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We study the possibility of varying the measured lifetime of a decaying particle based on the
technique of weak value amplification in which an additional filtering process called postselection
is performed. Our analysis made in a direct measurement scheme presented here shows that, for
simple two-level systems, the lifetime may be prolonged more than three times compared to the
original one, while it can also be shortened arbitrarily by a proper choice of postselection. This
result is consistent with our previous analysis on the possible prolongation of the lifetime of B
mesons that may be observed in laboratories, and suggests room for novel applications of weak
value amplification beyond precision measurement conventionally considered.

I. INTRODUCTION

The discovery of unstable nuclei at the turn of the 20
century was generally regarded as a primary source of the
development of quantum theory, along with the inven-
tion of energy quanta compelled by blackbody radiation.
The lifetime of an unstable state or a decaying particle
is a fundamental physical property inherent to the parti-
cle, which is believed to be firmly determined by nature.
Nearly 90 years later, a novel notion of physical quan-
tity called the weak value was proposed by Aharonov et
al. [1], which has the peculiar property of admitting ‘am-
plification’, allowing its measured values to vary from
the original ones considerably. For instance, the elec-
tronic spin, ~/2, can in principle be enlarged 100 times
or more with the weak value, although the implementa-
tion of the measurement may impose restrictions on the
amplification for practical reasons.

The weak value amplification can be achieved by tak-
ing a step called postselection, in which one chooses the
final state in the physical process properly. This method
of amplification has an obvious advantage for precision
measurement, and indeed we have seen successful appli-
cations in various fields including optical systems [2–4],
neutron systems [5] and cold atomic systems [6]. One
may then ask whether lifetime can also be put into the
form of the weak value and, if so, how much the decay
of an unstable particle can be delayed by the amplifica-
tion procedure. Unfortunately, these preceding experi-
ments were not suitable for extending the measured life-
time, given that the procedure to obtain the weak value
proposed in [1] was based on the indirect measurement
scheme using probes, while the recently proposed meth-
ods without using probes [7, 8] were not optimized for
the measurement of lifetime.

An adequate procedure of weak value amplification for
lifetime has been discussed by Shomroni et al. in 2013 [9]
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for a system exhibiting spontaneous emission employing
the direct measurement scheme. It was reported that the
lifetime can effectively be made 1.9 times longer than the
original lifetime 26 ns through postselection. Recently,
we have used their scheme for studying the possible pre-
cision measurement of the CP parameter in the B meson
decay [10], where we found that the lifetime of the meson
can be made 2.64 times longer than the original lifetime
1.5 ps. Naturally, these numbers of prolongation found
in specific systems prompt us to find the general range of
weak value amplification available in this scheme. This
is precisely the aim of the study presented in this paper.

More explicitly, here we provide a workable scheme of
weak value amplification designed for lifetime in a gen-
eral form, and thereby examine the range of amplification
for systems possessing two energy levels to gain a bench-
mark for the lifetime prolongation in more general cases.
Our result shows that the amplification scheme can en-
large the lifetime more than three (up to 3.414) times.
Although this amplification factor is not radical, it could
nevertheless be significant when one wants to further im-
prove precision for lifetime measurement or one wishes
to gain time to perform some manipulation before decay.

This paper is organized as follows. After we briefly
recall in Sec. II the basics of time evolution of unstable
particles, we provide in Sec. III the decay time distribu-
tion when the postselection is made. Then, in Sec. IV, we
discuss the possible range of lifetime that can be extended
or shortened as a result of the postselection, specializing
into the two level systems where the closed form of life-
time can be available. Our conclusions are summarized
in Sec. V. Two appendices are provided to support the
argument given in the text.

II. TIME EVOLUTION OF UNSTABLE
PARTICLES

Following the standard formulation, we shall describe
the time evolution of unstable particles phenomenolog-
ically by means of a non-Hermitian Hamiltonian Ĥ.
When it is allowed to restrict ourselves to a pair of energy
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eigenstates of the particle system, the Hamiltonian may
in general be characterized by the eigenvalue equations,

Ĥ|PL〉 =

(
ML −

i

2
ΓL

)
|PL〉, (1)

Ĥ|PH〉 =

(
MH −

i

2
ΓH

)
|PH〉, (2)

where ML,MH,ΓL,ΓH are real positive numbers specify-
ing the eigenvalues of the two unstable eigenstates, |PL〉
and |PH〉. Obviously, ML, MH and ΓL, ΓH are related
to the mass and the width of the decay of the respective
eigenstates. For definiteness, we take ML ≤MH below.

