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We present a universal formulation of uncertainty relation valid for any conceivable quantum measurement
and their observer effects of statistical nature. Owing to its simplicity and operational tangibility, our gen-
eral relation is also experimentally verifiable. Our relation violates the naı̈ve bound ~/2 for the position-
momentum measurement while respecting Heisenberg’s original philosophy of the uncertainty principle. Our
error-disturbance relation is found to be a corollary to our relation for errors, the latter of which also entails the
standard Kennard-Robertson (Schrödinger) relation as a special case; this attains a unified picture of the three
orthodox realms of uncertainty regarding quantum indeterminacy, measurement, and observer effect within a
single framework.

I. INTRODUCTION

Recently, we have seen a consistent — some are rapid while
others are more steady — progress of quantum information
technologies, and it should now be evident that our future so-
ciety thrives upon these technologies we are going to develop
in coming years. All of the technologies are made available by
the application of quantum mechanics, which was established
nearly a century ago but still defies our deeper understand-
ing in many respects, such as the non-local correlation aris-
ing from quantum entanglement and the non-causal change
inherent in quantum measurement. The crux of the matter be-
hind these phenomena is arguably the renunciation of local
reality, and in this regard the uncertainty principle has been
deemed as the basis to guide us to the proper comprehension
of the quantum world. Nevertheless, we have also been aware
that the uncertainty principle, which was originally introduced
by Heisenberg [1], is too vague to deduce rigorously testable
statements, except for providing intuitive arguments which are
helpful yet sometimes deceptive and misleading.

The earliest attempt to remove the vagueness was made by
Kennard [2] who provided a mathematical formulation of the
uncertainty principle in terms of the standard deviations for
the pair of position and momentum observables, giving the
familiar lower bound ~/2 for their product. Subsequently, its
generalization for arbitrary observables A and B was given
by Robertson [3] with the lower bound expressed by the ex-
pectation value of the commutator |〈[A,B]〉ρ|/2 for the state ρ
under consideration. On account of the mathematical clarity,
the Kennard-Robertson inequality became a standard textbook
material as an exposition of the uncertainty principle, despite
that it has little to do with measurement to which Heisenberg
attributed the cause of the uncertainty in his discourse [1].

In fact, as typically exemplified by the famous gamma-ray
microscope Gedankenexperiment, for devising his uncertainty
principle Heisenberg considered the error in the position mea-
surement and the subsequent disturbance occurred in the mo-
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mentum, and argued that the product of the two has a lower
bound of the order of ~. It was thus clear that this line of
thought, which captures the essence of the quantum ‘indeter-
minatenes’ [4], should be followed in order to establish a more
genuine uncertainty relation which governs the quantum phe-
nomena on a rigorous basis. This was achieved by Ozawa
[5, 6] who adopted the indirect measurement scheme where
one considers explicitly the system of an ancillary meter de-
vice in addition to the quantum system of interest, realizing
the concepts of error and disturbance in concrete terms. His
uncertainty relation, obtained for an arbitrary pair of observ-
ables A and B, contains not only the product term of the er-
ror and the disturbance but also two other terms involving the
standard deviations. Whereas these additional terms offer the
possibility of ‘breaking’ the lower bound stated by Heisen-
berg, they also obscure Heisenberg’s original spirit instilled
in his principle [7]. Another shortcoming is that it assumes
objects that are generally unobtainable from the measurement
outcomes [8, 9].

In this paper, we present a novel uncertainty relation for er-
ror and disturbance associated with measurement in a conceiv-
ably most universal formulation, following our earlier work
[10] on the uncertainty relation for errors where (part of) the
formulation is adopted. To be more explicit, our formulation
assumes only the space of quantum states before measurement
and the space of probability distributions obtained by the mea-
surement outcomes, together with the space of quantum states
describing the change induced by the measurement, which are
seemingly the least possible set of presumptions needed to dis-
cuss the uncertainty relation. In particular, it does not require
any model of measurements such as the indirect measurement
scheme and deals directly with the measurement outcomes.
Besides, our formulation allows us to focus exclusively on the
error and disturbance to make the uncertainty relation more
in line with Heisenberg’s original idea, rendering the result
free from the shortcomings mentioned above. The universal-
ity also ensures the general validity of the resultant uncertainty
relation for any measurements including the standard POVM
measurements extensively used in quantum information. The
most notable benefit of adopting the universal formulation is
that it enables the cause of quantum uncertainty clearer; it is
the existence of (joint) distributions that constrains the possi-

ar
X

iv
:2

00
4.

06
09

9v
1 

 [
qu

an
t-

ph
] 

 1
3 

A
pr

 2
02

0

mailto:lee@iis.u-tokyo.ac.jp
mailto:izumi.tsutsui@kek.jp


2

ble form of change of states after measurement, and the un-
certainty relation arises as the tradeoff relation between the
measurement error and the inevitable disturbance.

This paper is organized as follows. After this introduction,
in sec.II we present the geometric framework which forms
the basis of our formulation. The subsequent three sections
are devoted to provide the necessary tools for our formula-
tion, where the general notion of measurements and that of
processes describing change of states are spelled out for both
classical and quantum systems and also between them. Our
error and disturbance are defined in sec.VI, followed by the
key observation as to how the tradeoff relation between the
errors of two measurements can arise in sec.VII. Our main
result, the uncertainty relation for error and disturbance, is
then presented in sec.VIII and its affinity with Heisenberg’s
original idea is discussed in sec.IX. Finally, we provide our
conclusion and discussions in sec.X.

