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We present a no-go theorem for the distinguishability between quantum random numbers (i.e.,
random numbers generated quantum mechanically) and pseudo-random numbers (i.e., random num-
bers generated algorithmically). The theorem states that one cannot distinguish these two types
of random numbers if the quantum random numbers are efficiently classically simulatable and the
randomness measure used for the distinction is efficiently computable. We derive this theorem by
using the properties of cryptographic pseudo-random number generators, which are believed to exist
in the field of cryptography. Our theorem is found to be consistent with the analyses on the actual
data of quantum random numbers generated by the IBM Quantum and also those obtained in the
Innsbruck experiment for the Bell test, where the degrees of randomness of these two set of quan-
tum random numbers turn out to be essentially indistinguishable from those of the corresponding
pseudo-random numbers. Previous observations on the algorithmic randomness of quantum random
numbers are also discussed and reinterpreted in terms of our theorems and data analyses.

I. INTRODUCTION

In quantum mechanics, it is widely believed that tran-
sitions between two states occur randomly, and that this
randomness is genuine in the sense that it does not ad-
mit causal descriptions by means of determinants called
hidden variables. This belief has been supported by nu-
merous experiments (Bell tests) [1–14] to examine the
Bell inequality [15] which ended up in excluding any lo-
cal hidden variable theories. Besides, no experiments so
far signal even non-local hidden variable theories includ-
ing Bohm’s one [16, 17], suggesting the implausibility of
causal descriptions underlying the quantum randomness.

Meanwhile, the genuineness of quantum randomness
has become one of the bases for applications of quan-
tum physics, such as in quantum cryptography [18] and
random number generation [19]. It is also considered
crucial in quantum mechanics to uphold the no-cloning
theorem and ensure the consistency between quantum
non-locality and special relativity [20].

In view of the firmly established foundational trait and
the ongoing successful applications, it is somewhat sur-
prising that we still have little understanding on how
different the quantum randomness is with respect to
non-quantum ones. Recently, we have seen several at-
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tempts [21–25] designed to characterize the quantum ran-
domness quantitatively using some randomness measures
based on the theory of algorithmic complexity [26] and/or
the statistical homogeneity of distribution. The algorith-
mic complexity quantifies the upper bounds of the mem-
ory size to generate the bit string with a universal Turing
machine, whereas the statistical homogeneity evaluates
relative frequency of the binary values of the bit string.
Among the randomness measures mentioned in these

attempts, the Lempel-Ziv (LZ) complexity and the Borel
normality appear particularly handy and commonly
used. Here, the LZ complexity [27], which has been uti-
lized to evaluate the complexity of non-linear dynami-
cal systems in physics [28, 29], estimates the difficulty
of compressing the given bit string with the LZ76 algo-
rithm [27]. On the other hand, the Borel normality [30],
which has been employed to compare the randomness of
quantum systems with those of the other systems [21–
25], quantifies the difference between the distribution of
substrings in the given bit string and the uniform distri-
bution thereof.
With these two measures, previous data analyses led

us to two intriguing observations:

i) The bit strings generated from a quantum ran-
dom number generator (QRNG) have statistically
larger values of the Borel normality, which implies
that the generated bit strings are less random than
those generated from non-quantum pseudo-random
number generators (PRNGs) such as the Mersenne
twister [25]. This has been argued to be caused by
the effects of unknown biases coming from experi-
mental imperfections for the implementation of the
QRNG.
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ii) The bit strings generated from the Bell tests (an-
other type of QRNGs) in [4, 31] appear to have
smaller values of the LZ complexity when the corre-
sponding Bell tests violate the Bell inequality more
strongly [24], which again implies that the gener-
ated bit strings are less random when they are gen-
erated non-locally. In other words, the degree of al-
gorithmic randomness appears to be anti-correlates
with the degree of non-locality.

The above observations are clearly in conflict with our
belief on the genuineness of quantum randomness and
allure us to doubt the validity of the randomness measure
employed, or even to question the implicit assumption on
the very existence of measures capable of distinguishing
QRNGs from PRNGs, possibly under the influence of
experimental imperfections.

In fact, it is not difficult to infer that the above as-
sumption may be untenable. For example, suppose that
one is given equal-weight superposition states of quantum
two-level systems (qubits). By repeating ideal projection
measurements, one will obtain a series of genuine random
outcomes of binary numbers and, hence, a qubit may be
regarded as the ‘true random number generator’ (TRNG)
(our more technical definition of the TRNG is given in
Sec. II). On the other hand, PRNGs for commercial use
pass the randomness tests such as NIST suites, and are
believed to imitate the TRNG with reasonable precisions,
as far as the bit strings are finite and randomness tests are
implementable in finite durations. This indicates that, in
practice, PRNGs will be able to mimic QRNGs at least
for an ideal case.

On the basis of the above consideration, in this pa-
per we present a no-go theorem on the above assump-
tion. We derive this theorem by using the properties of
cryptographic PRNGs (CPRNGs; see, e.g., Refs.[32, 33]),
which are believed to exist in the field of cryptography.
To be more explicit, we shall show that, if there exists
a CPRNG, whose outcomes are indistinguishable from
those of the TRNG (under any polynomial time algo-
rithm within a negligible error margin), then any effi-
ciently computable randomness measures cannot distin-
guish the outcomes of systems which are ‘efficiently clas-
sically simulatable’ [34] (which do not necessarily behave
as the TRNG) from those of the PRNGs with a neg-
ligible error margin. Since some quantum systems are
known to be efficiently classically simulatable, our no-go
theorem is applicable to those systems. We also provide
examples where the counter-intuitive observations i), ii)
can be understood more easily as a consequence of the
PRNGs capable of mimicking the QRNGs. This illus-
trates that the observations i), ii) are actually consistent
with our theorem.

In concrete terms, for observation i) we find that, if
the length of the bit string and the relative frequency of
bit values are comparable between the dataset generated
by IBM Quantum and those generated by PRNGs, then
the distributions of the LZ complexity and Borel nor-
mality are almost identical between IBMQ and PRNGs.

The difference between them reported in [25] can be at-
tributed to the fact that the relative frequencies were not
aligned properly.
For observation ii), we first point out flaws in the data

analyses in [24] (see the last two paragraphs of Section
III B 1 a). Motivated by this, we reanalyze the dataset
obtained in the Innsbruck experiment for the Bell test
[31] and compare the results with those obtained from
PRNGs. As with the quantum coin tosses, this analysis
also shows that the distributions of the LZ complexity
and Borel normality are comparable in the actual dataset
and PRNGs. In addition, we reject the hypothesis of the
existence of an anti-correlation between the degree of ran-
domness and that of the violation of the Bell inequality.
We shall also exhibit a correlation between the LZ com-
plexity and the binary entropy of the relative frequency,
which indicates that systematic errors latent in the data
acquisition process influence the degree of randomness.
This paper is organized as follows: In Sec. II, we in-

troduce notions relevant to our theoretical analyses and
present our main results including the no-go theorem.
In Sec. III, we make the empirical analyses mentioned
above to support our results and argue their implications
and interpretations with respect to preceding works. Sec-
tion IV is devoted to our conclusion.

II. OUR NOTION OF RANDOMNESS AND
THE MAIN RESULTS

As announced in Introduction, we show the indistin-
guishability of the outcomes of the QRNGs and PRNGs
with the use of any efficiently calculable randomness mea-
sures. Proof of this assertion requires several theoreti-
cal notions originating from cryptography, but possibly
unusual in quantum information science. We hereafter
make a review of these important notions (with slight
generalizations if necessary), rigorously state our asser-
tion, and give proof thereof.
We begin by summarizing the terminology. A quantum

random number generator (QRNG) is literally a quan-
tum system that outputs a random value. A pseudoran-
dom number generator (PRNG), on the other hand, is a
deterministic computation algorithm which transforms a
short random bit sequence into a seemingly random long
bit sequence (see Section IIA 3 for detail).
References [27, 30] discuss indices I which can be com-

puted from a random bit sequence X and measure the
randomness of X. Hereafter such index I(X) will also
be called a randomness measure. The references above
also suggest the possibility that certain types of I(X),
such as the LZ complexity (see Section III B 1 a) and the
Borel normality (see Section III B 1 b), can be used to
distinguish PRNGs and QRNGs.
Our main message in this paper is that such an index I

is not in fact feasible, in light of the knowledge of modern
cryptography. The basic flow of discussion is as follows.
While references [27, 30] placed no particular con-
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straints on I, in the real world, one needs at least the
following two conditions, for I to be able to distinguish
PRNGs and QRNGs,

1. There is a function DI : I → {0, 1} that maps
index I to one bit. The distribution of DI(I(X))
differs depending on whether the random number
X is output from QRNG or PRNG.