Because of the non-Hermiticity of the Hamiltonian,
these eigenstates |PL〉, |PH〉 may not be orthogonal to
each other, and one is required to take care of them
properly for evaluating the physical values obtained in
the measurement. In particular, it has been argued that,
when the measurement is performed through the energy
eigenstates, one has to introduce the bi-orthogonal basis
defined from the Hamiltonian, resulting in a modification
of the weak value [11]. This does not apply to our anal-
ysis, since our measurement for evaluating the lifetime
is assumed to be made through some orthogonal basis
states |P 〉, |P̄ 〉 at the end of the process. In computation,
this will be done by transcribing the energy eigenstates
into these basis states via the relations,

|PL〉 = p1|P 〉+ q1|P̄ 〉, (3)

|PH〉 = p2|P 〉 − q2|P̄ 〉, (4)

with complex numbers pi and qi satisfying |pi|2+|qi|2 = 1
for i = 1, 2. The choice of the basis states, |P 〉 and |P̄ 〉,
is immaterial, as it does not affect the possible range of
lifetimes realized by various postselections, which is ob-
viously basis-independent. It may well be convenient,
however, to choose the basis states as eigenstates of a
Hermitian operator corresponding to a symmetry trans-
formation of the system. In fact, in the discussion of the
B mesons in particle physics, it is customary to choose
the orthonormal basis states by the flavor eigenstates.
Now, let D̂ be the operator of interchanging the basis
states, D̂|P 〉 = |P̄ 〉 and D̂|P̄ 〉 = |P 〉. If D̂ happens to be

a symmetry of the system, i.e., if [Ĥ, D̂] = 0, the energy
eigenstates are eigenstates of the symmetry transforma-
tion D̂ simultaneously. In that case, we may assume
D̂ |PL〉 = ± |PL〉 and D̂ |PH〉 = ∓ |PH〉, which implies

pi = ±qi = 1/
√

2 up to a common phase.
Let |Ψ〉 be the state of the system prepared at the

initial time t = 0, which is is called preselected state
in the context of weak value amplification. It can be
expanded in terms of the energy eigenstates, or similarly
of the basis states, as

|Ψ〉 = aL|PL〉+ aH|PH〉 = aP|P 〉+ aP̄|P̄ 〉, (5)

with some coefficients aL, aH and aP, aP̄ fulfilling the
normalization conditions, |aP|2 + |aP̄|2 = 1. In view of

(3) and (4), they are related by

aP = aLp1 + aHp2, aP̄ = aLq1 − aHq2. (6)

At a later time t, the state |Ψ〉 evolves into

|Ψ(t)〉 = e−itĤ |Ψ〉

= aLe
−tΓL

2 −itML |PL〉+ aHe
−tΓH

2 −itMH |PH〉. (7)

The probability that a particle has not collapsed at time
t is then given by the norm,

‖|Ψ(t)〉‖2 = |aL|2e−ΓLt + |aH|2e−ΓHt

+ 2e−tΓRe[a∗LaH 〈PL|PH〉 e−it∆M ], (8)

where we have introduced the mass difference ∆M and
the average width Γ by

∆M = MH −ML, Γ =
ΓL + ΓH

2
. (9)

From these, we obtain the decay time distribution,

N(t|Ψ) = − d

dt
‖|Ψ(t)〉‖2

= |aL|2ΓLe
−ΓLt + |aH|2ΓHe

−ΓHt

+ 2Γe−tΓ Re
[
a∗LaH 〈PL|PH〉 e−it∆M

]
− 2∆Me−tΓ Im

[
a∗LaH 〈PL|PH〉 e−it∆M

]
, (10)

which obeys
∫∞

0
dtN(t|Ψ) = 1 by construction.

When, in particular, we have the special case where
the relations

ΓL = ΓH, 〈PH|PL〉 = 0 (11)

hold, then the time distribution (10) reduces to

N(t|Ψ) = Γe−Γt (12)

as expected.
Returning to the general case, we can now evaluate

the lifetime τ(Ψ) of the initial state Ψ from the time
distribution as

τ(Ψ) :=

∫ ∞
0

dt tN(t|Ψ)

=
|aL|2

ΓL
+
|aH|2

ΓH
+ 2Γ Re [a∗LaH 〈PL|PH〉]

Γ2 −∆M2

(Γ2 + ∆M2)2

− 2∆M Im [a∗LaH 〈PL|PH〉]
Γ2 −∆M2

(Γ2 + ∆M2)2

+ 2Γ Im [a∗LaH 〈PL|PH〉]
2Γ∆M

(Γ2 + ∆M2)2

+ 2∆M Re [a∗LaH 〈PL|PH〉]
2Γ∆M

(Γ2 + ∆M2)2
. (13)

Note that, as long as the two eigenstates are non-
orthogonal 〈PL|PH〉 6= 0, the lifetime depends on the
choice of the initial state Ψ.
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III. DECAY TIME DISTRIBUTION UNDER
POSTSELECTION

In this section, we will discuss the time distribution
under postselection, but before that, we would like to
mention how postselection may be implemented for un-
stable particles in atomic and particle physics. The basic
idea of implementing the postselection is to utilize possi-
ble correlations between the postselected states and the
decay modes. In atomic physics, this has actually been
implemented in an experiment involving atomic decays
[9], where the polarization of photons emitted in the de-
cay is used to specify the postselected states. In particle
physics, a similar process based on the photon polariza-
tion has also been considered for the decay of the B me-
son [10] with the help of the CP symmetry, where the
feasibility of utilizing scattering angles of charged leptons
is studied additionally as an alternative. In the following
discussion, we will assume that these schemes allow us to
freely choose the postselected state denoted by |Φ〉.