II. GEOMETRIC FRAMEWORK

We first briefly summarize the geometric framework pro-
posed in our previous paper [10] that forms the basis of our
study.

Let Z(H) be the state space of a quantum system given by
the convex set of all the density operators on a Hilbert space
H, and also let S(H) be the linear space of quantum observ-
ables given by the self-adjoint operators onH. For an observ-
able A, each quantum state ρ ∈ Z(H) furnishes a seminorm
‖A‖ρ on S(H) inherited from the one defined for linear oper-
ators by ‖A‖ρ :=

√
〈A†A〉ρ, where we have introduced

〈X〉ρ := Tr[Xρ] (1)

for any pair of a linear operator X on H and ρ ∈ Z(H). The
seminorm induces an equivalence relation A ∼ρ B ⇐⇒
‖A−B‖ρ = 0 over S(H), which results in the partitioning of
the observables into equivalence classes. These equivalence
classes of quantum observables collectively form a quotient
space S(H)/∼ρ, the completion of which we denote it by
Sρ(H); this can be visualized as a ‘tangent space’ attached
to the point ρ ∈ Z(H) of the state space. As commonly prac-
ticed, we make an abuse of notation to denote the equivalence
class with one of its representatives. The space Sρ(H) bears a
unique inner product 〈A,B〉ρ := 〈{A,B}〉ρ/2 characterized
by the anti-commutator {A,B} := AB+BA of observables,
which is compatible with the quotient norm in the sense of
‖A‖2ρ = 〈A,A〉ρ. We call the resultant bundle consisting of
the base space Z(H) with the fibres Sρ(H) attached to each
of the points ρ ∈ Z(H) a quantum system. Needless to say,
our target system for which a measurement will be made is a
quantum system.

The classical counterpart can be constructed in a parallel
manner. For this, let W (Ω) be the convex set of all the prob-
ability distributions p on a sample space Ω, and let R(Ω) be
the linear space of all the real functions on Ω. Then one has
the seminorm ‖f‖p for each f ∈ R(Ω) inherited from that
defined for complex functions by ‖f‖p :=

√
〈f†f〉p, where,

analogously to (1), we have introduced

〈z〉p :=

∫
Ω

z(ω)p(ω) dω (2)

for any pair of a complex function z on Ω and p ∈ W (Ω).
Like before, the seminorm induces an equivalence relation
f ∼p g ⇐⇒ ‖f − g‖p = 0 over the space R(Ω) which,
in turn, induces a quotient space R(Ω)/∼p. Its completion
yields a tangent space at each p ∈ W (Ω) which will be de-
noted by Rp(Ω). It is easy to check that the quotient norm
admits a unique inner product 〈f, g〉p := 〈fg〉p that satisfies
‖f‖2p = 〈f, f〉p. We call the resultant bundle consisting of the
base space W (Ω) with the fibres Rp(Ω) attached to each of
the points p ∈ W (Ω) a classical system, which in the present
paper will be used to represent the probability space of mea-
surement outcomes.

III. PROCESSES

To describe the measurement that assigns a probability dis-
tribution to a given quantum state and also the change of
states it induces, our primary objects to be used are affine
maps between state spaces, which we call processes in gen-
eral terms. To our purposes, we are specifically interested in
three types, namely, those from quantum state spaces to clas-
sical state spaces M : Z(H) → W (Ω), as well as those be-
tween quantum state spaces Θ : Z(H)→ Z(K) and those be-
tween classical state spaces K : W (Ω1) → W (Ω2). Among
these, the first quantum-to-classical (Q-C) process M will be
called a quantum measurement, whereas the second quantum-
to-quantum (Q-Q) process Θ will be simply called a quantum
process for obvious reasons (see FIG. 1). The third classical-
to-classical (C-C) process K, which will be used for examin-
ing compatibility of two measurements in this paper, is called
a classical process, which may be thought of as a classical
measurement describing the statistical outcome of measure-
ment on a classical system.

The archetype of quantum measurements is the projection
measurement associated with a quantum observable M̂ . As-
suming for simplicity that M̂ is non-degenerate in a finite
N -dimensional space H, the spectral decomposition M̂ =∑N
i=1mi |mi〉〈mi| induces the affine map

M : ρ 7→ (Mρ)(mi) := Tr
[
|mi〉〈mi|ρ

]
. (3)

To this map one can associate the interpretation that p(mi) =
(Mρ)(mi) gives the probability distribution of possible
measurement outcomes mi in the sample space Ω :=

{m1, . . . ,mN} of all the eigenvalues of M̂ in accordance with
the Born rule. Throughout this paper, the reader may safely
assume that quantum measurement M to be that of the fa-
miliar projection measurement without missing much of the
essence of the subject, although our M is by no means re-
stricted to that particular class. In fact, the map M should
in general be regarded as completely independent from the
physical observable one wishes to measure, which is required
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typically when one measures two distinct observables A and
B with a single quantum measurement process M .