2. Indices I,DI can be calculated in a realistic time.

(See Section II B, Definitions 3 and 4 for details.) How-
ever, if any randomness measure I can satisfy these con-
ditions, it immediately leads to a contradiction with the
common and widely used assumption of cryptography,
namely, the existence of cryptographic PRNGs. In other
words, as long as we accept the common assumption of
cryptography, we can show that there is no good ran-
domness measure I that can distinguish between QRNG
and PRNG.

The meanings of conditions 1 and 2 above are as fol-
lows.

First, as a major premise, if an index I can actually dis-
tinguish QRNGs and PRNGs, its value I(X) must have
different probability distributions depending on whether
X is from a QRNG or a PRNG. Or equivalently, if I(X)
has exactly the same distribution for the two sources,
then I will never be able to distinguish them.

Under this premise, condition 1 above demands that
there exists a rule DI that translates such difference in
distributions of I(X) to one bit, and that the one bit
can be used to classify the sources into two groups. Ide-
ally, DI should be strong enough to discriminate QRNGs
and PRNGs without error, but that is not necessar-
ily required here. It here suffices that the distribution
of DI(I(X)) exhibits a slight difference depending on
whether X is from a QRNG or a PRNG (see Section
II B 2 for details).

Condition 2 demands that the computation necessary
for such classification can be carried out within a realistic
time. For example, if the calculation of a given type of
I or DI takes an infinite, or a finite but unrealistically
long time (e.g., longer than the age of the universe even
using all the computers on earth), then such I or DI

are considered incalculable in practice, and thus excluded
them from consideration.

As to the rigorous notion of ‘can be calculated in a
realistic time,’ we follow the tradition of computer sci-
ence and define it as ‘computable by an algorithm (Tur-
ing machine) in time which is a polynomial of the input
length’ [35]. Throughout the paper, we will often call a
polynomial-time algorithm an efficient algorithm. Also,
unless otherwise stated, whenever we say simply an ‘al-
gorithm,’ it refers to an efficient algorithm.

A. Facts on random number generators (RNGs)

1. True random number generator (TRNG)

Throughout the paper, P (E) denotes the probability
of an event E.
For each n ∈ N, we denote by Un the random variable

of the uniformly random n bits; i.e. Un ∈ {0, 1}n, and
P (Un = x) = 2−n for all x ∈ {0, 1}n. This random vari-
able Un achieves the maximum Shannon entropy possible
for each n,

H(Un) = n (1)

(where H(X) denotes the Shannon entropy of a random
variable X; H(X) = −

∑
x p(x) log2 p(x), p(x) = P (X =

x). See, e.g., Ref. [26]). For this reason, we will call Un

the true random number generators (TRNGs).

2. The TRNGs are a special case of QRNGs

The TRNGs are a special case of QRNGs. That is, the
TRNGs can be realized in a quantum system in principle.
The case of n = 1, U1, can be realized because there

exists a quantum system A that outputs bit values 0,1
exactly with probability 1/2, which realizes. For exam-
ple, let A be a quantum system where one (i) generates
one of the Z basis states {|0⟩, |1⟩}, and (ii) performs a
projective measurement on it using the X basis {|0̃⟩, |1̃⟩},
with |0̃⟩ := (|0⟩+(−1)b|1⟩)/

√
2. Also, if we let An denote

an n repetition of a system A, then An realize Un for an
arbitrary n ∈ N (Fig. 1(a)).
At this point, one might argue that in a real physical

system there is always a limitation of experimental accu-
racy, and it might not be possible to achieve probability
1/2 strictly. Even if it were possible, one may not be able
to repeat an arbitrary number of trials using exactly the
same system, due to limitations in costs and materials.
Still, it should be noted that, in theory, one cannot

deny the existence of such A as well as its iterations
An. That is, no rationale can exclude the TRNG from
QRNGs. Hence, for example, if one claims that an in-
dex I can distinguish QRNGs from PRNGs, one should
also assume that it can distinguish the TRNG, a type of
QRNG, from PRNGs.

3. Pseudorandom number generator (PRNG)

Informally, a pseudorandom number generator
(PRNG) is

P1: A method for expanding a short random bit string
s (called a randm seed) into a long bit string x

(cf. Fig. 1(b) and Definition 1), where
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Physical
system 𝐴

Physical
system 𝐴

Trial 1 Trial 2

Physical
system 𝐴

Trial 𝑛

Pseudorandom number generator (PRNG) 𝐺
(= efficient deterministic algorithm)

(a)

(b)

output output output

output

𝑋1 𝑋2 𝑋𝑛

𝑋𝐺 = 𝑋1, 𝑋2, … , 𝑋𝑙(𝑘) ∈ 0,1 𝑙(𝑘)

𝑋𝐴𝑛 = 𝑋1, 𝑋2, … , 𝑋𝑛 ∈ 0,1 𝑛

Repeated trials 𝐴𝑛

Random seed 𝑆 ∈ 0,1 𝑘

FIG. 1. (a) Repeated trials An of experiments using the
same physical system A. (b) Pseudorandom number genera-
tor (PRNG) G.

P2: The generated string x is in some sense similar to
a true random bits string (i.e. an output of the
TRNG).

Condition P1 means that, once one feeds a short ran-
dom seed s to a PRNG, one can obtain a virtually inex-
haustible number of ‘random’ bits x. PRNGs are useful
in this sense in practive, but the drawback is that the
resulting x is much less random than TRNG.

Condition P2 means that for certain usages the small
randomness of x may not be apparent, and x can be
a substitute for the TRNG. For example, in numerical
calculations, it is observed that using PRNG instead of
TRNG does not significantly change the results.

Condition P1 is stated formally as follows.

Definition 1 (PRNG, cf. Fig. 1(b)) Pseudorandom
number generator (PRNG) is a (efficient) deterministic
algorithm such that for any k ∈ N and any input
s ∈ {0, 1}k, the result G(s) is a string of length l(k),
where l(k) is a polynomial satisfying l(k) > k for ∀k ∈ N.
The polynomial l(k) is called an expansion factor.

Here a deterministic algorithm G is the one in which,
once the input value s is determined, the output value x
is also uniquely determined.

Since the random seed S is a k-bit long random vari-
able, its entropy is at most k bits. Also, since the
algorithm G deterministic, the entropy of its output
X = G(S) can at most be that of S. Thus, we have

H(G(S)) ≤ k < l(k), (2)

meaning that, unlike in the case of the TRNG, the en-
tropy of PRNG’s output X = G(S) can never attain the

theoretical maximum l(k) (cf. Eq. (1)). PRNGs are
definitely inferior to the TRNGs in this sense.

4. Cryptographic PRNG (CPRNG)

Next we proceed to the formal definition of condition
P2. Unlike condition P1, the definition of P2 differs
depending on the academic field. Here we particularly
adopt the definition in the field of cryptography, or cryp-
tology.
In cryptology, the phrase ‘in some sense similar’ in

condition P2 is taken pessimistically and interpreted
as ‘distinguishable by any efficient discrimination algo-
rithm.’ This is because rationale cryptanalysts will al-
ways employ the best attacking method possible. In
other words, no cryptanalysts will deliberately choose an
inferior method when better methods are available.
From this point of view, condition P2 can formally be

stated as follows.

