatibilities
of diverse nature, such as time and energy [19–23], entropy [24–28], conservation law [29–32],
speed limit [33–40], gate implementation [41,42], and counterfactuality [43–46]. In this regard,
the new relation is found to entail the standard Kennard–Robertson relation as a corollary
to it, thereby providing a seamless connection between the two different realms of quantum
uncertainty. The physical ramifications and a comprehensive mathematical description of the new
universal formulation [47] shall be presented in later publication; there, other notable formulations,
including the Arthurs–Kelly–Goodman and the Ozawa relations, are also accounted for from
its perspective.

This paper is intended as an extended paper of the previous concise report [48], to which the
reader is referred as appropriate. In this regard, this paper supplements the exposition by providing
additional remarks on the POVM formalism of quantum measurements, which is the most common
and standard method to describe general quantum measurements based on the Kolmogorovian
framework of probability. An analysis of the measurement on two-state quantum systems is also
included, which serves to exemplify the general results with a simple and concrete model, and also
illustrates the technical advantage of the new relation over Ozawa’s in terms of tightness.

This paper is organized as follows. Section 2 offers a succinct exposition of the essential
tools; the basic notions regarding measurement, such as quantum- and classical-state spaces,
quantum measurements, and their dual notions are first introduced, which are then found to
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point to the existence of an adjoint pair of state-dependent maps, termed the pullback and the
pushforward. In Section 3, the error of quantum measurement is introduced, followed by a useful
equivalence condition on which a measurement becomes free from it. The main result, i.e., the new
uncertainty relation for errors, is then presented in Section 4; the relation is subsequently found to
have an important connotation regarding the errors of two incompatible (non-commutative) quantum
observables, whereby Heisenberg’s philosophy of the uncertainty principle is revisited. In Section 5,
the new relation is then found to entail the Kennard–Robertson relation as a simple corollary, thereby
attaining a seamless unification of the two different realms of quantum uncertainty. In Section 6,
the relation is examined through a simple example regarding measurements on two-state quantum
systems. Here, the analytical formulae for the errors and the lower bound of the relation are given,
whereby the validity of the relation is confirmed and the necessary and sufficient conditions for the
equality to hold is characterized. The final Section 7 is devoted to discussions in perspective of the
previous studies, where the Ozawa relation for errors of quantum measurement is examined.

2. Pullback and Pushforward of a Quantum Measurement

A quantum measurement is found to induce an adjoint pair of local (i.e., state-dependent)
maps between the quantum- and classical-observable spaces. The pair, termed the pullback and
the pushforward of a quantum measurement, plays an essential role.

2.1. Quantum Measurement and Its Adjoint

Let Z(H) denote the state space of a quantum system, which is hereafter modeled as the convex
set of all the density operators ρ on a Hilbert spaceH. Its classical counterpart W(Ω) is modeled as the
convex set of all the probability distributions p on a sample space Ω. The primary objects of interest
are the affine maps M from quantum-state spaces to classical-state spaces, which are understood
as quantum measurements in this paper (see Figure 1). One should indeed find this interpretation
reasonable, for the archetypal projection measurement induces such a map. In general, if one adopts
Kolmogorov’s measure-theoretic formalism [49] to model probability, the map M admits a familiar
representation in terms of POVMs [50]. In this paper, special attention is given to this most common
and standard formalism of modeling probability, thereby making comments on subjects and facts that
are measure-theory specific along the discourse as appropriate.

An important observation is that a quantum measurement M induces a natural map M′,
termed its adjoint, which takes a classical function on Ω to a Hilbert-space operator onH. This dual
notion of a quantum measurement is uniquely characterized by the relation 〈M′ f 〉ρ = 〈 f 〉Mρ,
which holds for all complex functions f on Ω and quantum states ρ on H. Here, the shorthand
〈X〉ρ := Tr[Xρ] is defined for a pair of a Hilbert-space operator X and a density operator ρ on H,
whereas 〈 f 〉p :=

∫
Ω f (ω)p(ω) dω is defined for a pair of a complex function f and a probability

distribution p on Ω.
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Figure 1. The basic premise of classical and quantum measurements. The space of quantum states
Z(H) is depicted as a ball, whereas the space of probability distributions W(Ω) is represented by
a tetrahedron. They each offer symbolic graphical representations of the respective state spaces;
the former 3-dimensional unit ball can be identified with the state space of a 2-dimensional quantum
system as a collection of all the Bloch vectors, whereas the latter 3-dimensional probability simplex can
be identified with the set of all probability distributions on the sample space consisting of 4 elements.
(Left) A classical measurement K can be considered as an affine map K : W(Ω)→W(Ω′), for indeed
in any classical measurement of statistical nature, the end result of the measurement should be a
probability distribution q = Kp ∈W(Ω′) on the set Ω′ of possible outcomes, the profile of which may
depend on the state p ∈W(Ω) of the system over which the measurement is performed. (Right) In the
same vein, an affine map M : Z(H)→W(Ω) is interpreted as a quantum measurement, which yields
a probability distribution p = Mρ ∈W(Ω) on the set Ω of possible outcomes, the profile of which is
dependent on the choice of the quantum state ρ ∈ Z(H) over which the measurement is performed.