Analogously, the archetype of quantum processes we are
interested in is the ‘wave-function collapse’ which is usually
associated with the projection measurement. This is charac-
terized under the projection postulate [11, 12] such that the
initial quantum state |ψ〉 over which the measurement of M̂
is performed collapses to one of its eigenvectors |mi〉 with
probability |〈mi|ψ〉|2. The projection postulate uniquely ex-
tends to mixed quantum states ρ with the probability p(mi)
mentioned above, resulting in the affine map

Θ : ρ 7→ Θρ :=

N∑
i=1

Tr
[
|mi〉〈mi|ρ

]
· |mi〉〈mi|, (4)

from the quantum state space Z(H) to itself. Again, through-
out this paper, the reader may safely assume that the quantum
process Θ to be that induced by the wave-function collapse,
although our map Θ may describe state changes much more
general than that.

In fact, the sole constraint we impose on the map is affine-
ness, i.e., the map preserves the structure of the probabilistic
mixture

Θ(λρ1 + (1− λ)ρ2) = λΘρ1 + (1− λ)Θρ2 (5)

for ρ1, ρ2 ∈ Z(H), 0 ≤ λ ≤ 1, which is indispensable for the
self-consistent statistical interpretation of density operators,
ensuring that the resultant quantum state κ = Θρ be invariant
under every (pure-state) decomposition of a mixed quantum
state ρ. In other words, our Θ effectively belongs to the broad-
est class of maps between quantum state spaces describing the
most general change of states preserving statistical nature, in-
cluding, e.g., unitary evolution of closed quantum systems,
non-unitary evolution of open quantum systems, quantum de-
coherence, observer effects (which is our main interest here),
quantum channels and gates; we also note that even the com-
pletely positivity of the (adjoint of the) quantum process need
not be assumed.

IV. ADJOINT OF PROCESS

In what follows, we focus our attention primarily to quan-
tum processes in order to avoid unnecessary repetition. The
same properties and facts described hereafter are also valid for
any other processes, including quantum measurements [10] as
well as classical processes, all of which can be demonstrated
through a similar line of reasoning.

Now, an important observation is that a quantum process
Θ : Z(H) → Z(K) uniquely induces a map Θ′ between op-
erator spaces. This dual notion of a quantum process, termed
its adjoint, is uniquely characterized by the relation

〈Θ′X〉ρ = 〈X〉(Θρ) (6)

valid for all operators X on K and quantum states ρ on H,
where we have used (1) defined analogously for the two cases.
Again, the wave-function collapse (4) under the projection

M

ρ

p

ρ

κ

Z(H)Z(H)

W (Ω) Z(K)

Θ

quantum measurement quantum process

FIG. 1. Our basic premise of quantum measurements and quantum
processes. The space of quantum states (density operators) Z(H)
is depicted as a sphere, while the space of probability distributions
W (Ω) is represented by a tetrahedron. In general, a quantum mea-
surement M can be regarded as a map M : Z(H)→ W (Ω) attach-
ing a probability distribution p ∈ W (Ω) to a given quantum state
ρ ∈ Z(H). Similarly, a quantum process Θ can be regarded as a
map M : Z(H) → Z(K) attaching a quantum state κ ∈ Z(K) to a
given quantum state ρ ∈ Z(H).

postulate provides a prime example, the adjoint of which can
be confirmed to read

Θ′ : X 7→ Θ′X =

N∑
i=1

Tr
[
|mi〉〈mi|X

]
· |mi〉〈mi|, (7)

which fulfills (6). The projection postulate is convenient in
that they admit concrete expressions both for the quantum pro-
cess (4) and its adjoint (6) using familiar notions, allowing for
the verification of the various claims in this paper by means of
direct computation.

V. PUSHFORWARD AND PULLBACK

In our framework, it is important to recognize that every
process, which is a global map between state spaces, gives
rise to an adjoint pair of local (i.e., state-dependent) maps.
To see this, we first note that regarding quantum processes
Θ : Z(H)→ Z(K) we have the inequality

‖A‖Θρ ≥ ‖Θ′A‖ρ (8)

for any quantum observable A on K and quantum state ρ on
H. This can be understood as a corollary to the Kadison-
Schwarz inequality [13], which is in a sense a generaliza-
tion of the Cauchy-Schwarz inequality to C∗-algebras. In-
deed, its application to the adjoint Θ′ yields the evaluation
Θ′(N†N) ≥ (Θ′N)†(Θ′N) valid for any normal operator N
on K. Since self-adjoint operators are normal operators, we
have (8).

An immediate consequence of (8) is the implicationA ∼Θρ

B =⇒ Θ′A ∼ρ Θ′B. This allows the adjoint Θ′, which was
initially introduced as a map between Hilbert space operators,
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Sρ(H) Sρ(H)

Sκ(K)

ρ

Θ∗
ρ

Θ∗
ρC

κC

ρ

κ

A

Θρ∗
Θρ∗A

Sκ(K)
ΘΘ

FIG. 2. The pullback and the pushforward of the quantum process.
(Left) A quantum process Θ entails the pullback Θ∗ρ from Sκ(K) to
Sρ(H), each of which is attached to the respective points κ = Θρ ∈
Z(K) and ρ ∈ Z(H) of the corresponding state spaces. (Right)
Conversely, Θ also entails the pushforward that maps in the opposite
direction. The pullback and the pushforward are dual to each other
through the relation (12), and both of them are contractions, that is,
the norm decreases (or remains unchanged) under each of the maps.