Definition 2 (CPRNG. Ref. [32], Def. 3.14) We
say that a PRNG G is a cryptographic PRNG (CPRNG)
if it satisies, in addition to the properties of Definition 1,
the following: For any (efficient) probabilistic algorithm
D, there is a negligible function negl such that∣∣∣P (D(G(Uk)) = 1)− P (D(U l(k)) = 1)

∣∣∣ ≤ negl(k). (3)

Here, probabilistic algorithms are those which perform
coin tosses internally (see, e.g., [33, 35]). A function f :
N → R is called negligible if it satisfies: For any positive
polynomial (polynomial whose output is positive for any
input ∈ N) p(k), there exists N ∈ N such that

∀k ≥ N, f(k) <
1

p(k)
(4)

(see. e.g., Ref. [33], Def. 1.3.5).
In fact, however, no explicit construction of CPRNG

is known, which satisfies the properties of Definition 2.
No proof of its existence has been given either. Hence
the existence of a CPRNG is a mere assumption, not a
proven fact.
In such a situation, what is mostly done in cryptology

is either (i) to mathematically prove the existence of a
CPRNG from other assumptions, or (ii) to mathemati-
cally prove the security of a cryptosystem having G as
a component, assuming that G is a CPRNG; see, e.g.,
Refs.[32, 33]. As a result, most of the results obtained
so far in cryptology do not hold without the existence
of a CPRNG or other stronger assumptions, such as the
existence of a one-way function.
It may be easier to understand this situation by con-

sidering CPRNG in cryptology as an analog of the second
law in thermodynamics. In thermodynamics, there are
two situations similar to (i) and (ii) above, namely, (i’) if
one accepts the second law as a hypothesis, one can prove
useful results including the existence of entropy, and (ii’)
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if one accepts the principles of statistical dynamics as
hypotheses, one can explain to some extent (though one
cannot prove) why the second law holds.

Hence, although the existence of a CPRNG is noth-
ing more than a hypothesis, if any result contradicting
with it were obtained, it would immediately mean the
collapse of cryptology as a whole, and the impact would
be enormous.

B. Minimal requirements on randomness measures

References [27, 30] discuss randomness measures for
distinguishing QRNGs and PRNGs. There, a random-
ness measure I is an index I(X) that can be calculated
from the output bit string X ∈ {0, 1}n of a RNG, and
reflects the randomness of the RNG. However, they did
not necessarily discuss conditions for I to be useful in
practice. Below will discuss such conditions.

1. Efficiently computable randomness measure

Some indices I, such as LZ complexity (see Section
III B 1 a), take a discrete value, while others, such as
Borel normality (see Section III B 1 b), take a continu-
ous value. Those indices I of discrete value can of course
be represented by a finite number of bits. On the other
hand, those of a continuous value cannot be calculated
as it is in finite time, hence one needs to adapt them to
a finite number of bits, e.g., by truncating the value to
a certain number of significant digits. As a result, any
index I needs to be of finite bit length.

Moreover, in order for the index I to be calculable not
only in finite time but also in a realistic time, we need an
efficient algorithm that can compute it. Hence we need
the following condition on I.

Definition 3 (Efficiently computable measure I)
A randomness measure is an efficient probabilistic
algorithm I : {0, 1}∗ → {0, 1}∗.

Here {0, 1}∗ denotes the set of all bit strings of a finite
length, {0, 1}∗ =

⋃
n∈Z≥0

{0, 1}n (see, e.g., Refs.[32, 33]).

Note that Definition 3 can accommodate the case
where one handles multiple indices I1, I2, . . . simultane-
ously: Let I be a concatenating I1, I2, . . . , for example.

2. Efficient distinguisher for a randomness measure

Furthermore, for I to be an effective randomness mea-
sure, it is necessary that ‘I reflects the randomness of
the RNG.’ In this paper we interpret this property as
that ‘the value I(X) has different probability distribu-
tions depending on whether the source of X is a TRNG
or a PRNG’ Indeed, if this is not the case, then I(X)

Efficient distinguisher algorithm 𝐷𝐼

0 or 1

QRNG
(incl. TRNG)

PRNGor

output

𝐼(𝑋)

𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑙(𝑘)) ∈ 0,1 𝑙(𝑘)

Efficient algorithm for calculating
randomness measure 𝐼

FIG. 2. A setting for discriminating QRNGs (including the
TRNG) from PRNGs using a randomness measure I and a
distinguisher DI corresponding to I.

will have the same distribution irrespective of the ran-
domness of X’s source. It is apparent that such I(X)
conveys no information on the randomness of X.

In addition, in order for humans to be able to exploit
such differences in probability distribution, a quantita-
tive criterion is necessary. That is, one needs an al-
gorithm DI which determines from the value of I(X)
whether the randomness of X’s source is good or bad (0
or 1). Also, in order for DI to be calculable in a realistic
time, DI needs to be efficient.

In summary, for any effective randomness measure I,
there should exist an algorithm DI of the following type.

Definition 4 (Distinguisher DI for measure I) A
distinguisher for a randomness measure I is an efficient
probabilistic algorithm DI : {0, 1}∗ → {0, 1}.

Also, we say that I is a good randomness measure if the
distribution ofDI(I(X)) is significantly different depend-
ing on whether the source of X is a QRNG or a PRNG.

Under these definitions, the ideal situation is, of course,
where the algorithm DI ◦I can discriminate QRNGs and
PRNGs perfectly without any error. However, it should
be noted that we do not necessarily require such ideal
discrimination here.

For example, I can be regarded a good randomness
measure as long as the result DI(I(x)) = 1 is reliable,
even if DI(I(x)) = 0 is not. This corresponds to the
following common situation in randomness tests (such
as Ref. [36]): If x fails the test (i.e., if DI(I(x)) = 1)
one can safely conclude the source of x is a bad one (in
our case, a PRNG), but even if x passes the test (i.e.,
if DI(I(x)) = 0) it does not necessarily mean that the
source was a good one (in our case, a QRNG).
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C. Main result: A good randomness measure is not
feasible

In fact, the existence of a good randomness measure I
directly contradicts the common assumption of cryptol-
ogy. Hence a good randomness measure is not feasible.

More precisely, from what we have already discussed,
one can conclude that

(i) If a cryptographic PRNG (CPRNG), defined in
Section IIA 4, exists, it is indistinguishable from
the TRNG.

(ii) If there exists the algorithm DI ◦ I that can distin-
guish QRNGs and PRNGs, it should also be able
to distinguish the TRNG (a type of QRNG) and
CPRNGs (a type of PRNGs).

However, these statements are clearly contradictory, thus
one must give up either one. That is, one needs to accept
either of the followings statements,

(i’) A CPRNG does not exist.

(ii’) No algorithm DI ◦ I corresponding to any ran-
domness measure I can distinguish between the
TRNG (a type of QRNG) from CPRNGs (a type
of PRNGs).

Recall that, as mentioned in the second half of Section
IIA 4, the existence of CPRNG is one of the most com-
mon assumptions in cryptology, on which most results
of the field are based. Thus, choosing (i’) is equivalent
to making a very challenging claim that denies much of
cryptology.

Therefore, from a conservative standpoint, statement
(ii’) should be accepted. The rigorous form of this state-
ment is as follows.

Theorem 1 Suppose that there exists a CPRNG G, then
for any randomness measure I and any distinguisher DI

corresponding to it, we have∣∣∣P (DI(I(G(Uk))) = 1)− P (DI(I(U
l(k))) = 1)

∣∣∣ ≤ negl(k),

(5)
where l(k) is the expanding factor of G (Recall that P (E)
denotes the probability of an event E).

Proof. This theorem follows trivially from Definition
2 of CPRNG. Indeed, for any given I and DI satisfying
Definitions 3 and 4, the algorithm DI ◦ I becomes an
example of the distinguisher algorithms D for G, defined
in Definition 2. Thus, we have (5).

We note that a similar theorem as Theorem 1 holds by
assuming the existence of a one-way function, not of a
CPRNG. This is because a CPRNG can be constructed
from one-way functions (see, e.g., Ref. [33], Section 3.4).

D. Generalization of Theorem 1

In the previous section, we assumed that QRNG A
outputs a bit 0,1 with exactly probability 1/2; that is, we
only consider the case where A realizes the 1-bit TRNG
U1. In addition, the expansion factor l(k) of the CPRNG
G that mimics Al(k) could not be chosen freely. Below
we relax these restrictions and generalize Theorem 1.