2.2. The Space of Observables

The space of quantum observables is hereafter modeled by the linear space S(H) of all the
self-adjoint operators on a Hilbert spaceH. Here, each quantum state ρ ∈ Z(H) defines a seminorm

‖A‖ρ :=
√
〈A† A〉ρ, A ∈ S(H) on the space, thereby inducing a natural equivalence relation A ∼ρ

B ⇐⇒ ‖A− B‖ρ = 0 on it. This allows for the classification of all the quantum observables into their
equivalence classes [A]ρ := {B ∈ S(H) : A ∼ρ B}, which collectively constitute the quotient space
S(H)/∼ρ, the completion of which is hereafter denoted by Sρ(H). In the same vein, a probability

distribution p ∈W(Ω) induces a seminorm ‖ f ‖p :=
√
〈 f † f 〉p on the linear space R(Ω) of all the real

functions f defined on the sample space Ω. The identification f ∼p g ⇐⇒ ‖ f − g‖p = 0 results
in the classification of the real functions into their equivalence classes [ f ]p := {g ∈ R(Ω) : f ∼p g},
which collectively make up the quotient space R(Ω)/∼p, further leading to its completion Rp(Ω).
Here, the adjoint A† of a Hilbert-space operator and the complex conjugate f † of a complex function
are introduced to expose the structure of the seminorms so that they respectively admit obvious
extensions beyond self-adjoint operators and real functions. As commonly practiced, with a slight
abuse of notation, the equivalence classes are hereafter denoted by one of their representatives.

Note that the norm on Sρ(H) admits a unique inner product 〈A, B〉ρ := 〈{A, B}〉ρ/2 characterized
by the anti-commutator {A, B} := AB + BA that reproduces the original norm ‖A‖2

ρ = 〈A, A〉ρ.
The same remark also goes for the inner product 〈 f , g〉p := 〈 f g〉p defined on Rp(Ω) that satisfies
‖ f ‖2

p = 〈 f , f 〉p.
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2.3. Pullback and Pushforward

Given a quantum measurement M : Z(H)→W(Ω), a crucial observation regarding its adjoint is
the validity of the inequality

‖ f ‖Mρ ≥
∥∥M′ f

∥∥
ρ

(2)

for any quantum state ρ onH and complex function f on Ω. In view of its equivalence to the condition

σMρ( f ) ≥ σρ(M′ f ), where the symbols σρ(A) :=
√
‖A‖2

ρ − 〈A〉2ρ and σp( f ) :=
√
‖ f ‖2

p − 〈 f 〉2p
respectively denote the quantum and classical standard deviations, the inequality (2) admits a
physically intuitive and operational interpretation as a statement regarding the lower bound of the
efficiency of quantum measurements in estimating the expectation value of an observable A = M′ f by
means of an estimator function f through the measurement M. As is expounded in [47], the inequality
(2) can be understood as a corollary to the Kadison–Schwarz inequality [51]; if one adopts the
measure-theoretic formalism to model probability, thereby allowing for the representation of the
quantum measurement M by POVM, Naimark’s dilation theorem [52,53] becomes directly applicable
to provide a tailored and more concrete proof.

A direct connotation of the inequality (2) is the implication f ∼Mρ g =⇒ M′ f ∼ρ M′g for each
quantum state ρ ∈ Z(H). This allows for the adjoint M′ to be understood as the map between the
quotient spaces, thereby pointing to the existence of the map

M∗ρ : RMρ(Ω)→ Sρ(H) (3)

and its adjoint
Mρ∗ : Sρ(H)→ RMρ(Ω), (4)

which are hereafter called the pullback and the pushforward of the measurement M over the quantum
state ρ, respectively (see Figure 2); the pullback and the pushforward are dual notions to one another,
characterized by the relation 〈

A, M∗ρ f
〉

ρ
=
〈

Mρ∗A, f
〉

Mρ
(5)

that is valid for all A ∈ Sρ(H) and f ∈ RMρ(Ω). By construction, one finds that both the pullback
‖ f ‖Mρ ≥ ‖M∗ρ f ‖ρ and the pushforward ‖A‖ρ ≥ ‖Mρ∗A‖Mρ are non-expansive, in addition to the fact
that they preserve the expectation values 〈 f 〉Mρ = 〈M∗ρ f 〉ρ and 〈A〉ρ = 〈Mρ∗A〉Mρ.

If one adopts the Kolmogorovian formalism of probability, the pushforward (4) admits a concrete
expression in terms of the standard tools of measure and integration theory. While the topic is beyond
the scope of this paper, a concise description of the result that nevertheless becomes relevant in later
sections is included; as is presented in [47], the formula for the pushforward Mρ∗A = dνρ/dµρ is
furnished by the Radon–Nikodým derivative of the signed measure νρ(∆) := (‖A + M∗ρ χ∆‖2

ρ − ‖A−
M∗ρ χ∆‖2

ρ)/4 with respect to the probability measure µρ := Mρ, where χ∆ represents the measurable
characteristic function (alias indicator function) of a measurable set ∆ pertaining to the σ-algebra on
the sample space Ω.
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Figure 2. The pullback and the pushforward of a quantum measurement. (Left) A quantum
measurement M induces the pullback M∗ρ from the linear spaces Rp(Ω) to Sρ(H), each of which
is attached to the respective points p = Mρ ∈ W(Ω) and ρ ∈ Z(H) of the corresponding
state spaces. (Right) The measurement M also entails the pushforward that maps the observables
in the opposite direction. The pullback and the pushforward are dual notions to one another, being
connected by the relation (5). They are both non-expansive maps—the norm either decreases or remains
unchanged under their actions—that also preserve the expectation values.