to be passed to the map between their equivalence classes. We
call the resultant map

Θ∗ρ : S(Θρ)(K)→ Sρ(H) (9)

the pullback of the quantum process Θ over the quantum state
ρ. In concrete terms, this implies that, given (the equivalence
class of) an operator A ∈ S(Θρ)(K), we have (that of) a corre-
sponding operator Θ∗ρA ∈ Sρ(H). Among the various prop-
erties of the pullback, the contractivity ‖A‖Θρ ≥ ‖Θ∗ρA‖ρ as
well as the composition law described shortly are of our par-
ticular interest. In fact, contractivity is trivial by construction.
For the latter, let Θ : Z(H) → Z(K) and Φ : Z(K) → Z(L)
be two quantum processes with L being a Hilbert space. Since
affineness is closed under map composition, the composite
map Φ ◦ Θ : Z(H) → Z(L) is itself a quantum process.
Then, the pullback of the composite process can be shown to
satisfy the composition law

(Φ ◦Θ)∗ρ = Θ∗ρ ◦ Φ∗(Θρ) (10)

by means of straightforward computation.
It now remains to introduce the dual notion of the pullback,

which we call the pushforward of the quantum process Θ. The
pushforward

Θρ∗ : Sρ(H)→ S(Θρ)(K) (11)

of the quantum process Θ over the quantum state ρ is defined
as the adjoint of the pullback (9) regarding the inner products
on the localized observable spaces. More explicitly, the push-
forward (11) is uniquely characterized by the relation〈

A,Θ∗ρC
〉
ρ

=
〈
Θρ∗A,C

〉
Θρ

(12)

valid for any choices of A ∈ Sρ(H) and C ∈ S(Θρ)(K)
on their respective systems. Since the pullback is a contrac-
tion, its adjoint, i.e., the pushforward, is also a contraction

‖A‖ρ ≥ ‖Θρ∗A‖Θρ. It is also easy to confirm the validity of
the composition law

(Φ ◦Θ)ρ∗ = Φ(Θρ)∗ ◦Θρ∗ (13)

of the pushforward (see FIG. 2).
We note that, by induction, the composition laws of both the

pullback (10) and the pushforward (13) admit generalizations
to the composition of any number of arbitrary processes in an
obvious manner.

VI. ERROR AND DISTURBANCE

Armed with our geometric framework, earlier we have in-
troduced [10] our definition of (quantum) error by the amount
of contraction induced by the pushforward of the measure-
ment M ,

ερ(A;M) :=
√
‖A‖2ρ − ‖Mρ∗A‖2Mρ (14)

for the observable A and the quantum state ρ. In a parallel
manner, we now introduce our definition of disturbance

ηρ(A; Θ) :=
√
‖A‖2ρ − ‖Θρ∗A‖2Θρ (15)

associated with a quantum process Θ with respect to an ob-
servable A over ρ. Here, our error and disturbance are defined
in such a way that both are of essentially the same nature, each
representing the amount of ‘loss’ induced by the respective
processes. It goes without saying that, in general, our method
of quantifying the loss by the amount of contraction is appli-
cable to any types of processes, including not only quantum
measurements and quantum processes as we have seen above,
but also to classical processes.

Before proceeding, we note here that the non-negativity
ηρ(A;M) ≥ 0 of the disturbance is guaranteed by the con-
tractivity of the pushforward mentioned before. It is also easy
to check the homogeneity ηρ(tA;M) = |t| ηρ(A;M), ∀t ∈ R
and the subadditivity ηρ(A;M)+ηρ(B;M) ≥ ηρ(A+B;M)
of the disturbance. These show that the disturbance furnishes
a seminorm on the state-dependent spaces of quantum observ-
ables (the same properties hold verbatim for the ‘loss’ of any
types of processes).

Just as is the case for our error [10], our disturbance also
admits an operational interpretation. To expound on this,
let Θ : Z(H) → Z(K) be a quantum process, and let
L : Z(K)→W (Ω) be any quantum measurement performed
on the resultant space Z(K). Since affineness is closed under
map compositions, the composite map L ◦Θ : ρ 7→ L(Θρ) is
again an affine map from Z(H) to W (Ω); in other words, the
composite map is a quantum measurement. One then readily
confirms that the square of the error of the composite quantum
measurement L ◦Θ admits a decomposition

ερ(A;L ◦Θ)2 = ‖A‖2ρ − ‖(L ◦Θ)∗A‖2(L◦Θ)ρ

= ‖A‖2ρ − ‖Θ∗A‖2Θρ
+ ‖Θ∗A‖2Θρ − ‖L∗(Θ∗A)‖2L(Θρ)

= ηρ(A; Θ)2 + ε(Θρ)(Θ∗A;L)2 (16)
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into the sum of the square of the disturbance of the initial pro-
cess Θ and that of the error of the secondary measurement L.
Here, we have used the composition law (13) of the pushfor-
ward in the second equality adopting the abbreviated notation
Θ∗ = Θρ∗ for brevity. In what follows, we shall also use
Θ∗ = Θ∗ρ (and similarly M∗ = Mρ∗ and M∗ = M∗ρ for quan-
tum measurement) for all occasions for the same reason.