1. A simple case (biased random bit generators)

First, we outline the idea with a simple example.
Suppose that QRNG A output 1-bit X ∈ {0, 1} as in

the previous section, but the probability may be biased;
i.e., p = P (X = 1) may not be 1/2. In this case too,
essentially the same result as Theorem 1 holds: If there
exists a CPRNG G, then one can construct a PRNG G′

that simulates Al(k), with an arbitrary polynomial l(k)
being the expansion factor. In addition, the outputs of
Al(k) and G′ are indistinguishable by using any I and DI .
The rigorous proof of this claim will be given in the

next section after generalizing the setting further. Below
we temporarily give a proof sketch for the simple case
above (cf. Fig. 3).
First note that A can be efficiently simulated with ac-

curacy 2−m in probability, by using a deterministic al-
gorithm A′ whose input is the m-bit long TRNG Um.
For example, (i) approximate probability p by a fraction
p = b/2m, b ∈ N, and (ii) let A output 1 if the value of
Um is less than or equal to b, and 0 otherwise.
Next let (A′)n denote the n repetition of A′, Clearly,

(A′)n is a deterministic algorithm that simulates An by
using the input of nm-bit TRNG Umn.
If we then replace the input Umn of (A′)n with the

output of CPRNG G(Uk) (having an expansion factor
l(k) = mn), then we obtain the desired PRNG G′ that
mimics An.
In this setting, the output of G′ is indeed indistinguish-

able from the output of Al(k), because: (i) By choosing
m sufficiently large, the output X(A′)n of (A′)n can ap-
proximate the output XAn of An with arbitrarily small
error probability. That is, XAn and X(A′)n are indistin-

guishable. (ii) The TRNG Umn and the CPRNG G(Uk)
are indistinguishable by the definition of CPRNG. Thus,
the outcome of an algorithm (A′)n on their input, namely
X(A′)n and XG′ , are also indistinguishable.

2. Efficiently classically simulatable systems

Next, we generalize the settings of the previous sections
further and discuss them rigorously.
The generalized settings are as follows. The output X

of a QRNG A is no longer limited to one bit, but can be
any finite set X (i.e., X ∈ X ). Then we require that A be
efficiently classically simulatable [34]. In recent and fash-
ionable terminology, this means that the system A does
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𝐴′

𝑛 ∈ 0,1 𝑛

FIG. 3. A construction of PRNG G′ that simulates the output
of QRNG A, which is a biased bit.

not exhibit quantum supremacy. The precise definition
is as follows.

Definition 5 (Efficient classical simulation) (Ref.
[34], Def. 2) Suppose that a physical system A outputs
a random variable X ∈ X . An efficient classical
simulation for A is an efficient probabilistic algorithm
A′ which, on input 1n (sequence of n symbols of ‘1’),
outputs ∈ X that satisfies∥∥P (XA)− P (XA′(1n))

∥∥
1
≤ 2−n. (6)

We say that A is efficiently classically simulatable (ECS)
if such A′ exists.

Several technical remarks are in order related with
this definition: First, the symbol ∥P (X) − P (Y )∥1 de-
notes the total variational distance between the prob-
ability distributions of random variables X,Y ∈ X ;
∥P (X) − P (Y )∥1 := 1

2

∑
x∈X |P (X = x)− P (Y = x)|.

Second, the input 1n is meant to specify parameter n
and to require that A′ halts within a polynomial time of
n. Third, in the original definition (i.e., in Definition 2 of
Ref. [34]) A′ has an additional input besides 1n, but we
here omit it because in this paper we restrict ourselves to
the case where physical system A is a QRNG and thus
has no input. Finally, in the statement of Definition 5,
we used the term ‘physical system’ instead of ‘quantum
system’ because the discussions below hold not only for
quantum systems, but for physical systems in general.

Additionally, to comply with the fact that the output
of A is a X string rather than a bit string, we let the
input to index I also be an X string. That is, we let I
be an efficient probabilistic algorithm I : X ∗ → {0, 1}∗.
Under these settings, we have the following generaliza-

tion of Theorem 1.

Theorem 2 Suppose that there exists a CPRNG. Then
for any ECS physical system A, and for any positive and

increasing polynomial l(k), there exists a deterministic
algorithm B : {0, 1}∗ → X ∗ which, on input a k-bit
string, outputs a X string of length l(k) that satisfy∣∣P (DI(I(B(Uk))) = 1)− P (DI(I(XAl(k))) = 1)

∣∣
≤ negl(k). (7)

for any pair of a randomness measure I and a distin-
guisher DI .

In other words, for any ECS system A, there exists an
algorithm B that impersonates it with low randomness.
Moreover, the output size l(k) of B(Uk) can be chosen
to be an arbitrary polynomial.
The proof of Theorem 2 is given in Appendix B.

III. EMPIRICAL ANALYSES

In this section, we give empirical examples to support
Theorems 1 and 2. For this, we perform the data analyses
on two kinds of QRNGs: quantum coin toss games and
the Bell tests. We start this section by presenting the
details of those datasets.

A. Data

1. Quantum coin toss games

In quantum coin toss games, a type of QRNGs, we
first prepare the initial state |Ψ⟩ = (|0⟩+ |1⟩)/

√
2, where

{|0⟩, |1⟩} is an orthonormal basis of the state space C2 of
a two-level system. We then perform projection mea-
surement on the initial state |Ψ⟩ along the computa-
tional bases {|0⟩, |1⟩} and find the outcome a ∈ {0, 1}.
Repeating this process N times, we obtain a bit string
aN = (a1, a2, . . . , aN ), where ai ∈ {0, 1}.
In IBM Quantum, the initial state is restricted to

the computational basis state |0⟩. The state |Ψ⟩ is
implemented as the application of the Hadamard gate
H = (|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| − |1⟩⟨1|)/

√
2 to the compu-

tational basis state |0⟩. Therefore, we can rewrite the
quantum coin toss as the following three steps: i) state

TABLE I. Mean relative frequency of bit value 1 and standard
deviation of three datasets of 100 bit strings with length N =
20000 created by the quantum coin tosses. The numbers after
± are the standard deviation obtained after 100 trials.

Device used in data acquisition
Mean relative frequency

of bit value 1

ibmq_manila 0.4851± 0.0034

ibmq_qasm_simulator 0.4999± 0.0034

ibmq_qasm_simulator (with noise) 0.4893± 0.0036
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preparation in the computational basis |0⟩ for a two-level
system (qubit) in a quantum processing unit (QPU), ii)
application of the Hadamard gate H, iii) projection mea-
surement along the computational bases {|0⟩, |1⟩}.
Following the above steps, we made a dataset by using

ibmq_manila provided by IBM Quantum. The dataset
was made on February 23, 2023, and consists of 100 bit
strings with the length N aligned to N = 20000.

To make a comparison between this QRNG and
PRNGs, we performed classical simulations using three
types of PRNGs. The first and second types are
ibmq_qasm_simulator, and imbq_qasm_simulator with
the device noise model of ibmq_manila, respectively. The
third is ChaCha20 algorithm described in Refs. [32, 37].
Note that the simulators are regarded as PRNGs since
they run on classical computers and use a short random
seed. We hereafter specify datasets by the name of the
device used for their data acquisition process.

Table I shows the mean relative frequency of bit value
1 in the entire bit string. The numbers after ± are the
standard deviation obtained after 100 trials. Note that
the mean relative frequency of ibmq_qasm_simulator
is closer to the theoretical value 1/2 than that of
ibmq_manila, and these two values are mutually dis-
tinguishable within the standard deviations. Note
also that, in contrast, the mean relative frequency of
ibmq_qasm_simulator (with noise) is comparable to that
of ibmq_manila within the standard deviations.

2. Innsbruck experiment

To examine observation ii) in the Introduction, as an
example of the actual Bell tests, we employ the dataset
taken for [4], which reports the first experiment of the
Bell test free from the locality loophole. We hereafter call
the series of the Bell tests conducted in [4] the Innsbruck
experiments.