3. Error of a Quantum Measurement

Based on the tools introduced so far, the error regarding a quantum measurement M of an
observable A over a state ρ is defined as the amount of contraction

ερ(A; M) :=
√
‖A‖2

ρ − ‖Mρ∗A‖2
Mρ (6)

induced by the pushforward regarding the observable of one’s concern. Non-negativity ερ(A; M) ≥ 0
of the error follows immediately from the non-expansiveness of the pushforward, whereas the
homogeneity ερ(tA; M) = |t| ερ(A; M), ∀t ∈ R and the subadditivity ερ(A; M) + ερ(B; M) ≥
ερ(A + B; M) can also be readily confirmed. In other words, the error (6) furnishes a seminorm on the
‘tangent’ space Sρ(H) of quantum observables attached to the state ρ over which the measurement
is performed.

The error (6) admits an operational interpretation as the minimal error of the local
reconstruction of a quantum observable through the measurement. In this regard, let ερ(A; M, f ) :=√
‖A−M∗ρ f ‖2

ρ + (‖ f ‖2
Mρ − ‖M∗ρ f ‖2

ρ) provide an evaluation of the precision of the reconstruction
of an observable A by means of the pullback M∗ρ f , which is in turn created from an estimator f
through the measurement M; in this paper, this is called the error with respect to the estimator f
(abbr. f -error). A simple computation using (5) reveals the decomposition of its square ερ(A; M, f )2 =

ερ(A; M)2 + ‖Mρ∗A − f ‖2
Mρ into the sum of the squares of the error (6) and the estimation error,

thereby pointing to an operational characterization of the error (6) as the minimum of the f -error over
all the local estimators, as well as the interpretation of the pushforward as the unique locally optimal
estimator that realizes it.

It is useful to identify the conditions on which the measurement becomes free from error.
In what follows, a quantum measurement M is said to be capable of an errorless measurement of A over ρ,
if the error (6) vanishes. In this regard, one finds the equivalence of the following two conditions:

ερ(A; M) = 0 ⇐⇒ A = M∗ρ Mρ∗A. (7)

The implication =⇒ follows from ερ(A; M) ≥ ‖A−M∗ρ Mρ∗A‖Mρ, whereas the converse ⇐= is due
to ‖A‖ρ ≥ ‖Mρ∗A‖Mρ ≥ ‖M∗ρ Mρ∗A‖ρ, the evaluations of which are both direct consequences of the
non-expansiveness of the pullback and the pushforward.



Entropy 2020, 22, 1222 7 of 18

An important fact is that an errorless measurement of an observable A ∈ S(H) is always available;
the projection measurement M associated with it is capable of such a measurement (not just locally
over a certain quantum state, but in fact globally over every state). To see this, it suffices to realize that
the pushforward of an observable A by the projection measurement M associated with it becomes the
identity function (Mρ∗A)(a) = a on the spectrum of A; one may directly derive the result from the
formula for the pushforward described above, but can also—perhaps more readily—confirm this from
the fact that the identity function indeed fulfills the characterization (5) of the pushforward.

4. Uncertainty Relation for Errors and the Uncertainty Principle

Now that the necessary tools have been introduced, the main result, i.e., the new uncertainty
relation for errors, is presented. Its implication regarding the uncertainty principle is also investigated.

4.1. The Uncertainty Relation for Errors

Let A and B be an arbitrary pair of quantum observables of the system H, and let ρ ∈ Z(H)

be a quantum state of one’s choice. Then, for any quantum measurement M : Z(H) → W(Ω),
the inequality

ερ(A; M) ερ(B; M) ≥
√
R2 + I2 (8)

holds with

R :=
〈{A, B}

2

〉
ρ

−
〈

Mρ∗A, Mρ∗B
〉

Mρ
(9)

and

I :=
〈
[A, B]

2i

〉
ρ

−
〈
[M∗ρ Mρ∗A, B]

2i

〉
ρ

−
〈
[A, M∗ρ Mρ∗B]

2i

〉
ρ

. (10)

This can be obtained through a simple application of the renowned Cauchy–Schwarz inequality over
the semi-inner product 〈(X, f ), (Y, g)〉 := 〈X†Y〉ρ + 〈 f †g〉Mρ − 〈M′ f † M′g〉ρ defined for the products
of Hilbert-space operators and complex functions. Indeed, in view of the fact that ερ(A; M) =√
〈(XA, fA), (XA, fA)〉 with the shorthands XA := A−M∗ρ Mρ∗A and fA := Mρ∗A, the product of the

errors of the two observables A and B are found to be bounded from below by the absolute value of
the complex number 〈(XA, fA), (XB, fB)〉, whose real part R is given by (9) whereas the imaginary
part I by (10).

From a mathematical (geometric) point of view, the real partR in (9) represents the decrease of the
induced metric on the bundle of ‘localized’ quantum observables, whose loss being inevitably caused
by the quantum measurement M. In fact, this term is also found to be shared with the inequality
regarding the errors of classical measurements K : W(Ω) → W(Ω′), which are defined as affine
maps between classical-state spaces (see Figure 1). This fact reveals that the semiclassical contribution
R of the lower bound is shared in common between both classical and quantum measurements,
thereby suggesting that it is not necessarily of quantum origin; a more comprehensive account of
this subject is found in [47]. On the other hand, the imaginary part I in (10), which consists of three
commutators and imposes an additional constraint on the attainable lower bound of the product of the
errors, marks the essence of quantum measurements. In view of this, the simplified form

ερ(A; M) ερ(B; M) ≥ |I| (11)

of the relation (8) should be mostly adequate to account for the distinguishing characteristics of
quantum theory.