Now, we would like to consider how the lifetime will be
affected when the postselection of state is made. Before
the full consideration, let us first see how it could go in
a simplified argument. We first evaluate the transition
amplitude at time t,

〈Φ|Ψ(t)〉 = 〈Φ|e−itĤ |Ψ〉. (14)

Upon using the linear approximation in time evolution
(whose validity will be discussed shorly), this becomes

〈Φ|Ψ(t)〉 ' 〈Φ|
(

1− itĤ
)
|Ψ〉

= 〈Φ|Ψ〉 (1− itHw)

' 〈Φ|Ψ〉et Im[Hw]−itRe[Hw], (15)

where Hw is the weak value Hw = 〈Φ|Ĥ|Ψ〉/〈Φ|Ψ〉 of the
Hamiltonian. The transition probability is thus obtained
as

|〈Φ|Ψ(t)〉|2 = |〈Φ|Ψ〉|2e2t Im[Hw]. (16)

Our argument becomes more transparent by shifting
the Hamiltonian by the amount of the average energy
eigenvalue as

Ĥ =

(
M − i

2
Γ

)
1̂ + gÂ, (17)

with

M =
ML +MH

2
, g =

∆M

2
(18)

and thereby introduce the ‘normalized’ Hamiltonian,

Â =
1

g

[
Ĥ −

(
M − i

2
Γ

)
1̂

]
. (19)

As we can see in (17), the normalized Hamiltonian Â de-
scribes the rescaled time evolution relative to the average

(uniform) evolution characterized by M and iΓ/2 in the

unit of g which renders Â dimensionless. The constant g
provides the scale of the evolution prescribed by Ĥ and
also plays the role of the coupling constant in the usual
discussion of weak value amplification. It is notable that
the operator Â, whose eigenvalues become precisely +1
and −1 when ΓL = ΓH, resembles the familiar Pauli ma-
trix σz.

With this preparation, we find that the transition am-
plitude (14) becomes

〈Φ|Ψ(t)〉 = e−t
Γ
2 e−itM 〈Φ|e−itgÂ|Ψ〉. (20)

Observe that the linear approximation we used from (14)
to (15), which now applies to (20), is valid as long as

tg = tΓ
( g

Γ

)
= tΓ

(
∆M

2Γ

)
� 1 (21)

is valid. Notice that, on account of the overall exponen-

tial factor e−t
Γ
2 in (20) which (when squared) suppresses

the probability for t > 1/Γ, the range of time t we need
to consider is practically confined to tΓ ≤ 1. This implies
that the condition (21) holds if ∆M/Γ� 1 or

∆M � Γ. (22)

Since g acts as the coupling constant for time evolution
as we noted earlier, the condition (22) which ensures (21)
simply means that we are working in the slow range of
evolution, which corresponds to the weak limit of physical
interaction in the usual context of weak value amplifica-
tion.

When this condition holds, the resulting transition
probability is given, instead of (16), by

|〈Φ|Ψ(t)〉|2 = e−tΓ|〈Φ|Ψ〉|2e2tgIm[Aw], (23)

where

Aw =
〈Φ|Â|Ψ〉
〈Φ|Ψ〉

(24)

is the weak value of the normalized Hamiltonian (19).
Clearly, the result (23) remains to be valid even for gen-
eral cases with more than two energy eigenstates as long
as the Hamiltonian is bounded, once we implement the
normalization (19) with M being the average of the entire
eigenvalues.

In order to find the distribution of decay time when
the postselection is made for general cases, not just for
the case (22), as we did for the preselected state in (5)
we first expand the postselected state |Φ〉 as

|Φ〉 = bL|PL〉+ bH|PH〉 = bP|P 〉+ bP̄|P̄ 〉, (25)

with coefficients, bL, bH, bP and bP̄ fulfilling the normal-
ization conditions, |bP|2 + |bP̄|2 = 1. From (3) and (4),
they are related by bP = bLp1+bHp2 and bP̄ = bLq1−bHq2.
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Then the probability amplitude that the time evolved
state |Ψ(t)〉 can be found in the postselected state is

〈Φ|Ψ(t)〉 = (b∗L + b∗H〈PH|PL〉) aLe
−tΓL

2 −itML

+ (b∗H + b∗L〈PL|PH〉) aHe
−tΓH

2 −itMH . (26)

With the shorthand,

cL = (b∗L + b∗H〈PH|PL〉) aL, (27)

cH = (b∗H + b∗L〈PL|PH〉) aH, (28)

the corresponding probability becomes

|〈Φ|Ψ(t)〉|2 = |cL|2e−ΓLt + |cH|2e−ΓHt

+ 2e−Γt Re
[
c∗LcHe

−it∆M ] . (29)

The decay time distribution conditioned by the postse-
lection may then be defined by

N(t|Ψ→ Φ) =
|〈Φ|Ψ(t)〉|2∫∞

0
dt |〈Φ|Ψ(t)〉|2

, (30)

from which the conditional lifetime τ(Ψ→ Φ) follows as

τ(Ψ→ Φ) :=

∫ ∞
0

dt tN(t|Ψ→ Φ)

=

∫∞
0
dt t|〈Φ|Ψ(t)〉|2∫∞

0
dt |〈Φ|Ψ(t)〉|2

. (31)

Before proceeding further, we present here the closed
form of the weak value (24) evaluated with the help of
(5), (25), (27) and (28),