In the Innsbruck experiments, entangled photon pair
|Φ⟩ = (|0⟩|1⟩ − |1⟩|0⟩)/

√
2 is created. Each photon in

the pair is distributed to space-like separated two points
(hereafter called Alice and Bob, respectively), but some
photons are lost during the distribution process. For the
distributed photons in each distribution process, Alice
performs a measurement by choosing the measurement
axis x out of two alternatives x ∈ {0, 1}, and obtains the
outcome a ∈ {0, 1}. Bob also does so for each photon. We
hereafter denote Bob’s measurement axis and outcome by
y ∈ {0, 1} and b ∈ {0, 1}, respectively.

Repeating the above measurement processes many
times, they store the data of the measurement outcomes
with their time stamps and the records of the measure-
ment axes. We call each of these records of the series of
measurements a sample. In particular, we shall analyze
21 samples, each named longdist*, which are the samples
actually used in the Innsbruck experiments [31].

Given a sample, we extract a pair of coincident out-
comes, namely, those detection events that occur simulta-

neously on both Alice’s and Bob’s sides within the thresh-
old given in [31] with the time stamps’ difference. We de-
note the outcomes by (a, b), and the number of the pairs
of the coincident outcomes in the sample by N . We con-
struct three bit strings, that is, Alice’s bit string aN =
(a1, a2, . . . , aN ), Bob’s bit string bN = (b1, b2, . . . , bN ),
and a mixed bit string cN = (a1, b1, a2, b2, . . . , aN , bN ).
By construction, we may expect that the bit string

cN is less random than aN and bN , if the given sample
violates the Bell inequality. For, every pair (ai, bi) in cN

has a strong correlation not described by any local hidden
variable theories (LHVTs), and thereby cN becomes more
structured than the bit strings expected from LHVTs.
This inherent difference between cN and the others is
also examined in this paper.

3. Efficient Simulation using ChaCha20

To give numerical support to Theorems 1 and 2, by
using the PRNG called ChaCha20 algorithm [32, 37], we
made the pseudo-random number strings that mimic the
bit strings obtained from the above two experiments by
following the procedure given in Sec. IID 1 for the biased
random bit sequences.
More precisely, for the Innsbruck experiment, we used

the following process. First given the relative frequency
and length of an experimental bit string, we generated
a pseudo-random number byte string having twice the
length of the given bit string. Then we convert each two
bytes of the pseudo-random number byte string to a real
number. We compare each of these real numbers with
a threshold value, which is the relative frequency value
rescaled by 216, and convert it to a bit 0 (1) if it is higher
(lower) than the threshold.
We also performed the same procedure for the quan-

tum coin toss games by using the mean relative frequency
of the data taken by ibmq_manila.

B. Measures

We characterize the bit strings in the datasets de-
scribed in the previous section by the (algorithmic) ran-
domness. In addition to this, for the dataset of the Inns-
bruck experiment, we measure how much the data are
non-local. We hereafter introduce the measures of algo-
rithmic randomness and non-locality.

1. Randomness measures

a. Lempel-Ziv (LZ) complexity Let us suppose that
we are given a bit string sN = (s1, s2, . . . sN ) ∈ {0, 1}N ,
and consider the following parsing

E(sN ) = s(1, h1)s(h1 + 1, h2) . . . s(hm−1 + 1, N), (8)
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where s(i, j) = (si, si+1, . . . , sj) is the substring of sN

from the i-th bit to the j-th. Now let us set h1 = 1 and
make the parsing in such a way that s(hi−1 + 1, hi) is
the minimal substring that has not already appeared as
the substring s(hk−1 + 1, hk) with k < j. Then, it has
been known that the E(sN ) is uniquely determined if we
follow the above rule of parsing [27].

Let c(N) be the number of the substrings constructed
in the above rule. Then c(N) has an upper bound [27]

c(N) <
N

(1− εN ) log2(N)
, (9)

where

εN = 2
1 + log2 log2(2N)

log2(N)
. (10)

Note that Ineq. (9) follows solely from the definition of
c(N), and thereby holds for any bit string sN of length
N .

Motivated by this upper bound of c(N), we define

K(N) = c(N)
log2 N

N
, (11)

which has been widely used as a measure of algorithmic
complexity in literature [21–25, 28, 29]. We hereafter call
K(N) the LZ complexity in this paper, although much
literature calls K(N) the normalized LZ complexity.
As suggested in Ineq. (9), the upper bound of the LZ

complexity K(N) depends on the length N . To make it
reasonable that the comparison of the algorithmic com-
plexity between the bit strings with mutually distinct
lengths, let us normalize the LZ complexity K(N) by
the maximal value of c(N) for the given N . For this, we
recall that the maximal value of K(N) is attained by the
bit string whose substrings are exhaustively aligned and
lengthened from left to right, for example,

tN = (0, 1, 0, 0, 0, 1, 1, 0, 1, 1, . . .), (12)

whose parsing is given as

t(1, 1) = (0),

t(2, 2) = (1),

t(3, 4) = (0, 0),

t(5, 6) = (0, 1), (13)

and so on. In this case, the length of the bit string
composed of all the mutually distinct bit strings whose
lengths are up to m is given by

lm =

m∑
k=1

k2k = (m− 1)2m+1 + 2. (14)

Let m∗ be the number to minimize the difference N −
lm ≥ 0. Then we obtain the number of the bit strings to
compose tN as

cmax(N) =

m∗∑
k=1

2k+

⌈
N − lm∗

m∗ + 1

⌉
= 2m

∗+1−2+

⌈
N − lm∗

m∗ + 1

⌉
,

(15)

where ⌈x⌉ is the minimal integer exceeding x. It follows
that the maximum of K(N) is given as

Kmax(N) = cmax(N)
log2 N

N
. (16)

Based on the above argument, we define the normalized
LZ complexity

κ(N) =
K(N)

Kmax(N)
=

c(N)

cmax(N)
. (17)

To close this introduction of the LZ complexity, let us
point out the inconsistencies appearing in data analyses
of Ref. [24]. Using the fact that εN decreases monotoni-
cally with N and that ε4096 < 0.784 holds, we obtain

c(N) < 4.6
N

log2(N)
for 4, 096 ≤ N. (18)

Thus for the normalized complexity measure K(N),

K(N) < 4.6 for 4, 096 ≤ N (19)

must always hold.

In contrast, almost half of all trials shown in Table I of
Ref. [24] violate the upper bound (19). More precisely,
for 16 of 37 trials in Table I (namely, longdistX with X =
1, . . . , 4, 10, 11, 13, 20, 23, 30, 32, 33, 34, 36 and 37, and
Conlt3), the authors conclude the K(N) > 7 and N >
4, 096 hold simultaneously, but this clearly conflicts with
Ineq. (19), implying inaccuracy in their data processing.

b. Borel normality measure The Borel normality
measures the distribution of substrings in the given bit
string [30]. Let Bm = {0, 1}m be the set of the bit strings
with length m, and Nm

j (sN ) be the number of occurring

the lexicographical j-th bit string of length m in sN . Let
us denote the length of sN over Bm by |sN |m and define
|sN | = |sN |1. Then the bit string sN is Borel normal
(with accuracy 1

log2 |sN | ) if we have

∣∣∣∣∣Nm
j (sN )

|sN |m
− 1

2m

∣∣∣∣∣ ≤ 1

log2 |sN |
, (20)

for every integer 1 ≤ m ≤ ⌊log2 log2 |sN |⌋ and 1 ≤ j ≤
2m [30].