4.2. The Uncertainty Principle

The uncertainty relation (8) implies that the product of the errors may potentially violate
the naïve bound |〈[A, B]〉ρ|/2. In fact, the violation is always available for any pair of quantum
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observables A and B, for indeed, an errorless measurement of either observable—this is always
available (see Section 3)—trivially violates it. Nevertheless, Heisenberg’s philosophy regarding the
uncertainty principle still remains valid, albeit perhaps in a weaker form than is originally intended;
the uncertainty relation (8) forbids a simultaneous errorless measurement of a pair of quantum
observables A and B whenever the term 〈[A, B]〉ρ does not vanish. Indeed, if there were such
a measurement M, the relation (8) combined with the equivalence (7) of the two conditions of

the errorless measurement would lead to a contradiction 0 ≥
√
|0|2 + |〈[A, B]〉ρ/2i|2. It is to be

emphasized here that one of the errors may vanish as long as the other does not; the crux is that both
errors cannot vanish together.

An immediate consequence of this no-go theorem is that, for non-trivial quantum systems
(i.e., quantum systems whose Hilbert spaces have dimensions of no less than two), there exists no
quantum measurement that is capable of singlehandedly measuring every observable errorlessly over
every state.

5. Quantum Indeterminacy

An interesting observation is that the Kennard–Robertson relation for quantum indeterminacy
actually emerges as a trivial case of the relation (8) for measurement errors as the notion of measurement
fades towards the limit of non-informativeness; one thus attains a seamless unification of the two
different realms of quantum uncertainty regarding measurement error and state indeterminacy.

One may call a quantum measurement M trivial, or non-informative, when it is a constant map
between the state spaces, i.e., when there exists some fixed probability distribution p0 ∈ W(Ω) for
which p0 = Mρ holds for every ρ ∈ Z(H). The pullback and the pushforward of a non-informative
measurement M are found to be respectively characterized by the identity operator M∗ρ f = 〈 f 〉Mρ on
the Hilbert space H and the constant function Mρ∗A = 〈A〉ρ on the sample space Ω, each weighted
by the expectation values of the elements concerned. Non-informativeness of the measurement thus
reduces the error (6) to the standard deviation ερ(A; M) = σρ(A), thereby bringing the relation (8)
further towards

σρ(A) σρ(B) ≥ 1
2

√
|〈{A, B}〉ρ − 2 〈A〉ρ〈B〉ρ|2 + |〈[A, B]〉ρ|2. (12)

In fact, this inequality is known as the Schrödinger relation [54], from which the Kennard–Robertson
relation (1) follows immediately by disregarding the first term in the square-root that appears in
the R.H.S.; note that this procedure directly corresponds to the reduction of the relation (8) to its
simplified form (11) by omitting the semiclassical contributionR of the lower bound.

As is presented in [47], the reduction of the relation (8) to the Schrödinger relation (12) may
also be found in non-trivial measurements as well, albeit locally in general. One such condition that
becomes relevant to this paper is when the measurement outcomes are concentrated at a single element,
i.e., when the measurement over a quantum state ρ ∈ Z(H) happens to result in the delta distribution
Mρ = δω concentrated at some point ω ∈ Ω. An illustrative example of this would be the projection
measurement performed over the eigenstates of the ‘measurement observable’ associated with it; more
explicitly, given an eigenstate ρ = ψm of an eigenvalue m ∈ R of the ‘measurement observable’ M̂
(i.e., M̂ψm = mψm), the projection measurement M associated with it performed over ψm results in the
probability distribution Mψm = δm as desired.

6. Example: Measurement on Two-State Quantum Systems

As a simple demonstration of the uncertainty relation (8), the measurement on two-state quantum
systems is investigated. Since a comprehensive study of the general case of such a measurement,
which shall be given elsewhere, is beyond the scope of this paper, the analysis is confined to a specific
setting that nevertheless marks its essence. For definiteness, the target observables to be measured are
set to the x and y components of the familiar spin-1/2 angular momentum. The analysis consists of
two parts; as the archetype of non-trivial measurements, the projection measurement associated with
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the remaining z component of the spin angular momentum is investigated, followed by the analysis of
trivial measurements. Specifically, one finds that the relation offers virtually the tightest lower bound
possible; in both trivial and non-trivial cases, the equality of the relation holds for the measurement
over all pure states.

6.1. Preparation of the Symbols

As is often the case with the study of two-state quantum systemsH ' C2, the Pauli matrices

σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
(13)

are found to serve as a convenient tool for the analysis. The triplet σ := (σx, σy, σz) together with the
identity operator Id allows for the unique representation

ρ =
1
2
(Id + r · σ) ∈ Z(H) (14)

of quantum states ρ ∈ Z(H) by the Bloch vectors r := (rx, ry, rz) ∈ R3, |r| ≤ 1, where the standard
convention r · σ := ∑ riσi is adopted. The spin-1/2 angular momentum S := (h̄/2)σ then admits a
familiar representation

Sx :=
h̄
2

σx, Sy :=
h̄
2

σy, Sz :=
h̄
2

σz (15)

along the respective Cartesian axes. For definiteness, the target observables to be measured are fixed
to A := Sx and B := Sy throughout this section.