Due to the fact that every element of the space Sρ(H) ad-
mits a (sequence of) measurement(s) that is capable of mea-
suring it errorlessly (in the limit), the decomposition (16) al-
lows for an operational characterization of the disturbance as
the infimum

ηρ(A; Θ) = inf
L
ερ(A;L ◦Θ) (17)

of the error of the composite measurement, along with the in-
terpretation of the pushforward Θ∗A as the indicator of the
locally optimal choices of the (sequence of) secondary mea-
surement(s) L that attains the infimum (in the limit).

By the same reasoning with the help of induction, we note
that the decomposition law (16) admits obvious generaliza-
tions to the composition of any number of arbitrary processes.
This reveals that our error (or ‘loss’ induced by general pro-
cesses) reflects the order structure of ‘informativeness’ of
the quantum measurements (or general processes). To be
more explicit, for example, given two quantum measurements
M : Z(H) → W (Ω1) and N : Z(H) → W (Ω2), one may
argue that the former is more informative than the latter if
there exists a classical process K : W (Ω1) → W (Ω2) with
which the behavior of the latter can be fully described by the
former in the sense of N = K ◦ M , which we may write
M � N . The decomposition law (16) then dictates that the
error of the composite measurement is never less than the error
of the component, which leads to ερ(A;N) ≥ ερ(A;M) for
any observable A over every state ρ. Thus, our error (or ‘loss’
induced by general processes) is an (in the current form, re-
versed) order-homomorphism (order-preserving/isotone map)
reflecting the (partial) order between quantum measurements
(or general processes) regarding ‘informativeness’. The full
discussion on this topic is beyond the scope of this paper, and
thus shall be elaborated elsewhere in one of our subsequent
papers.

VII. UNCERTAINTY RELATION FOR ERRORS IN
MEASUREMENTS ADMITTING A JOINT DISTRIBUTION

Prior to the introduction of our uncertainty relation for er-
ror and disturbance, we present a refined form of our previ-
ous inequality [10] for quantum measurements involving er-
rors, as it serves as a basis for deriving our inequality involv-
ing error and disturbance. Let M : Z(H) → W (Ω1) and
N : Z(H) → W (Ω2) be two quantum measurements cho-
sen independently. Suppose that the two measurements ad-
mit a joint description in the sense that there exists an affine
map J : Z(H) → W (Ω1 × Ω2) from which both the dis-
tributions Mρ and Nρ are retrieved as marginals from the
distribution Jρ. More explicitly, this implies that one has

the classical processes π1 : W (Ω1 × Ω2) → W (Ω1) and
π2 : W (Ω1×Ω2)→W (Ω2) that project the joint probability
distributions to their respective marginals

(π1p)(ω1) :=

∫
Ω2

p(ω1, ω2) dω2 (18)

(π2p)(ω2) :=

∫
Ω1

p(ω1, ω2) dω1 (19)

satisfying M = π1 ◦ J and N = π2 ◦ J . Here, since the ad-
joints of (18) and (19) respectively read (π′1f)(x, y) = f(x)
and (π′2g)(x, y) = g(y), their pullbacks are isometries, i.e.,
‖f‖π1p = ‖π∗1f‖p and ‖g‖π2p = ‖π∗2g‖p. In other words, this
allows for the identification of the function spaces RMρ(Ω1)
and RNρ(Ω2) regarding each of the measurements with their
images under the pullbacks π∗1 and π∗2, which are in turn sub-
spaces of the larger space RJρ(Ω1×Ω2) of the joint measure-
ment.

Now that we have equipped ourselves with the necessary
concepts and facts, we present our result. Let A and B be
quantum observables, and ρ be a quantum state on H. Then,
for any pair of quantum measurements M and N admitting a
joint description, the inequality

ερ(A;M) ερ(B;N) ≥
√
R2 + I2 (20)

holds, where

R :=

〈{A,B}
2

〉
ρ

− 〈M∗A,M∗B〉Mρ

− 〈N∗A,N∗B〉Nρ + 〈M∗A,N∗B〉Jρ (21)

and

I :=

〈
[A,B]

2i

〉
ρ

−
〈

[M∗M∗A,B]

2i

〉
ρ

−
〈

[A,N∗N∗B]

2i

〉
ρ

,

(22)

with the commutator [A,B] := AB − BA. Here, we have
also introduced the abbreviated notation

〈M∗A,N∗B〉Jρ := 〈π∗1M∗A, π∗2N∗B〉Jρ (23)

under the identifications f ' π∗1f and g ' π∗2g mentioned
above.