From the above definition of the Borel normality, the
following measure was proposed in [25]:

B(sN ) = max

∣∣∣∣∣Nm
j (sN )

|sN |m
− 1

2m

∣∣∣∣∣ log2 |sN |, (21)

where the maximum is over m = 1, 2, . . . , ⌊log2 log2 |sN |⌋
and j = 1, 2, . . . , 2m. The measure B(sN ) ensures that
the bit string sN is Borel normal if B(sN ) ≤ 1.
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2. Non-locality measure

We first introduce the CHSH correlation function [38]

S =

∣∣∣∣∣∑
x,y

(−1)xy [P (A = B|xy)− P (A ̸= B|xy)]

∣∣∣∣∣ , (22)

where P (A = B|xy) is the conditional probability of the
outcome coincidence given the pair of the measurement
axes (x, y) and P (A ̸= B|xy) is that of the non-coincident
outcomes. The CHSH correlation function has the upper
bound S ≤ 2 for any LHVTs [38] whereas for quantum

mechanics it exceeds the bound and attains 2
√
2 ≈ 2.828

[39]. We employ the CHSH correlation function as the
measure of non-locality.

C. Results of the empirical analyses

1. Quantum coin tosses

We discuss whether there is a difference in the random-
ness of the bit strings created by a QRNG (quantum com-
puter) and PRNGs including simulators by considering
the simplest setup, i.e., quantum coin toss games. Fig-
ure 4 shows the randomness measures (the algorithmic
complexity measures mentioned above) of our datasets.

As to the (normalized) LZ complexity, the bit strings
obtained from the simulator with the device noise model
and ChaCha20 are comparable to those obtained from
the QRNG. The bit strings from the simulator (without
the device noise model) have a slightly higher algorith-
mic complexity than those from the QRNG. This is pre-
sumably because the mean relative frequency of the data
obtained from the simulator is almost 0.5, which is sig-
nificantly higher than that of the dataset from the actual
device.

In contrast, the Borel normality measure distinguishes
all the cases.

Let us look at the above observation by using the hy-
pothesis testing (Welch’s t-test) on whether the simu-
lations have no difference from the actual device: For
the case of noiseless simulation against the actual device,
we found the statistic t ≈ −3.01 with its p-value being
2.96 × 10−3 for the LZ complexity and normalized one,
whereas t ≈ 20.69 with its p-value being 2.15× 10−51 for
the Borel normality measure. This suggests that these
two ways of creating the random bit strings are distin-
guishable from each other if we focus on the average val-
ues of the randomness measures.

In contrast, for the case of simulation with the device
noise model against the actual device, we observed the
statistic t ≈ −1.25 with its p-value being 0.213 for the
LZ complexity and normalized one, while t ≈ 7.58 with
its p-value being 1.33 × 10−12 for the Borel normality
measure. This shows that these two ways of creating
the random bit strings are indistinguishable from each
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FIG. 4. The box plots of the randomness measures for the
quantum coin tosses: (Above) the LZ complexity, (Middle)
the normalized LZ complexity, and (Below) the Borel normal-
ity measure. Throughout this paper, we draw the box-and-
whisker plots as follows. Given the data and their attributes
to be plotted, the length of the upper (lower) whisker is set as
a maximum (minimum) value not exceeding 1.5 times the in-
terquartile range (IQR, the height of the box). Data whose at-
tribute values are outside this range are called outliers, which
are plotted as dots.

other if we employ the (normalized) LZ complexity as
shown in Theorem 1, if their relative frequency is com-
parable. Moreover, for the case of PRNG, the statistic is
t ≈ −0.32 and its p-value is 0.749 for the LZ complexity
and normalized one, while t ≈ −0.33 with its p-value be-
ing 0.739 for the Borel normality measure. Thus, the bit
strings created by ChaCha20 are indistinguishable for all
the complexity measures we have employed, supporting
our theorems.

2. Innsbruck experiment

Motivated by our theorems and the discussion pre-
sented in Sec. III B, we proceed to the analyses of the
Innsbruck experiment, or the longdist dataset. More con-
cretely, we shall show the descriptive statistics of the ran-
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FIG. 5. The box plots of the randomness measures for the
bit strings generated from the Innsbruck experiment and
ChaCha20: (Above) the LZ complexity, (Middle) the normal-
ized LZ complexity, and (Below) the Borel normality measure.
The outlier coming from longdist4 is omitted. The bit strings
at the Bob’s station are more random than those at the Alice’s
station. The mixed bit strings are less random if evaluated
by the LZ measure.

domness measures mentioned above and their correlation
coefficients.

In our analyses, we have omitted the longdist4 sample
as an outlier due to its relatively small number of the
coincident events N ; see Appendix A.

Figure 5 shows the descriptive statistics of the random-
ness measures. All the randomness measures show that
Alice’s bit strings tend to be more random than Bob’s
ones. This suggests asymmetry between Alice’s appara-
tus and Bob’s due to, e.g., systematic errors since the
ideal Bell test has the exchange symmetry between Al-
ice and Bob. Note that one cannot extract information
about such asymmetry by using S, which only quanti-
fies the correlation between Alice and Bob. Note that
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FIG. 6. The scatter plots between the randomness measures
and the entropy: (Above) the LZ complexity, (Below) the
normalized LZ complexity. The outlier coming from longdist4
is omitted. The bit strings at the Bob’s station are more
random than those at the Alice’s station.

the maximal value of the LZ complexity in our analy-
sis is in accordance with our theoretical consideration
in Sec. III B 1 a. More precisely, all our analyses satisfy
K(N) ≲ 1.55, which is accordance with K(N) < 1

1−ϵN
≈

2.652 implied by Ineq. (9) for the bit length 90000, an
upper bound length of the mixed bit string cN in our
coincidence data.

Above we analyzed Alice and Bob individually, but we
also analyzed their mixed bit strings. We found that
the relationship between the randomness of Alice’s (or
Bob’s) individual bits and that of the mixed bit sequence
appears to be different depending on the measure. This
may reflect the fact that the randomness measures we
use, although normalized, is still weakly dependent on
length. The mixed bit string is statistically the least
random if measured with the LZ complexity, whereas the
most random with the normalized LZ complexity. More-
over, the Borel normality suggests that its randomness is
in-between.

We note that the mixed bit sequence should be the
least random in the algorithmic sense, since S > 2 for
many of the longdist data suggests that every bit pair
(ai, bi) in the mixed bit strings has the strong correlation
not described by any LHVTs, resulting in a decrease of
the algorithmic randomness. This suggests that perhaps
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FIG. 7. The scatter plot between the randomness measures
and the entropy of the joint probability distribution. The
outlier coming from longdist4 is omitted.

the LZ complexity most captures the latent correlations
inherent in the mixed bit strings obtained from the Bell
tests.

The data obtained from ChaCha20 successfully imitate
those from the Innsbruck experiment. More precisely,
the interquartile range (IQR, the box heights in the box-
and-whisker plots) are almost the same as those of the
associated Innsbruck data.

In the rest of this subsection, we reexamine the anti-
correlation suggested in [24]. We first check the correla-
tion between the entropy and the (normalized) LZ com-
plexity. Figure 6 shows that given the conditional prob-
ability distributions p(a|x), p(b|y), their entropies

H(A|X = i) = −
∑

a p(a|X = i) log2 p(a|X = i),

H(B|Y = i) = −
∑

b p(b|Y = i) log2 p(b|Y = i) (23)

for i = 0, 1 correlate with the (normalized) LZ complex-
ity. This suggests that the LZ complexity can be under-
stood in terms of entropy. Moreover, we observe that the
entropy for the case x = 0 and y = 0, 1 ranges from 0.98
to 1, whereas that for x = 1 does from 0.95 to 1. Since
the initial state in Weihs’ experiment is the singlet state,
its reduced density matrix is completely mixed, leading
to the equal weight probability distribution. Therefore,
the large deviation of the entropy when x = 1 implies the
existence of (systematic) errors in Alice’s station.

The above correlation can be observed in the entropy
of the joint probability distribution

H(AB|X = i, Y = j) (24)

= −
∑
a,b

p(ab|X = i, Y = j) log2 p(ab|X = i, Y = j).

Indeed, Fig. 7 shows a correlation relation stronger than
that shown in Fig. 6. Therefore we can conclude that
the LZ complexity is explainable by the entropy of joint
probability distribution for the Innsbruck experiment.