6.2. Non-Trivial Projection Measurement

Here, non-trivial measurements on two-state quantum systems are investigated. For the purpose
of this paper, the analysis is confined (without much loss of generality) to projection measurements,
which are the archetypes of all possible measurements that can be performed on a quantum system.
Specifically, the projection measurement associated with the ‘measurement observable’ Sz is chosen for
this demonstration, in which the sample space Ω = {m−, m+} of the measurement outcomes is the
two-element set consisting of its two distinct eigenvalues m± = ± h̄/2.

6.2.1. Errors of the Measurement and the Uncertainty Principle

As a first step, the computation of the errors of the measurement of the target observables
is conducted. In this regard, the pushforwards of the target observables Sx and Sy by the projection
measurement M associated with Sz, respectively, read

(Mρ∗Sx)(m) =


h̄
2
· rx

1 + rz

(
m = +

h̄
2

)
h̄
2
· rx

1− rz

(
m = − h̄

2

) (16)

and

(Mρ∗Sy)(m) =


h̄
2
· ry

1 + rz

(
m = +

h̄
2

)
h̄
2
· ry

1− rz

(
m = − h̄

2

) (17)

over the state ρ ' r = (rx, ry, rz), where the Bloch-vector representation (14) of quantum
states is adopted with the convention 0/0 := 0 hereafter; as always, the above results (16)
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and (17) can be directly computed from the formula for the pushforward, but the fact that they
are indeed the pushforwards of Sx and Sy, respectively, can also be readily confirmed by their
characterization as the unique functions that satisfy the relation (5). The errors of the measurement of
the respective observables

ερ(Sx; M) =
h̄
2

√
1− r2

x
1− r2

z
(18)

and

ερ(Sy; M) =
h̄
2

√
1−

r2
y

1− r2
z

(19)

can thus be obtained by simple substitution of the pushforwards appearing in the definition of the
error (6) with the functions (16) and (17).

At this point, one finds that the errorless measurements of the respective observables are attainable
precisely over the quantum states

ερ(Sx; M) = 0 ⇐⇒ ρ ' r ∈ {(rx, 0, rz) ∈ R3 : r2
x + r2

z = 1} \ {(0, 0,±1)} (20)

and
ερ(Sy; M) = 0 ⇐⇒ ρ ' r ∈ {(0, ry, rz) ∈ R3 : r2

y + r2
z = 1} \ {(0, 0,±1)}, (21)

the collections of which form the ‘great circles’ (orthodromes) of the Bloch sphere that passes through
the eigenvectors of the observables to be measured and the ‘measurement observable’ Sz, barring the
eigenvectors of the latter (i.e., the ‘north pole’ (0, 0, 1) and the ‘south pole’ (0, 0,−1)) themselves
(see Figure 3). Here, note that these two sets have empty intersection; this is to say that the errors of
the measurement of the non-commutative observables Sx and Sy can never vanish simultaneously,
which is indeed consistent with the (weaker form of the) uncertainty principle demonstrated in
Section 4.2. In regard to this, it is illuminating to see that the error of the measurement of one of the
target observables takes the maximal value whenever that of the other vanishes:

ερ(Sx; M) = 0 =⇒ ερ(Sy; M) =
h̄
2

(22)

and
ερ(Sx; M) =

h̄
2
⇐= ερ(Sy; M) = 0. (23)

Meanwhile, the errors ερ(Sx; M) = ερ(Sy; M) = h̄/2 both take the maximal value over the ‘north pole’
and the ‘south pole’.

M

Sx
Sy

Sz

M

Sx
Sy

Sz

δ+δ−

Figure 3. Measurement on two-state quantum systems. (Left) A dichotomic measurement on two-state
quantum systems can be represented by an affine map from a 3-dimensional unit ball to a line segment;
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for the current example, the extreme points δ± of the line segment are the delta measures concentrated
at the respective eigenvalues ± h̄/2 of the ‘measurement observable’ Sz. The collections of all the
quantum states over which the measurements of Sx and Sy are free from error take the shape of the
respective orthodomes (discounting the north and south poles) (20) and (21) colored in red. Note that
these two sets have empty intersection, which indeed attests to the (weaker form of the) uncertainty
principle forbidding the errors from vanishing simultaneously, unless the expectation value of the
commutator vanishes (this happens if and only if the state belongs to the unique cross-section of the
ball containing the equator). The equality of the relation holds over all the sphere. (Right) A trivial
measurement can be reduced to a constant map to a singleton. The errors (i.e., standard deviations) of
the observables Sx and Sy vanish if and only if the measurement is performed over their respective
eigenstates depicted by the red dots. Again, the equality of the relation holds over all the sphere.

6.2.2. Violation of the Naïve Lower Bound

The above observation reveals that the product of the errors ερ(Sx; M) ερ(Sy; M) = 0 vanishes
precisely over the region specified in (20) and (21). Combining this with the evaluation of the naïve
lower bound |〈[Sx, Sy]〉ρ|/2 = (h̄/2) |rz|, one finds that its violation

|〈[Sx, Sy]〉ρ|/2 > ερ(Sx; M) ερ(Sy; M) (24)

can be attained over the said region for rz 6= 0 (see also Section 4.2). In fact, without much difficulty,
it is possible to analytically identify the exact domain over which the violation (24) occurs by means of
Formulae (18) and (19). A detailed analysis of this is given elsewhere in another appropriate context.