Aw =
cH − cL
cH + cL

(
1− i

2

ΓH − ΓL

∆M

)
(32)

whose real and imaginary parts are, respectively,

Re [Aw] =
|cH|2 − |cL|2

|cH + cL|2
+

Im[c∗LcH]

|cH + cL|2
ΓH − ΓL

∆M
, (33)

Im [Aw] = −|cH|
2 − |cL|2

|cH + cL|2
ΓH − ΓL

2∆M
+ 2

Im[c∗LcH]

|cH + cL|2
. (34)

In the usual discussion of weak value amplification, the
amplification effect is realized by choosing the postselec-
tion such that the weak value exceeds the range of the
eigenvalues of the physical observable that one wishes to
amplify in the measurement. In the present case, the
observable corresponds to the (normalized) Hamiltonian
(19), and the discussion on the extent of amplification
requires the consideration of the particular form of the
observable as well as the postselection we shall make.
This will be our topic of the next section.

IV. LIFETIME AND ITS RANGE

As can be seen from (16) which is valid in the linear
approximation, the transition probability is directly af-
fected by (the imaginary part of) the weak value of the
Hamiltonian. The lifetime (31) is then found to be

τ(Ψ→ Φ) ' 1

Γ
+

2g

Γ2
Im[Aw], (35)

which shows that the lifetime of a decaying particle can
effectively be altered by varying the postselected state
|Φ〉 on which the weak value Aw depends. This should
be reasonable because Aw is the weak value of the nor-
malized Hamiltonian Â which dictates the time evolution
of the system (20). In the context of weak value ampli-
fication applied to the present system, one may say that
the lifetime may be enlarged by tuning the postselection
properly relative to the constant g.

Now, the possible range of the lifetime realized by
the variation of postselection under the given preselected
state |Ψ〉 can be found by evaluating the conditional life-
time (31) without resorting to the linear approximation.
In the two dimensional case we are considering, this can
be done easily (see Appendix A) and the result is

τ(Ψ→ Φ) =

|cL|2
Γ2

L
+ |cH|2

Γ2
H

+ 2(Γ2−∆M2)
(Γ2+∆M2)2 Re [c∗LcH] + 4Γ∆M

(Γ2+∆M2)2 Im [c∗LcH]

|cL|2
ΓL

+ |cH|2
ΓH

+ 2Γ
Γ2+∆M2 Re [c∗LcH] + 2∆M

Γ2+∆M2 Im [c∗LcH]
. (36)

To avoid unnecessary complexity and yet keep the
essential ingredient of the matter, let us assume that
p1 = p2 = p and q1 = q2 = q. As we mentioned before,
this is satisfied when, for instance, we have the symmetry
under the interchange D̂, and one prominent example of

this is the system of decaying B mesons, where the role of
the D̂ symmetry is played by the CPT symmetry. Under
this assumption, we have

〈PH|PL〉 = |p|2 − |q|2. (37)
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To proceed further, we introduce the shorthand,

k =
ΓH

ΓL
, (38)

and the ratio,

R =
τ(Ψ→ Φ)

τ(Ψ)
, (39)

which signifies the rate of variation the lifetime has ac-
quired by the postselection compared to the case where
no postselection is made. Note that, for considering the
effect of postselection, one has to express R as a func-
tion of (p, q, bP, bP̄, k,Γ,∆M), where the dependence on
bP and bP̄ are given by cL and cH in (27) and (28) (see
Appendix A for the formula to be used).

For convenience, we define the basis states |P 〉 and
|P̄ 〉 such that both p and q become real, which is always
possible by absorbing the phase factor into the respective
states. Once this is done, then with respect to the basis
states we may define the relative phase θ between bP and
bP̄ by

bPb
∗
P̄ = |bP||bP̄|eiθ. (40)

Thus, taking account of the constraints coming from the
normalization conditions, we recognize that the ratio R
can now be regarded as a function of (p, |bP|, θ, k,Γ,∆M).

To solve the constraints, in the following discussion we
restrict ourselves to the particular case,

p = q =
1√
2
, (41)

implying that the two eigenstates are orthogonal to each
other. We also consider, for definiteness, the case where
aP = 1 and aP̄ = 0, i.e., the case where the initial state
is given by one of the eigenstates as

|Ψ〉 = |P 〉 =
1√
2

(|PH〉+ |PL〉) . (42)

One still expects that this restriction will not lose track
of the basic feature of lifetime we are studying, partly be-
cause the initial state |Ψ〉 is now a maximal superposition
of the two eigenstates, and partly because the lifetime is
determined essentially with respect to the postselected
state |Φ〉 which are to be varied with the parameters in-
troduced earlier.