In contrast to entropy, we cannot say an anti-
correlation exists between non-locality and randomness.
To argue this in detail, recall that the maximum of the

LZ complexity depends on N as shown in Sec. III B, and
thereby the possible confounder is the number of the co-
incidence events N . From this observation, we evaluated
the Pearson correlation coefficients r between S and the
randomness measures with the use of the stratification
of N into the following three classes: i) N < 20000, ii)
20000 ≤ N < 40000, and iii) N ≥ 40000.
Table II shows the correlation coefficients r with its p-

values and 95% coincidence intervals. We find that r > 0
for the (normalized) LZ complexity in general whereas
r < 0 for the Borel normality except for the mixed bit
sequence with 20000 ≤ N < 40000. This is consistent
with the fact that the (normalized) LZ complexity be-
comes larger when the given sequence is more random,
whereas the Borel normality is becoming smaller. Be-
sides, we observe that the correlation coefficient for Al-
ice’s bit strings is comparable with that for the mixed
bit strings, except in the case N ≥ 40000. Thus, we
can conclude that the degree of the randomness (weakly)
correlates with the non-locality for Alice’s bit strings for
N < 20000 and 20000 ≤ N < 40000. This also holds for
the mixed bit strings for N ≤ 20000. These observations
are inconsistent with [24]. On the other hand, all the
p-values are more than 0.05, implying that it is hard to
deduce the anti-correlation for the parent population if
we see the longdist dataset as samples thereof. Indeed,
all the 95% coincidence intervals of r contain r = 0.

It is of important to find the typical sample size to de-
termine whether the non-locality (anti-)correlates with
the degree of randomness in the parent population. For
example, let us take r = 0.45, which is the correlation
coefficient between S and the LZ complexity of Alice’s
bit strings for N ≤ 20000. According to the standard
procedure given in [40], the sample size is 36 to test the
hypothesis r = 0.45 with significance level α = 0.05 (two-
tailored) and power 1−β = 0.8. Moreover, sample size es-
timation with a pre-specified confidence interval requires
a larger sample size: we need the sample size 64, 111,
and 247 to test r = 0.45 with desired 98% confidence
interval half-width 0.20, 0.15, and 0.10, respectively [41].
On the other hand, if we take r = 0.1, which is the cor-
relation coefficient between S and the LZ complexity of
Bob’s bit strings for N ≤ 20000, then the required sam-
ple size is 782 for the test with significance level α = 0.05
(two-tailored) and power 1− β = 0.8.

IV. CONCLUSION

In this paper, we presented a no-go theorems (and its
generalization) showing the contradiction between the
existence of the CPRNGs and that of the efficiently
computable randomness measures distinguishing the out-
comes from the PRNGs and those from ECS systems.
Given the success of modern cryptography which hinges
on the presumed existence of the CPRNGs, it seems dif-
ficult to deny the assumption in practice. Accordingly,
we could say that there are no efficiently computable ran-
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TABLE II. The correlation analysis of the bit strings with the stratification of N . The Pearson correlation coefficient r between
the non-locality and randomness measures is calculated.

Stratification Bit sequence Randomness measure r p-value 95% coincidence interval

LZ .450 .192 [-.251, .841]

Alice Normalized LZ .405 .246 [-.302, .824]

Borel normality -.313 .379 [-.787, .394]

LZ .092 .801 [-.571, .682]

N < 20000 Bob Normalized LZ .115 .751 [-.555, .694]

(10 samples) Borel normality -.080 .825 [-.676, .579]

LZ .448 .194 [-.253, .841]

Mixed Normalized LZ .325 .360 [-.383, .792]

Borel normality -.222 .538 [-.747, .474]

LZ .395 .381 [-.510, .885]

Alice Normalized LZ .437 .327 [-.471, .895]

Borel normality -.054 .909 [-.775, .729]

LZ .047 .921 [-.732, .773]

20000 ≤ N < 40000 Bob Normalized LZ -.014 .977 [-.759, .747]

(7 samples) Borel normality -.178 .703 [-.821, .664]

LZ -.240 .604 [-.841, .626]

Mixed Normalized LZ -.515 .237 [-.914, .389]

Borel normality -.236 .610 [-.840, .629]

LZ -.293 .811 [-1, 1]

Alice Normalized LZ -.572 .612 [-1, 1]

Borel normality .075 .952 [-1, 1]

LZ .845 .359 [-1, 1]

N ≥ 40000 Bob Normalized LZ .879 .316 [-1, 1]

(3 samples) Borel normality -.975 .144 [-1, 1]

LZ .684 .520 [-1, 1]

Mixed Normalized LZ .665 .537 [-1, 1]

Borel normality -.601 .589 [-1, 1]

domness measures capable of distinguishing the outcomes
of PRNGs from those of the ECS systems. It follows that
if the QPNG under consideration is ECS then these ex-
ists no random measures to distinguish the QRNG from
a properly chosen PRNG.

In addition, we gave two comparative analyses between
the PRNGs and the actual data on the quantum coin
tosses and the Innsbruck experiment. In both analyses,
we found that the average values of the algorithmic com-
plexity measures for the PRNGs are indistinguishable
from those for the QRNGs. This is an assuring result
and is consistent with our theorem. In the meantime, we
reconsidered the former analyses [24] which erroneously
reported an anti-correlation between the randomness and
non-locality in the Innsbruck experiment. In contrast,
we found that the randomness measures show no such
correlation between locality and randomness in general.
Instead, a clear correlation is found between the random-
ness measures and (joint) binary entropy, suggesting the
existence of possible systematic errors in Alice’s appara-
tus.

The fact that our theorem can be applied only to ECS

quantum systems indicates that for QRNG the property
of ECS may be an important characteristic when it comes
to the study of the nature of randomness. Since this
connection has been largely unnoticed in the existing lit-
erature [21–25], it would be of interest to find quantum
systems which are not ECS and examine if their outcomes
exhibit any signature different from PRNG.
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TABLE III. Numerics of the measures.

LZ Normalized LZ Borel normality

filename N S Alice Bob Mixed Alice Bob Mixed Alice Bob Mixed

longdist0 17374 2.518 1.531 1.535 1.503 .973 .976 .981 .595 .182 .424

longdist1 17640 2.629 1.531 1.534 1.499 .974 .975 .978 .462 .166 .331

longdist2 27708 1.978 1.507 1.511 1.482 .979 .982 .983 .483 .207 .398

longdist3 27620 2.660 1.510 1.511 1.480 .981 .981 .982 .499 .221 .364

longdist4 1112 1.810 .819 1.665 1.380 .464 .943 .812 7.158 1.110 3.690

longdist5 27420 2.622 1.508 1.510 1.479 .980 .981 .981 .517 .203 .386

longdist10 28248 2.283 1.503 1.507 1.477 .977 .980 .981 .641 .370 .516

longdist11 28818 2.405 1.507 1.508 1.477 .980 .981 .981 .649 .278 .515

longdist12 28718 2.393 1.503 1.508 1.477 .978 .981 .982 .636 .254 .521

longdist13 28513 2.357 1.502 1.506 1.477 .976 .979 .981 .784 .335 .559

longdist20 43315 2.058 1.491 1.489 1.463 .977 .976 .978 .166 .341 .272

longdist22 42797 2.186 1.494 1.490 1.464 .979 .976 .979 .071 .342 .223

longdist23 42778 2.632 1.491 1.491 1.464 .976 .976 .979 .143 .265 .228

longdist30 15306 2.104 1.524 1.539 1.500 .968 .977 .977 1.095 .311 .745

longdist31 15122 2.637 1.517 1.542 1.500 .963 .979 .977 1.168 .283 .756

longdist32 14294 2.703 1.521 1.538 1.499 .964 .976 .975 1.184 .562 .874

longdist33 15113 2.055 1.519 1.541 1.498 .964 .978 .975 1.170 .404 .794

longdist34 14824 1.949 1.520 1.536 1.499 .964 .974 .976 1.133 .361 .764

longdist35 14573 2.728 1.523 1.542 1.500 .967 .979 .976 1.198 .338 .745

longdist36 14571 2.720 1.527 1.541 1.502 .969 .978 .977 1.020 .378 .743

longdist37 14673 1.953 1.518 1.540 1.498 .963 .978 .975 1.241 .366 .743

Appendix A: Numerical features of the measures in
the longdist* samples

Table III shows the statistics of the longdist datasets
in the Innsbruck experiment. The number of the pairs
of the coincident outcomes N obtained in our analyses is
almost identical to that obtained in the original analyses
by Weihs [31] with a difference of about O(10), except
the sample longdist4. In contrast, N given in [24] differs
from the original analyses by Weihs about O(103).
The exceptional behavior of the sample longdist4 is

presumably due to a difference between the stored and
actual threshold values. Indeed, in the original analyses
[31], the stored threshold value and N for longdist4 are
completely identical to those for longdist3, which is un-
likely. Taking this possibility into account, we regarded
longdist4 as an outlier and excluded it from our analyses.