6.2.3. Evaluation of the Uncertainty Relation

The trade-off relation between the measurement errors (18) and (19) is quantitatively evaluated in
the light of the new uncertainty relation (8). In this regard, the product of the errors is found to read

ερ(Sx; M) ερ(Sy; M) =

(
h̄
2

)2
√√√√ r2

xr2
y

(1− r2
z)

2 +

(
1−

r2
x + r2

y

1− r2
z

)
(25)

by straightforward computation. As for the evaluation of its lower bound, the semiclassical
contribution (9) is readily found to read

R = −
(

h̄
2

)2 rxry

1− r2
z

(26)

by simple computation utilizing the pushforwards (16) and (17). The quantum contribution (10)
of the lower bound can be obtained through the computation of the pullbacks of both the
pushforwards (16) and (17) by the projection measurement associated with the ‘measurement
observable’ Sz, thereby resulting in

I =

(
h̄
2

)2
(

1−
r2

x + r2
y

1− r2
z

)
rz. (27)

Combining the results (26) and (27), one reveals the lower bound

√
R2 + I2 =

(
h̄
2

)2
√√√√ r2

xr2
y

(1− r2
z)

2 +

(
1−

r2
x + r2

y

1− r2
z

)2

r2
z (28)
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of the product of the errors. The validity of the uncertainty relation (8) can be directly confirmed by
Formulae (25) and (28), for indeed the former is never less than the latter for |r| ≤ 1. In addition,
they also allow for the characterization of the necessary and sufficient conditions for the equality
to hold; the equality of the relation holds if and only if the quantum state over which the measurement
is performed is pure (i.e., |r| = 1), or in other words, the equality of the relation holds precisely over
all the Bloch sphere (see Figure 3).

6.2.4. The Semiclassical Contribution and the Reduction to the Simplified Form

It is tempting to investigate the conditions under which the uncertainty relation (8) reduces to
its simplified form (11). By construction, the reduction takes place precisely when the semiclassical
contribution (9) to the lower bound vanishes, which happens under the conditions

R = 0 ⇐⇒ rx = 0 or ry = 0 (29)

for the current example, as one may directly find from Formula (26). The collection of all the quantum
states over which the relation and its simplified form coincide can thus be depicted as the union of the
two cross-sections of the ball that are respectively orthogonal to the x and y axes (see Figure 4).

Specifically, this reveals that the semiclassical contribution R 6= 0 is relevant over almost
every state, thereby implying its general significance. In particular, in view of the fact that the
quantum contribution (10) vanishes over all the Bloch sphere with the exception of the ‘north pole’
and ‘south pole’ (Formula (27) reveals

I = 0 ⇐⇒ |r| = 1, rz 6= ±1 or rz = 0 (30)

for the current example), the maximum tightness (i.e., attainment of the lower bound) of the relation
over the sphere is actually almost solely due to the semiclassical contribution R, rendering it
indispensable for the precise evaluation of the trade-off relation; in fact, the simplified form (11)
merely yields the trivial evaluation ερ(Sx; M) ερ(Sy; M) ≥ 0 over all the sphere but the ‘north pole’
and the ‘south pole’.

M

Sx
Sy

Sz

M

Sx
Sy

Sz

δ+δ−

Figure 4. Reduction of the uncertainty relation to its simplified form. The region in which the
semiclassical contribution R = 0 to the lower bound vanishes, or equivalently, that in which the
relation (8) reduces to its simplified form (11), is colored in violet. For this example, the conditions are
the same for both the dichotomic measurement (left) and the trivial measurement (right). For the sake
of comparison, the red regions over which the measurements are free from error are shown alongside
(see Figure 3).
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6.3. Trivial Measurements

Next, trivial measurements on two-state systems are investigated. As is demonstrated in Section 5,
triviality of the measurement reduces the errors of the measurement of Sx and Sy to their respective
standard deviations

ερ(Sx; M) = σρ(Sx) =

(
h̄
2

)√
1− r2

x, ερ(Sy; M) = σρ(Sy) =

(
h̄
2

)√
1− r2

y, (31)

which vanish if and only if the state over which the measurement is performed is one of their eigenstates
(see Figure 3). Since the observables Sx and Sy have no common eigenstates, one finds that there exists
no quantum state for which the errors (i.e., standard deviations) vanish simultaneously, which is of
course just the well-known fact from elementary quantum mechanics; in the current context, this attests
to the consistency with the uncertainty principle described in Section 4.2.

As for the quantitative evaluation of the trade-off relation between the measurement errors
(i.e., standard deviations), recall that the relation (8) turns into the Schrödinger relation (12) for general
mixed states when the measurement is trivial. The product of the errors thus reads

ερ(Sx; M) ερ(Sy; M) = σρ(Sx) σρ(Sy) =

(
h̄
2

)2√
(1− r2

x)(1− r2
y) (32)

with the lower bound

√
R2 + I2 =

√√√√∣∣∣∣∣
〈{Sx, Sy}

2

〉
ρ

− 〈Sx〉ρ〈Sy〉ρ
∣∣∣∣∣
2

+

∣∣∣∣∣
〈
[Sx, Sy]

2i

〉
ρ

∣∣∣∣∣
2

=

(
h̄
2

)2√
r2

xr2
y + r2

z . (33)

The validity of the relation for trivial measurements (i.e., the Schrödinger relation) can be directly
confirmed by Formulae (32) and (33), for indeed the inequality

(1− r2
x)(1− r2

y) = (1− |r|2) + r2
xr2

y + r2
z ≥ r2

xr2
y + r2

z (34)

holds for |r| ≤ 1. In addition, they also allow for the characterization of the necessary and sufficient
conditions for the equality to hold; again, the equality of the relation holds if and only if the quantum
state over which the measurement is performed is pure (i.e., |r| = 1), or alternatively, the equality of
the relation holds precisely over all the Bloch sphere (see Figure 3).