The proof of the inequality (20) is actually quite simple:
it is just a direct corollary of the Cauchy-Schwarz inequality.
A quick way to see this is to first introduce the semi-inner
product

〈(X, f), (Y, g)〉 := 〈X†Y 〉ρ + 〈f†g〉Jρ
− 〈K ′f†K ′g〉ρ (24)

defined on the product space of Hilbert space operators and
complex functions, as well as the seminorm p(X, f) :=√
〈(X, f), (X, f)〉 that it induces. Noticing the equalities

ερ(A;M) = p(XA, fA), ερ(B;N) = p(YB , gB), (25)
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Z(H)

W (Ω1 × Ω2)
W (Ω1) W (Ω2)

π1 π2

M N
J

FIG. 3. The basic structure of measurements leading to the uncer-
tainty relation for errors associated with two measurement maps M
andN . The cause of the uncertainty lies in the presumption that there
exists a quantum measurement J that jointly describes the given two
measurements M and N .

where

XA := A−M∗M∗A, fA := π∗1M∗A,

YB := B −N∗N∗B, gB := π∗2N∗B, (26)

we find that the Cauchy-Schwartz inequality for the product
of p(XA, fA) and p(YB , gB) becomes

ερ(A;M) ερ(B;N) ≥ |〈(XA, fA), (YB , gB)〉|. (27)

The semi-inner product appearing in the R.H.S. of (27) is a
complex number 〈(XA, fA), (YB , gB)〉 = R+ i I whose real
part R is given by (21) while the imaginary part I by (22).
This completes our proof of the inequality (20).

The terms R and I have their own meanings; the for-
mer represents the bound that is shared in common with the
classical case (‘classical bound’), whereas the latter provides
an additional contribution to the former preexisting bound,
which is characteristic of quantum measurements (‘quantum
bound’). This is supported by the observation that, if the
lower bound is considered for a pair of classical processes
Ki : W (Ω) → W (Ωi), i = 1, 2, by an analogous argument,
then one finds that I vanishes and only the real part R con-
tributes to the bound.

Before proceeding further, we stress that behind the ap-
pearance of the lower bound lies the existence of a joint dis-
tribution map J for the two given measurements M and N ,
which is not at all taken for granted in general. An elemen-
tary situation where such a map J is guaranteed to exist oc-
curs when one performs a pair of projection measurements
M and N respectively associated with observables M̂ and N̂
onH that are commutative with one another as operators, i.e.,
[M̂, N̂ ] = 0. In such case, the quantum measurement J : ρ 7→
(Jρ)(mi, nj) = Tr

[
|mi〉〈mi||nj〉〈nj |ρ

]
induced by combin-

ing the spectral decompositions M̂ =
∑
imi |mi〉〈mi| and

N̂ =
∑
j ni |nj〉〈nj | of the two operators provides an obvi-

ous example of the joint distribution map.

Although the current form of presentation suffices for our
main purpose, we note that the condition of joint describa-
bility of two quantum measurements M and N admits obvi-
ous generalization; the essence is the existence of a quantum
measurement J : Z(H) → W (Ω) mediating the behaviors
of the two measurements M and N with classical processes
πi : W (Ω) → W (Ωi), i = 1, 2, i.e., M = π1 ◦ J and
N = π2 ◦ J . If the pullbacks of both classical processes
πi happen to be isometries over a certain state, which is al-
ways the case globally when both πi are projections to the
marginals as exemplified above, the same line of arguments
leads to the same uncertainty relation as (20) valid over the
said state. One of the elementary situations in which this is
the case is when one measures two observables with a single
measurement M ; this amounts to the special case M = N
which admits the trivial joint description by J = M and triv-
ial classical processes πi = Id, which subsequently yields the
uncertainty relation for errors given in [10]. For general cases
(in which the pullbacks of πi are not necessarily isometries),
the uncertainty relation still holds in the form of (20) with due
modification to the termR.

A proper and comprehensive treatment of such general
cases necessitates more elaborate mathematical tools, which
is beyond the scope of this paper, and will thus be given
elsewhere; there the potential non-uniqueness of the classi-
cal bound R, which is dependent to the generally non-unique
choice of the map J , will also be investigated. In view of this,
we may just consider the simplified version of our inequality
(20) which is free from the choice of J and contains only the
quantum bound:

ερ(A;M) ερ(B;N) ≥ |I|. (28)

VIII. UNCERTAINTY RELATION FOR ERROR AND
DISTURBANCE

We are now ready to introduce our uncertainty relation for
error and disturbance. Let M : Z(H) → W (Ω1) be a quan-
tum measurement and let Θ : Z(H) → Z(K) denote its ob-
server effect, i.e., the inevitable quantum process the measure-
ment M causes on the system H to be measured. Here, we
note again that our process Θ need not be confined to those
that end in the same quantum system H as the initial system,
but also admit those that result in different systems K. This
allows for the description of the measurement process as well
as the quantitative evaluation of the resultant disturbance that
were previously not quite viable, e.g., measurement through
high energy collision involving particle decays. Our distur-
bance thus entertains deeper implication on the conception of
the observer effect than is commonly conceived.

Let us now consider a sequential measurement in which the
primary measurementM is followed by a secondary measure-
ment L which is meant to measure the observableB. As such,
the secondary measurement is performed after the system un-
derwent the process Θ caused by the former, and hence the
corresponding map is given by L : Z(K) → W (Ω2) where
W (Ω2) is the space of probability distributions on the out-
comes of the measurement. Viewed from the original state



7

Z(H)

W (Ω1 × Ω2)

Θ

W (Ω1) W (Ω2)

L

Z(K)

π1 π2

M N
J

FIG. 4. The structure of generating error and disturbance associated
with a measurement. The primary measurement, which is meant to
measure the observable A in the system Z(H), induces a map M
to the space of probability distributions W (Ω1) describing its mea-
surement outcomes. At the same time, the measurement induces a
map Θ to the space of quantum states Z(K) describing the resultant
states caused by the effect of the measurement. The secondly mea-
surement, which is meant to measure the observable B in the sys-
tem Z(K), induces a map L to the space of probability distributions
W (Ω2) describing its measurement outcomes. The map M and the
composite map L ◦ Θ provide the pair of maps M and N and their
joint distribution W (Ω1 × Ω2) discussed before (see FIG. 3).