With (41) and (42) we obtain

τ(Ψ) =
1

2ΓL
+

1

2ΓH
=

(1 + k)2

4kΓ
(43)

and also

τ(Ψ→ Φ)

=
( 1

4 + 1
2 |bP||bP̄| cos θ) (1+k)2

4Γ2 + ( 1
4 −

1
2 |bP||bP̄| cos θ) (1+k)2

4k2Γ2 + Γ2−∆M2

(Γ2+∆M2)2 · |bP|
2−|bP̄|2

2 − 2Γ∆M
(Γ2+∆M2)2 |bP||bP̄| sin θ

( 1
4 + 1

2 |bP||bP̄| cos θ) 1+k
2Γ + ( 1

4 −
1
2 |bP||bP̄| cos θ) 1+k

2kΓ + Γ
Γ2+∆M2 · |bP|

2−|bP̄|2
2 − ∆M

Γ2+∆M2 |bP||bP̄| sin θ
, (44)

from which the ratio R is found to be

R =
( 1

4 + 1
2 |bP||bP̄| cos θ)k + ( 1

4 −
1
2 |bP||bP̄| cos θ) 1

k + 2kΓ2 Γ2−∆M2

(Γ2+∆M2)2 · |bP|
2−|bP̄|2

(1+k)2 − 8kΓ3∆M
(1+k)2(Γ2+∆M2)2 |bP||bP̄| sin θ

( 1
4 + 1

2 |bP||bP̄| cos θ) 1+k
2 + ( 1

4 −
1
2 |bP||bP̄| cos θ) 1+k

2k + Γ2

Γ2+∆M2 · |bP|
2−|bP̄|2

2 − Γ∆M
Γ2+∆M2 |bP||bP̄| sin θ

.

(45)

At this point, we recognize that both (44) and (45) are in-
variant under the simultaneous transformation k → 1/k
and θ → π − θ as a consequence of the invariance un-
der the formal exchange of two eigenstates. This implies
that, when we investigate the behavior of τ(Ψ → Φ) or
R, it is sufficient to consider the range 1 ≤ k since the
range 0 < k < 1 can be obtained from the former by the
above transformation. We shall therefore discuss only
the range 1 ≤ k in our analysis below. Note that if we
consider the extreme case k → ∞ while keeping Γ con-
stant, where we have ΓL → 0 and ΓH → 2Γ, the lifetime
(43) tends to diverge τ(Ψ) → ∞. This is, of course, a
consequence of the fact that the component |PL〉 in the

state (42) ceases to decay in the limit.
We now examine how much we can vary the ratio R

by choosing different parameters bP and θ for the posts-
election. Prior to this, let us consider the special case,

|bP| = |bP̄| =
1√
2
, θ = π, (46)

which amounts to the postselection,

|Φ〉 =
1√
2

(
|P 〉 − |P̄ 〉

)
= |PH〉, (47)

up to an overall phase. We then find that the lifetime
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under this postselection becomes

τ(Ψ→ Φ) =
1

ΓH
=

1 + k

2kΓ
, (48)

and hence from (43) the ratio R turns out to be

R =
2

1 + k
=

ΓL

Γ
. (49)

In this special case, we find that, at k = 1 we have R = 1,
that is, no net change from the original lifetime by tak-
ing the postselection. We also observe that, for k → ∞
we have R → 0, which occurs because our postselection
(47) filters out the dominant long-lived component |PL〉
completely. Otherwise, for generic values of the posts-
election parameters |bP| and θ, one can readily confirm
the (almost) universal limit R→ 2 for k →∞ as we shall
see shortly in the various examples.

For our later convenience, we also record here that,
with the parameters |bP|, θ and k, the weak value of the

normalized Hamiltonian admits the simple form,

Re[Aw] = − 4

|bP|2
cos θ − (k − 1)Γ

(k + 1)∆M

√
1− |bP|2
|bP|

sin θ,

(50)

Im[Aw] = − 2

|bP|
√

1− |bP|2 sin θ. (51)

In what follows, we shall consider three extreme cases
for relative values of ∆M with respect to Γ, namely, the
cases ∆M � Γ, ∆M ' Γ and ∆M � Γ in order to
examine explicitly the range of lifetimes realized under
the variation of the postselection. As we mentioned in
Sec. III, the D meson system is a concrete example of
this case.

A. ∆M � Γ case

Returning to the general case of postselection (25), we
shall first consider the case where the mass difference
∆M is negligible compared to the average width Γ. This
is actually the case we mentioned in Sec. III when we
employed the linear approximation.

Specializing to this case, in the limit ∆M/Γ → 0 we
find that the ratio R in (45) tends to the value,

R =

(k−1)2(k2+4k+1)
4(1+k)2 + k2−1

2 |bP|
√

1− |bP|2| cos θ + 4k2|bP|2
(1+k)2

1
8 (k − 1)2 + k2−1

4 |bP|
√

1− |bP|2 cos θ + k|bP|2
, (52)

where we immediately confirm R = 1 at k = 1 except for
the case |bP| = 0.

The ratio R in (52) varies according to the postselec-
tion we choose, and the overall trend of its variation may
be learned from the R − k curves in FIG.1 which corre-
spond to different choices of |bP| and θ. The upper and
lower envelopes of the curves indicate that the largest
value of R is realized when k is close to 1, even though
putting k = 1 yields R = 1 generically.