In passing, recall that, for projection measurements, the relation (8) reduces to that of trivial
measurements (12) whenever the measurement is performed over the eigenstates of the corresponding
‘measurement observable’ (see Section 5). For the current example, this can be confirmed by the direct
substitution of the parameters (rx, ry, rz) = (0, 0,±1) in (25) and (28) for the non-trivial projection
measurement, as well as in (32) and (33) for trivial measurements; here, both cases are indeed found to
yield the same (in)equality σρ(Sx) σρ(Sy) = (h̄/2)2 =

√
R2 + I2.

6.4. Remarks on the Attainment of the Lower Bound

The uncertainty relation (8) has so far been demonstrated to attain the lower bound over all pure
states regarding the measurement on two-state quantum systems, thereby offering virtually the tightest
bound possible. However, it should be noted that the relation (8) is in general a non-trivial inequality,
i.e., there are instances (of pure states) in which the equality does not hold, as should be the case.
In order to avoid any such misconceptions, a simple counterexample that attests to this fact is
included below.

One such physically relevant model would be the measurement on quantum harmonic oscillators.
Since a proper treatment of unbounded observables defined on infinite-dimensional Hilbert spaces
requires the introduction of additional mathematical tools and techniques that are beyond the scope
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of this paper, a more detailed analysis is reserved for another occasion. In what follows, the simplest
of the settings, namely, the trivial measurements and the projection measurement associated with
the Hamiltonian over the energy eigenstates, is investigated, in which cases the relation (8) reduces to
the Schrödinger relation (12) (see Section 5). Below, one validates the basic fact that the Schrödinger
relation does not necessarily attain the lower bound over the energy eigenstates.

For this, let x̂ and p̂ respectively denote the familiar position and momentum operators on
the quantum system H = L2(R) of a one-dimensional non-relativistic free particle with mass m.
The Hamiltonian

H :=
p̂2

2m
+

1
2

mω2 x̂2 (35)

of the quantum harmonic oscillator with angular frequency ω (the symbol is not to be confused with
that denoting an element of the sample space Ω) is well-known to be a self-adjoint operator whose
spectrum consists solely of point spectrum (i.e., the set of eigenvalues). As is familiar, the eigenvalues
En = h̄ω(n + 1/2), n ∈ N0 are characterised by the non-negative integers, which are moreover
all non-degenerated. The corresponding unit eigenfunctions are hereafter denoted by ψn, n ∈ N0,
disregarding the global phase.

One readily finds that the errors of both the measurement (i.e., standard deviations) of the
observables x̂ and p̂ respectively read

εn(x̂; M) = σn(x̂) = λ

√
n +

1
2

, εn( p̂; M) = σn( p̂) =
h̄
λ

√
n +

1
2

(36)

over the energy eigenstates, where the natural (characteristic) length λ :=
√

h̄/(mω) as well as
the abbreviations εn(A; M) := εψn(A; M) and σn(A) := σψn(A) are adopted for better readability.
Specifically, note that both the errors never vanish over the energy eigenstates (whereby the validity of
the uncertainty principle described in Section 4.2 is also confirmed), which is of course just a rephrasing
of the basic facts from elementary quantum mechanics.

Regarding the quantitative assessment of the relation, one immediately finds that the product of
the errors reads

εn(x̂; M) εn( p̂; M) = σn(x̂) σn( p̂) = h̄
(

n +
1
2

)
. (37)

As for the lower bound of the relation, one finds that the semiclassical contributionR = 〈{x̂, p̂}/2〉n −
〈x̂〉n〈 p̂〉n = 0 permanently vanishes over all the energy eigenstates, whereas the quantum contribution
I = 〈[x̂, p̂]/2i〉n = h̄/2 gives the state-independent constant value, thereby resulting in

√
R2 + I2 =

√∣∣∣∣〈{x̂, p̂}
2

〉
n
− 〈x̂〉n〈 p̂〉n

∣∣∣∣2 + ∣∣∣∣〈 [x̂, p̂]
2i

〉
n

∣∣∣∣2 =
h̄
2

, (38)

where the abbreviation 〈A〉n := 〈A〉ψn is adopted for simplicity. From the above observations,
the uncertainty relation for both measurements (i.e., the Schrödinger relation) is actually found to
coincide with its simplified form (i.e., the Kennard–Robertson relation) over all the energy eigenstates,
due to the absence of the semiclassical contributionR = 0. In addition, the relation is found to attain
the lower bound only over the ground state (n = 0); otherwise, the relation is a strict inequality (n ≥ 1).

7. Discussion

It is tempting to discuss some of the known uncertainty relations in the light of the new one. In this
regard, the relation (8) has been already found to reduce to the Schrödinger relation (12)—thereby
further leading to the Kennard–Robertson relation (1)—for the indeterminacy of quantum states as the
notion of measurement degenerates into triviality (see Section 5).