space Z(H), this sequential measurement by M and L natu-
rally defines a joint measurement J : Z(H) → W (Ω1 × Ω2)
describing both the primary M = π1 ◦K and the secondary
composite L◦Θ = π2 ◦K measurements with the projections
(18) and (19) introduced earlier. Note that the quantum pro-
cess Θ must be constrained strictly by the measurement map
M in order for the composite L◦Θ to possess a joint measure-
ment J along with the primary measurementM , which should
be the case even for an arbitrary choice of the secondary mea-
surement L.

At this point, we may choose L in such a way that the dis-
turbance of the observable B caused by the process Θ coin-
cides with the error of the composite measurement, that is,

ηρ(B; Θ) = ερ(B;L ◦Θ). (29)

In fact, we have seen previously in (17) that this choice is
not only possible (in the sense of limit, if necessary), but also
supported from the ground that it minimizes the error of the
composite measurement L ◦ Θ for all possible L. Then, by
substituting N = L ◦ Θ in (20), one immediately obtains the
inequality for error and disturbance, with R and I being re-
spectively given by (21) and (22) with due substitutions for
N .

To be more explicit, if we are content with the simplified
version (28), then our uncertainty relation for error and distur-
bance reads

ερ(A;M) ηρ(B; Θ) ≥ |I| (30)

with

I =

〈
[A,B]

2i

〉
ρ

−
〈

[M∗M∗A,B]

2i

〉
ρ

−
〈

[A,Θ∗Θ∗B]

2i

〉
ρ

.

(31)

To confirm this, let us first note that the condition (29) is
equivalent to ε(Θρ)(Θ∗B;L) = 0 by (16), which is in turn
equivalent to Θ∗B = L∗L∗(Θ∗B) as shown in [10]. We then
find

N∗N∗B = (L ◦Θ)∗(L ◦Θ)∗B

= Θ∗L∗L∗Θ∗B = Θ∗Θ∗B, (32)

where we have used the composition laws of the pullback (10)
and the pushforward (13) in the second equality. This allows
us to rewrite (22) into (31), which also shows that the lower
bound is independent of the choice of L as expected from the
definition (29).

IX. AFFINITY WITH HEISENBERG’S ORIGINAL IDEA

Just as with our uncertainty relation for errors [10] (as well
as that under joint measurability (20)), our relation for error
and disturbance (30) also implies a potential violation of the
non-commutativity bound |〈[A,B]〉ρ/2i| for certain choices of
quantum measurements and their observer effects. It is to be
emphasized, however, that even though the product of the er-
ror and the disturbance may overcome the non-commutativity
bound quantitatively, Heisenberg’s original idea of the uncer-
tainty principle remains valid; errorless measurement of an
observableA is impossible without disturbing another observ-
able B when 〈[A,B]〉ρ 6= 0. We shall now argue why this is
the case.

For this, we need to discuss the two separate situations
where the measurement M and its observer effect Θ respec-
tively become free from the error and disturbance. The situ-
ation for the errorless measurement M is discussed in detail
in [10], where we have defined that M performs an errorless
measurement of A over ρ, if the error ερ(A;M) in (14) van-
ishes. In the same vein, we say that Θ does not disturb A
over ρ, if the disturbance ηρ(A; Θ) in (15) vanishes. Analo-
gous to the case of measurement, several characterizations of
the disturbance-less process are possible, and here we note the
equivalence of the following three conditions:

(a) ηρ(A; Θ) = 0,

(b) A = Θ∗Θ∗A,

(c) ‖A‖ρ = ‖Θ∗A‖Θρ = ‖Θ∗Θ∗A‖ρ.

In fact, (c) =⇒ (a) is trivial by definition, (a) =⇒ (b)
is an immediate consequence of (16) by choosing L in such a
way that ερ(Θ∗A;L) = 0 ⇐⇒ Θ∗A = L∗L∗Θ∗A (in the
sense of limit, if necessary), and finally (b) =⇒ (c) is due to
the contractivity ‖A‖ρ ≥ ‖Θ∗A‖Θρ ≥ ‖Θ∗Θ∗A‖ρ = ‖A‖ρ
of both the pullback and the pushforward.
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An immediate corollary of this is that, for a non-commuting
pair of observables A and B, there is no quantum mea-
surement that is capable of measuring one of the observ-
ables errorlessly without causing disturbance to the other
over ρ for which the non-commutativity term 〈[A,B]〉ρ is
non-vanishing. Indeed, if there were such a measurement,
our uncertainty relation (30) combined with the equivalence
(a) ⇐⇒ (b) would lead us to the contradiction 0 ≥√
|0|2 + |〈[A,B]〉ρ/2i|2, which is easily confirmed by plug-

ging M∗M∗A = A and Θ∗Θ∗B = B (or M∗M∗B = B
and Θ∗Θ∗A = A, depending on the choice of the observables
concerned) into the lower bound in (30) to find R = 0 while
I = −〈[A,B]〉ρ/2i. One thus finds that for non-trivial (i.e.,
dim(H) ≥ 2) quantum systems, there exists no quantum mea-
surement without any observer effect.