We observe, however, that the limit k → 1 is quite
intriguing in the following respects: as long as k 6= 1, the
ratio R approaches 1 when |bP| is made closer to 0, but
in the simultaneous limit of k → 1 and |bP| → 0 while
the ratio,

x =
|bP|
k − 1

, (53)

being kept finite, we have

R =
3
8 + cos θ x+ x2

1
8 + 1

2 cos θ x+ x2
, (54)

which can be different from the value 1 we just argued. In
fact, we find that the ratio R in (54) attains the maximal

value,

Rmax = 2 +
√

2 ' 3.414, (55)

at

x =
2−
√

2

4
, θ = π, (56)

and also the minimal value,

Rmin = 2−
√

2 ' 0.5858, (57)

at

x =
2 +
√

2

4
, θ = π. (58)

These values constitute, respectively, the upper and lower
points on the envelope curves borders at k = 1 in FIG.1.
Although these values may be difficult to attain as they
require specification of the postselected state with exact
accuracy, they give us the possible range of the ratio con-
cerning the lifetime variations by their limiting values.
These minimal and maximal values are achieved when
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FIG. 1. The ratio R as functions of k for seven values of |bP|
ranging from 0.1 to 0.7 for every step 0.1 under the values
∆M/Γ = 1/1000 and θ = π. Their upper and lower envelop-
ing curves are given by the dashed lines.

the weak value of the Hamiltonian becomes divergent, as
can be seen immediately by taking the |bP| → 0 limit in
(50) and (51).

On the other hand, we also observe in FIG.1 that R→
2 in the limit k → ∞ but the speed of the approach
becomes significantly slower as |bP| tends to 1/

√
2 ' 0.71.

This is due to the singular effect that occurs precisely at
|bP| = 1/

√
2 with θ = π as we mentioned before.

An example of this case is furnished by the D meson,
where we have ∆M/Γ ∼ 10−3 and k being close to 1
according to the review [12].

B. ∆M ' Γ case

Next, we consider the case where ∆M is comparable
to Γ. To analyze this, we simply put ∆M = Γ in (45) to
obtain

R =
2
[
(1 + k)2(1 + k2) + 2|bP|

√
1− |bP|2(k − 1)(1 + k)3 cos θ − 8k2|bP|

√
1− |bP|2 sin θ)

]
(1 + k2)

[
1 + k2 + 4k|bP|2 + 2|bP|

√
1− |bP|2(k2 − 1) cos θ − 4k|bP|

√
1− |bP|2 sin θ

] . (59)

We find that, like in the previous case, in the limit k → 1
the ratio attains its maximal value,

Rmax =
3 +
√

3

2
' 2.366, (60)

at

|bP| =
√

2−
√

3

2
, θ =

π

2
, (61)

and the minimal value,

Rmin =
3−
√

3

2
' 0.6340, (62)

at

|bP| =
√

2 +
√

3

2
, θ =

π

2
. (63)

TheR−k curves will then look like FIG. 2, and depending
on the choice of |bP| and θ, the value at k = 1 may fall
below 1 or exceed above 2, while it converges to 2 in the
limit of large k as in the case of ∆M � Γ.

Let us check the weak value of the Hamiltonian. When
the ratio R is minimized, we have

Re[Aw] = 0, (64)

Im[Aw] = −(4− 2
√

3). (65)

FIG. 2. The ratio R as functions of k for various combinations
of (|bP|, θ). Here, we set ∆M/Γ = 1/1.01 and used |bP| = 0.1,
0.2, 0.3, and 0.96 (giving a value very close to the minimum
of R at k = 1) for θ = π/2, and |bP| = 0.7, 0.8, and 0.9 for
θ = π. Their upper and lower enveloping curves are given by
the dashed lines.

Also, when the ratio is maximized, we have

Re[Aw] = 0, (66)

Im[Aw] = −(4 + 2
√

3). (67)

Unlike the previous case, the ratio R is not optimized
when the weak value (especially its imaginary part) tends
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to diverge. This is reminiscent of the behavior we have
witnessed when the optimization occurs at finite coupling
constants in the weak value amplification experiments
[13, 14].

We mention that the B meson is an example of this
case, for which ∆M/Γ ' 0.77 and k ' 1. In this case,
the maximum of R is 2.64 and the minimum is 0.713 (for
a detailed analysis, see [10]).

C. ∆M � Γ case

Finally, we consider the opposite extreme case, ∆M �
Γ. In this limit, the ratio R in (45) admits the simple
form,

R =
1
4 (k2 + 1) + 1

2 (k2 − 1)|bP|
√

1− |bP|2 cos θ
1
8 (1 + k)2 + 1

4 (k2 − 1)|bP|
√

1− |bP|2 cos θ
, (68)

One then finds that the ratio R takes the maximal value,

Rmax =
2k

1 + k
=

ΓH

Γ
, (69)

at

|bP| =
1√
2
, θ = 0, (70)

and the minimal value,

Rmin =
2

1 + k
=

ΓL

Γ
, (71)

at the specific case (46).
As can be seen by substituting 1 for k in (68), R = 1

universally for k = 1. Also, as mentioned earlier, in the
limit k →∞, we have R→ 2 except for the singular case
(46). Indeed, in FIG. 3, we observe that when θ is chosen
to be 3.0 (which is close to π), R begins to grow slowly
but will eventually converge to 2.