Appendix B: Proof of Theorem 2

In this section, we prove Theorem 2.
We begin by giving an overview of the proof. The

basic idea here is the same as in the case of the biased
bit generator in Section IID 1 (see Fig. 8).

As we assumed that system A is ECS, there exists a
probabilistic algorithm A′ which simulates A with arbi-
trary accuracy. Let Ā(1n) be the algorithm obtained by

repeating A′(1n) n times. Since Ā(1n) is also a proba-
bilistic algorithm, it can be described as a deterministic
algorithm having a TRNG U lG(n) as an auxiliary input
which Ā(1n) uses for its internal coin tossing, with lG(n)
being a polynomial of n. By replacing the auxiliary input
U lG(n) by a CPRNG G(Uk) (∈ {0, 1}lG(k)), we obtain the
desired algorithm B(Uk).
To see that B(Uk) thus obtained is indeed indistin-

guishable from the original physical system Al(k), first
note that Ā(1l(k)) simulates the output of Al(k) with
arbitrary accuracy, due to the ECS property of Ā(1n).
Also note that, by definition of the CPRNG, TRNG
U lG(k) and CPRNG G(Uk) are indistinguishable from
each other, and thus their outputs followed by an ap-
plication of an identical algorithm Ā(1l(k)) are also indis-
tinguishable; namely, the outputs of Ā(1l(k)) and B(Uk)
are indistinguishable. As a result, the outputs of Al(k)

and B(Uk) are indistinguishable.
We will below elaborate this discussion.

1. Construction of algorithm B

Following Definition 5, fix an efficient classical simula-
tion of A, and denote it by A′.
Let Ā(1n) be the algorithm obtained by repeating

A′(1n) n times. Since Ā is a polynomial-time algorithm,
the running time of Ā(1n) can be bounded from above by
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Repetition 𝐴𝑙(𝑘) of
an actual QRNG 𝐴

(incl. TRNG)

Algorithm ҧ𝐴(1𝑙 𝑘 )
for simulating 𝐴𝑙(𝑘)

Long true random 

number 𝑈𝑙𝐺 𝑘

Algorithm ҧ𝐴(1𝑙 𝑘 )
for simulating 𝐴𝑙(𝑘)

Long pseudorandom

number 𝑌 = 𝐺 𝑈𝑘

CPRNG 𝐺TRNG

TRNG

Short true random 
number 𝑈𝑘

Output 𝑋𝐴𝑙(𝑘) Output 𝑋 ҧ𝐴(1𝑙 𝑘 ) Output 𝑋𝐵(𝑈𝑘)

Similar due to
efficient classical simulatability 

Similar because TRNG 𝑈𝑙𝐺 𝑘 and

PRNG 𝐺 𝑈𝑘 are indistinguishable

Deterministic algorithm 𝐵

for simulating QRNG 𝐴𝑙(𝑘),
by using a short TRNG 𝑈𝑘

aux. input aux. input

FIG. 8. An overview of the proof of Theorem 2. Algorithm
Ā(1n) is the one in which the classical simulation algorithm
A′(1n) of A is repeated n times. In the above figure, we set
n = l(k).

a polynomial g(n). Without loss of generality, we may
assume that g(n) is monotonically increasing.

Recall that probabilistic algorithms in general can be
described as a deterministic algorithm having a random
tape as auxiliary inputs (see, e.g., Ref. [33], Section
1.3.2.2). In this description, one can regard Ā(1n) as a
deterministic algorithm having TRNG U lG(n) as an aux-
iliary input (to be used for its internal coin tossing), and
halts within time g(n).

We define algorithm B by replacing Ā(1n)’s auxiliary
input TRNG U lG(n) by a CPRNG G(Uk). More pre-
cisely, choose a CPRNG G : {0, 1}k → {0, 1}lG(k) with
an expansion factor lG(k) = g(l(k)) (the existence of such
G is guranteed, e.g., by Ref. [33], Sections 3.3.1 and 3.3.2,
or Ref. [32], Theorem 8.7). Then define a deteriministic
algorithm B : {0, 1}∗ → X ∗ as

1. On input a random seed s ∈ {0, 1}k, B inputs s to
G and obtains the output r ∈ {0, 1}lG(k).

2. B starts algorithm Ā with setting 1l(k) as the input
and s as the auxiliary input, and obtains the output
x = (x1, . . . , xl(k)) ∈ X l(k). B outputs x.

2. Indistinguishability of Al(k) and Ā(1l(k))

In the above setting, the variational distance between
the outputs of An and Ā(1n) can be bounded as

∥P (XAn)− P (XĀ(1n))∥1
≤ ∥P (Xn

An)− P (XAXĀ(1n−1))∥1
+ ∥P (XAXĀ(1n−1))− P (Xn

Ā(1n))∥1
= ∥P (XA)∥∥P (XAn−1)− P (XĀ(1n−1))∥1
+ ∥P (XA)− P (X ′

A)∥1∥P (XĀ(1n−1))∥1
≤ ∥P (XAn−1

)− P (XĀ(1n−1))∥1 + 2−n

≤ · · · ≤ n2−n ≤ negl(n), (B1)

where ∥P (X)∥1 denotes the trace norm of the probabil-
ity distribution of X, ∥P (X)∥1 := 1

2

∑
x∈X P (X = x).

Thus by letting n = l(k) (according to the setting of the
previous subsection), we have∥∥P (XAl(k))− P (XĀ(1l(k)))

∥∥
1
≤ negl(l(k)) ≤ negl(k).

(B2)

Then by using the monotonicity of the variational dis-
tance (see, e.g., [42], Theorem 9.2), we have∣∣P (DI(I(XAl(k))) = 1)− P (DI(I(XĀ(1l(k)))) = 1)

∣∣
≤ negl(k). (B3)

3. Indistinguishability of Ā(1l(k)) and B(Uk)

Next we define a distinguisher algorithm D : {0, 1}∗ →
{0, 1} for CPRNG having an expansion factor lG(k) as

1. On input r ∈ {0, 1}∗, D finds k ∈ N satisfying
lG(k) = |r|. If such k is not found, D halts.

2. D starts Ā with setting 1l(k) as input and r as the
auxiliary input, and obtains the output xl(k).

3. D inputs xl(k) toDI(I(. . . )) and obtains the output
b ∈ {0, 1}. D outputs b.

To see that this algorithm is indeed efficient, note that
each step above can be executed within a polynomial
time of k, and that k is always less than the input length
lG(k) of D, since lG(k) is an expansion factor of G.
As we assume that G is a CPRNG, we have∣∣∣P (D(G(Uk)) = 1)− P (D(U lG(k)) = 1)

∣∣∣ ≤ negl(k).

(B4)

Also, by definition, the situations where one inputs
U lG(k) to D, and where one input 1l(k) to Ā are identical.
Thus we have

P (D(U lG(k)) = 1) = P (D(I(XĀ(1l(k)))) = 1). (B5)
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Similarly, since the situations where one inputs G(Uk) to
D, and where one inputs Uk to B are identical,

P (D(G(Uk)) = 1] = P [D(I((B(Uk))) = 1). (B6)

Then by combining relations (B4), (B5), and (B6), we

have∣∣P (D(I(XĀ(1l(k)))) = 1)− P (D(I((B(Uk))) = 1)
∣∣

≤ negl(k). (B7)

4. Triangle inequality

Finally, by applying the triangle inequality to inequal-
ities (B3) and (B7), we obtain (7).
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