Note, however, that our formulation does not necessarily
prohibit either of the error or disturbance from vanishing. For
instance, when ερ(A;M) = 0 and ηρ(B; Θ) 6= 0, one main-
tains M∗M∗A = A and hence R = 0, and further reveals
〈[A,Θ∗Θ∗B]〉ρ = 0, which ensures I = 0 and consequently
yields no contradiction. This additional property is a conse-
quence of the fact that our quantum process Θ is highly con-
strained by the measurement M as mentioned before. One
may convince oneself that this is indeed the case by looking
at the case of M being the projection measurement of A, for
which we have M̂ = A and the map M reads

M : ρ 7→ (Mρ)(ai) := Tr
[
|ai〉〈ai|ρ

]
(33)

under the spectral decomposition A =
∑N
i=1 ai |ai〉〈ai|.

Clearly, this fulfills M∗M∗A = A ensuring the errorless mea-
surement ερ(A;M) = 0, whereas under the projection postu-
late the map Θ′ in (7) becomes

Θ′ : X 7→ Θ′X =

N∑
i=1

Tr
[
|ai〉〈ai|X

]
· |ai〉〈ai|, (34)

for any operator X on K. One then finds that the pullback
of a self-adjoint operator C ∈ S(K) by Θ∗, which represents
a map between the equivalent classes under the local norms,
admits the form Θ∗C = Θ′C +D with some self-adjoint op-
erator D ∈ S(H) satisfying ‖D‖ρ = 0. It is now immediate
to see that [A,Θ′C] = 0 and 〈[A,D]〉ρ = 0, which implies
〈[A,Θ∗C]〉ρ = 0 and hence by putting C = Θ∗B, one obtains
the aforementioned additional property as promised.

X. CONCLUSION AND DISCUSSIONS

In this paper, we have presented a general uncertainty rela-
tion for error and disturbance based on a universal formulation
of measurements. We have seen that, given a pair of observ-
ables A and B with a state ρ, the product of the measurement
error of A and the disturbance caused on B is bounded from

below, and that the bound contains a (quantum) part given by
the expectation value of the familiar commutator of A and B
along with other commutators of operators characterized by
the measurement. This structure of inequality allows us to ar-
gue that our uncertainty relation maintains Heisenberg’s orig-
inal idea of the uncertainty principle, albeit in a more involved
manner than usually recognized.

The fundamental premise we adopted in our formulation is
that any measurement yields probability distributions repre-
senting its outcomes and induces a change of quantum states,
and that each of them forms an affine map between relevant
spaces. The former is ensured for any measurement of sta-
tistical nature with the possibility of affecting the target sys-
tem, while the latter is required for consistency in describing
the corresponding transition from the state (quantum proba-
bility) space to the state/classical probability space. Because
of this simplicity and universality, our uncertainty relation is
expected to be valid for all conceivable measurements and
also verifiable experimentally without any conditions for op-
erational implementability.

In fact, since our uncertainty relation for error and distur-
bance can be understood as a special case of that for errors,
in this general sense we can say that our relation also en-
tails the standard Kennard-Robertson (Schrödinger) relation
regarding quantum indeterminacy expressed by standard de-
viations when the measurement is non-informative [10]. It is
interesting to see that, all the three orthodox relations regard-
ing quantum indeterminacy, measurement error, and observer
effect, each of which governs the seemingly distinct realms in
which the uncertainty principle manifests itself, are in fact all
one.

It should be also worthwhile to consider whether our ob-
servations can shed some light on other notable uncertainty
relations mentioned in the Introduction. For this, we first note
that our framework naturally encompasses the indirect mea-
surement scheme adopted by several alternative formulations
including Ozawa’s, for every quantum measurement employ-
ing detector systems also preserves the structure of probabilis-
tic mixture. We find it assuring in this respect that our relation
reduces Ozawa’s relation [5] to one of its corollaries. This
can be observed from the fact that our inequality is tighter
than his; one finds that Ozawa’s error ε and disturbance η
is never less than ours ερ and ηρ, respectively, and further
reveals ε(A)η(B) ≥ ερ(A)ηρ(B) ≥

√
R2 + I2 ≥ |I| ≥

|〈[A,B]〉ρ|/2 − ε(A)σ(B) − σ(A)η(B). Here, note that the
inequality of the left- and right-most hand sides is equivalent
to Ozawa’s inequality. Details on this topic will be reported in
our subsequent papers.
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[12] G. Lüders, Über die Zustandsänderung durch den Meßprozeß,
Ann. Phys. 8, 322 (1951).

[13] R. V. Kadison, A Generalized Schwarz Inequality and Alge-
braic Invariants for Operator Algebras, Ann. Math. 56, 494
(1952).


	A Universal Formulation of Uncertainty Relation for Error and Disturbance
	Abstract
	I Introduction
	II Geometric Framework
	III Processes
	IV Adjoint of Process
	V Pushforward and Pullback
	VI Error and Disturbance
	VII Uncertainty Relation for errors in Measurements admitting a Joint Distribution
	VIII Uncertainty Relation for Error and Disturbance
	IX Affinity with Heisenberg's Original Idea
	X Conclusion and Discussions
	 Acknowledgments
	 References