This result is, in fact, identical to that obtained when
the oscillation between the long-lived and short-lived
states of the particle is negligible and hence only a classi-
cal probabilistic mixing of the two will be observed. This
can also be confirmed by examining the classical limit
by restoring the Planck constant ~ explicitly and rewrite
∆M ⇒ ∆M/~. This amounts to

∆M

Γ
⇒ ∆M

~Γ
, (72)

which indicates that the classical limit ~→ 0 is, in effect,
equivalent to the limit ∆M/Γ → ∞, which is no other
than the present case we are considering.

The B meson containing a strange quark, i.e., the
B0
S meson, exemplifies the present case, where we have

∆M/Γ = 26.89± 0.07 [12].

FIG. 3. The ratio R as functions of k for various θ from 0.0
to 3.0 in increments of 0.5 under the values ∆M/Γ = 1000
and |bP| = 1/

√
2. Their upper and lower enveloping curves

are given by the dashed lines.

D. Overall picture of lifetime amplification

Combining all the three cases, we arrive at the over-
all picture of amplification available by our procedure of
postselection as shown in FIG.4.

FIG. 4. Possible regions of the ratio R for the three cases
∆M � Γ, ∆M � Γ and ∆M ' Γ formed by gathering var-
ious curves of R for different values of |bP| and θ. The blue
and red regions depict the cases ∆M � Γ and ∆M � Γ,
respectively, while orange dashed curves represent the maxi-
mum and minimum values for various k in the case ∆M ' Γ.
To show the trend toward k →∞, the lower border for large
k is drawn for θ = π − 0.01, which collapses to R = 0 as θ
approaches the singular point θ = π.

From this, we learn that, when ∆M is much smaller
than Γ, there exists a wide range of R at k = 0, which
will gradually close toward R = 1 as ∆M increases com-
pared to Γ. In contrast, the behavior of R for k → ∞
approaching R = 2 is rather consistent and not sensitive
to the value ∆M relative to Γ. For a given k which is
not too large, the range of amplification is sensitive to
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the relative relation between the two values, ∆M and Γ.

V. CONCLUSION AND DISCUSSION

In this paper, we present our study on the variation
of lifetime of decaying particles (or unstable states) un-
der the application of the weak value amplification tech-
nique, which is just to add an extra process of projec-
tion measurement called postselection. By considering
a basic two-level system of unstable states dictated by
a standard non-Hermitian Hamiltonian, we found that,
compared to the original value, the process of amplifica-
tion may prolong the decay lifetime up to 2+

√
2 ' 3.414

times. We also observed that, if the postselection fil-
ters out the long-lived component in the decaying eigen-
states, the lifetime may be shortened arbitrarily (even up
to zero) depending on the level of filtering.

We obtained these results based on a set of assump-
tions on the nature of the Hamiltonian and the choice of
postselection. These are used for simplifying our analysis,
and for the numerical evaluation on the possible range of
amplification (i.e., variation of lifetime), we considered
three extreme cases classified according to the relation
between the mass difference ∆M and the average decay
constant Γ of the system. As such, our analysis is not
completely general but we believe that these three cases
will more or less exhaust the possible range of variation
and furnish a reasonably accurate picture on the effect of
weak value amplification as may be recognized in FIG.4.
In fact, our analysis shows that the amplification factor
estimated for the B meson system earlier in [10] may be
understood in the context of the range of amplification
addressed in this paper.

It would be worth emphasizing that the weak value am-
plification we discussed here is not quite conventional in
that it requires no additional probe system (with some in-
ternal degrees of freedom) to capture the weak value and
observe the amplification effect. Rather, the weak value
and the associated effect of postselection arise directly
in the target system, providing a distinct feature on the
lifetime variation compared to other amplification effects
observed so far. In this respect, it is notable that the
system exhibiting anomalous time and frequency shifts
[15] requires no internal degrees of freedom, even though
their physical processes appear to be rather different from
those of the conventional weak value amplification.

To summarize, although the observed range of life-
time variation mentioned above may not look large com-
pared from those obtained in the conventional scheme,
the range exceeds considerably the eigenvalues of the
Hamiltonian and hence may be useful not just for en-
hancing the accuracy of measurement of lifetime but for
delaying the decay process for other purposes of manip-
ulation. We are hoping to see these to be materialized in
the near future.

Finally, we would like to mention an interesting study
of dwelling time of a particle during quantum tunneling

[16, 17] which bears some similarity with our lifetime of
a decaying particle. These works introduced an operator
associated with the dwelling time in a given potential and
showed that, by regarding the final position (state) of the
particle as the postselection, the transmission and reflec-
tion times are defined as the weak values of the dwelling
operator for the respective physical processes. The sum
of the transmission time and the reflection time, each
weighted with the corresponding probability, then yields
the proper dwelling time defined as the expectation value
of the operator. The relation among these quantities fol-
lows naturally from the standard identity between the
weak values and the expectation value ensured by the
unitarity of time evolution. Despite the similarity, we
also have differences in that our system does not admit
a unitary time evolution (since our effective Hamiltonian
is non-Hermitian) and that we do not define the condi-
tional lifetime τ(Ψ → Φ) as well as the non-conditional
one τ(Ψ) from a single operator common to them. Ac-
cordingly, one cannot, in principle, expect an analogous
relation between τ(Ψ → Φ) and τ(Ψ) as we have for
the dwelling time. Nonetheless, it is amusing to observe
that, in the linear approximation where the non-unitarity
is muted relatively and the weak value arises explicitly
as in (35), an analogous relation holds (see Appendix B),∑