As is presented in later publication, the framework [47] is found to entail Ozawa’s relation [9],
as well as its recent modification [12]. More specifically, an enhancement of the relation (8) to
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accommodate joint measurability is available, which is found to be tighter than Ozawa’s relations.
One shall find that whenever Ozawa’s error ε(A), which is accountable for POVM measurements
with real outcomes Ω = R, is well-defined, so is the error ερ(A) introduced by the definition (6),
further revealing that the former is never less than the latter. One then proves

ε(A) ε(B) ≥ ερ(A) ερ(B) ≥
√
R2 + I2 ≥ |I| ≥ |〈[A, B]〉ρ|/2− ε(A) σρ(B)− σρ(A) ε(B), (39)

whereR and I are the contributions to the lower bound of the product of the errors that respectively
correspond to (9) and (10) regarding the enhancement of the relation (8). Here, note that the inequality
consisting of the left- and right-most hand sides is equivalent to Ozawa’s, whereas the inequality in
the middle is that corresponding to (the simplified form (11) of) the enhancement of the relation (8).
An in-depth evaluation of Ozawa’s formulation in view of the new formalism [47], as well as the
general proof of the evaluation (39), is beyond the scope of this paper, and will thus be given elsewhere.
For now, some simple examples are given below that attest to the tightness for the special case in
which both the observables are measured through a single common POVM measurement.

For this purpose, the previous model regarding the measurement on two-state quantum systems
explored in Section 6 serves as a good example; note that this indeed falls into the category of
POVM measurements with real outcomes. Under the same settings, one finds by simple computation
that Ozawa’s errors regarding the measurement of each of the target observables Sx and Sy by the
‘measurement observable’ Sz become the state-independent constant function ε(Sx) = ε(Sy) =√

2 (h̄/2), whereby the product of his errors reads ε(Sx) ε(Sy) = 2 (h̄/2)2. On the other hand,
one immediately finds from Formula (25) that the product of the errors (6) is never greater than
its half (h̄/2)2 ≥ ερ(Sx) ερ(Sy), which is indeed consistent with the left-most instance

ε(Sx) ε(Sy) > ε(Sx) ε(Sy)/2 ≥ ερ(Sx) ερ(Sy) (40)

of the sequence of inequalities (39). Meanwhile, the existence of the common constant upper
bound h̄/2 ≥ σρ(Si) of the standard deviations of each of the components of the spin-1/2 angular
momentum leads to the evaluations ε(Sx) ≥

√
2 σρ(Sx) and ε(Sy) ≥

√
2 σρ(Sy), whereby the

sum of the second and third terms of Ozawa’s inequality is found to be bounded from below
by ε(Sx) σρ(Sy) + σρ(Sx) ε(Sy) ≥ 2

√
2 σρ(Sx) σρ(Sy) ≥ 2

√
2 |〈[Sx, Sy]〉ρ|/2, in which the right-most

inequality can be obtained by a straightforward application of the Kennard–Robertson inequality (1);
this trivially validates the right-most instance

|I| ≥ 0 ≥ (1− 2
√

2)|〈[Sx, Sy]〉ρ|/2 ≥ |〈[Sx, Sy]〉ρ|/2− ε(Sx) σρ(Sy)− σρ(Sx) ε(Sy) (41)

of the sequence of inequalities (39).
In passing, one finds from the results obtained so far that the product of Ozawa’s errors reads

twice the maximal value of the naïve lower bound

ε(Sx) ε(Sy) = 2 (h̄/2)2 > (h̄/2)2 ≥ |〈[Sx, Sy]〉ρ|/2. (42)

This further reveals, with additional simple computation, that the left- and right-hand sides of his
inequality respectively have constant lower and upper bounds

ε(Sx) ε(Sy) + ε(Sx) σρ(Sy) + σρ(Sx) ε(Sy) ≥ (2 +
√

2)(h̄/2)2 > (h̄/2)2 ≥ |〈[Sx, Sy]〉ρ|/2, (43)

thereby pointing to the existence of a gap of no less than (1 +
√

2)(h̄/2)2 lying between them.
This specifically indicates that the product of Ozawa’s errors is incapable of the violation of the
naïve lower bound |〈[Sx, Sy]〉ρ|/2 for the current example, along with the fact that his relation never
attains the lower bound; on the other hand, the relation (8) is capable of the violation (see Section 6.2.2)
and attains the lower bound over all the Bloch sphere (see Section 6.2.3).
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Trivial POVM measurements with real outcomes also serve as another elementary example
that endorses the tightness of the relation (8). Provided that Ozawa’s error is well-defined for
the given choice of trivial POVM measurement, one readily finds by definition that Ozawa’s
error ε(A) ≥ σρ(A) is never less than the standard deviation; this is indeed consistent with
the aforementioned property that Ozawa’s error ε(A) ≥ ερ(A) = σρ(A) is never less than the
error (6), combined with the fact that triviality of the measurement reduces the latter to the standard
deviation (see Section 5). Thus for any such trivial POVM measurements, the Ozawa relation
ε(A) ε(B) + ε(A) σρ(B) + σρ(A) ε(B) ≥ 3 σρ(A) σρ(B) ≥ 3 |〈[A, B]〉ρ|/2 ≥ |〈[A, B]〉ρ|/2 is found to
be no tighter than three times the Kennard–Robertson relation, whereas the relation (8)—recall that
the latter reduces to the Schrödinger relation (12) for general mixed states when the measurement is
non-informative (see Section 5)—in fact becomes tighter than the Kennard–Robertson relation.
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