k

|〈Φk|Ψ〉|2τ(Ψ→ Φk) = τ(Ψ), (73)

where the summation is over a complete set of postse-
lected states |Φk〉. This salient property indicates that
there may be some deeper connection between the life-
time in particle decay where the weak value arises indi-
rectly and the dwelling time in quantum tunneling where
it arises directly. To uncover such connection, perhaps
we need to extend further the scope of the analysis on
the effect of postselection per se, without assuming the
involvement of the weak value from the outset, by con-
sidering other related issues such as those discussed in
[15] in a unified context.
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Appendix A: Conditional lifetime

Here we provide some formulae needed to derive the
conditional lifetime τ(Ψ → Φ) in (36) in a form conve-
nient for considering the possible range of variation of
the ratio R.
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First, from (29) we obtain the denominator of (31),∫ ∞
0

dt |〈Φ|Ψ(t)〉|2 =
|cL|2

ΓL
+
|cH|2

ΓH

+
2Γ

Γ2 + ∆M2
Re [c∗LcH]

+
2∆M

Γ2 + ∆M2
Im [c∗LcH] , (A1)

and also the numerator,∫ ∞
0

dt t|〈Φ|Ψ(t)〉|2 =
|cL|2

Γ2
L

+
|cH|2

Γ2
H

+
−2∆M2 + 2Γ2

(Γ2 + ∆M2)2
Re [c∗LcH]

+
4Γ∆M

(Γ2 + ∆M2)2
Im [c∗LcH] . (A2)

Plugging these into (31) yields (36).
Next, in order to express the obtained conditional life-

time in terms of bP and bP̄, one has to convert cL and
cH into them taking account of their normalization con-
ditions. To do this, we use (25) to obtain

bLb
∗
H =

|bP|2

4|p|2
− |bP̄|

2

4|q|2
− 2iIm

[
b∗
P̄
bP

4pq∗

]
. (A3)

Then, by using (27), (28) and (A3), we find

c∗LcH

= a∗LaH(bLb
∗
H(1− | 〈PL|PH〉 |2) + 〈PL|PH〉)

=
1

4|p|2

[(
|bP|2

4|p|2
− |bP̄|

2

4|q|2

)
(1− (|p|2 − |q|2)2) + |p|2 − |q|2

]
− i1− (|p|2 − |q|2)2

2|p|2
Im

[
b∗
P̄
bP

4pq∗

]
. (A4)

Now, for the special situation (41) and (42), if we use
(A4) together with (27), (28), we arrive at (44) and (45)
in the text.

Appendix B: Relation between the conditional and
non-conditional lifetimes

We show that, under the linear approximation, the
conventional lifetime τ(Ψ) given in (13) and the condi-

tional lifetime τ(Ψ → Φ) given in (31) are related in a
manner similar to the relation between the expectation
value and the weak value.

To this end, one first recalls (35) which is valid in the
linear approximation. Then, by summing over a complete
set of states |Φk〉 for the postselection with the respective
weight factor of the transition probability |〈Φk|Ψ〉|2, one
finds

∑
k

|〈Φk|Ψ〉|2τ(Ψ→ Φk) ' 1

Γ
+

2g

Γ2
Im

[∑
k

|〈Φk|Ψ〉|2Aw

]

=
1

Γ
+

∆M

Γ2
Im[〈Ψ|Â|Ψ〉]. (B1)

With the normalized Hamiltonian Â in (19) which is non-
Hermitian, one can evaluate its expectation value from
(5) to obtain

Im[〈Ψ|Â|Ψ〉] =
∆Γ

2∆M
(|aL|2 − |aH|2) + 2Im[aHa

∗
L〈PL|PH〉]

(B2)

with ∆Γ = ΓH − ΓL. Plugging this into (B1) gives∑
k

|〈Φk|Ψ〉|2τ(Ψ→ Φk)

=
1

Γ
+

∆Γ

2Γ2
(|aL|2 − |aH|2) + 2

∆M

Γ2
Im[aHa

∗
L 〈PL|PH〉]

(B3)

up to the linear order of ∆M/Γ and ∆Γ/Γ.
On the other hand, applying the same linear approxi-

mation to (13), one finds

τ(Ψ) =
1

Γ

(
|aL|2 + |aH|2 + 2Re [aHa

∗
L 〈PL|PH〉]

)
+

∆Γ

2Γ2
(|aL|2 − |aH|2) + 2

∆M

Γ2
Im [aHa

∗
L 〈PL|PH〉] .

(B4)

Using the normalization condition of the preselected state
|Ψ〉 in (5),

〈Ψ|Ψ〉 = |aL|2 + |aH|2 + 2Re[aHa
∗
L 〈PL|PH〉] = 1, (B5)

we observe that the non-conditional lifetime (B4) coin-
cides precisely with the summed over conditional lifetime
(B3). This shows that the relation (73) in the text holds
for any preselected state |Ψ〉 at least in the regime of
linear approximation.
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