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We present a new geometric formulation of uncertainty relation valid for any quantum measurements of
statistical nature. Owing to its simplicity and tangibility, our relation is universally valid and experimentally
viable. Although our relation violates the naı̈ve non-commutativity bound ~/2 for the measurement of position
and momentum, the spirit of the uncertainty principle still stands strong. Our relation entails, among others, the
Ozawa relation as a corollary, and also reduces seamlessly to the standard Kennard-Robertson relation when the
measurement is non-informative.

Introduction.— The uncertainty principle stands undoubt-
edly as one of the basic tenets of quantum mechanics, charac-
terizing the indeterministic nature of the microscopic world.
Soon after Heisenberg’s seminal exposition [1], the first math-
ematical formulation of the uncertainty principle was pre-
sented by Kennard [2] giving the lower bound ~/2 for the
product of the standard deviations of position and momen-
tum, which was later generalized to those of arbitrary observ-
ables by Robertson [3]. Owing to its mathematical clarity and
simplicity, the Kennard-Robertson (KR) inequality became a
standard textbook material as a succinct expression of quan-
tum indeterminacy, and has since been regarded widely as the
uncertainty relation in the general discourse, despite the fact
that it has little to do with measurement.

Meanwhile, even though his own conception of uncer-
tainty (or ‘indeterminateness’ [4]) is difficult to precisely in-
fer from the rather vague description of his writings, Heisen-
berg did entertain concepts of error and disturbance associ-
ated with measurement when he mentioned various examples
such as the famous gamma ray microscope experiment. This
somewhat unsatisfying status led to the emergence of sev-
eral alternative formulations of uncertainty relations involv-
ing measurement, typically adopting the indirect measure-
ment scheme where the system of the measuring device is
considered explicitly in addition to the target system of one’s
interest. There, an operational viewpoint was incorporated
into the concepts of error and disturbance, which resulted in,
e.g., the Arthurs-Kelly-Goodman (AKG) inequalities [5, 6]
and the more recent Ozawa inequalities [7, 8] along with their
refinements [9]. Apart form these, uncertainty relations have
also been analyzed from a measure-theoretic viewpoint [10]
as well as within the framework of estimation theory [11].

Beyond the orthodox relations regarding error and distur-
bance, the uncertainty principle has also been found to lie at
the heart of many other intriguing physical phenomena, lead-
ing to the discovery of various types of trade-off relations re-
garding, e.g., time and energy [12–16], entropy [17–20], con-
servation law [21–24], speed limit [25–32], gate implementa-
tion [33, 34], and counterfactuality [35–38].

In this Letter, we present a novel uncertainty relation that
marks the trade-off relation between the measurement errors
of two arbitrary quantum observables. We note three dis-
tinctive merits that characterize our formulation. First, it is

established upon a conceivably simplest framework of mea-
surement without any reference to the specific measurement
models whatsoever: the only objects we deal with are the
tangible measurement outcomes. This implies that our rela-
tion is universally valid as well as operationally useful, and
is free from the problems some alternative formulations are
know for, in which the error (or the disturbance) is to be eval-
uated from a set of observables which may not be measurable
simultaneously [10, 39]. Second, despite the fact that our un-
certainty relation violates generically the non-commutativity
bound, which is in line with the recent similar findings es-
poused notably by Ozawa [8], the spirit of the uncertainty
principle still stands strong as a more general qualitative state-
ment than is commonly conceived with clear physical and sta-
tistical meanings for its lower bound. Third, our geometric
formulation is capable of expressing various types of trade-
off relations of different nature within a unified framework,
thereby providing a seamless connection among the various
forms in which the uncertainty principle manifests itself. In
other words, our uncertainty relation acts as a ‘master rela-
tion’ from which various known uncertainty relations can be
derived, including the KR, AKG and Ozawa inequalities men-
tioned above. Apart from the derivation of the KR inequality
and the outline leading to the AKG and one of the Ozawa
inequalities, we shall report the details on the physical ram-
ifications of our geometric framework and its mathematical
description in our subsequent papers.

Quantum Measurement.— Let us first present our geomet-
ric framework. We start by introducing the state space of
a quantum system modeled as the convex set Z(H) of all
the density operators ρ on a Hilbert space H. Its classical
counterpart is the convex set W (Ω) of all the probability dis-
tributions p on a sample space Ω. Our primary objects of
investigation are affine maps M : Z(H) → W (Ω) from
quantum state spaces to classical state spaces, i.e., maps that
take density operators ρ to probability distributions p = Mρ
while maintaining the structure of the probabilistic mixture
M(λρ1+(1−λ)2) = λMρ1+(1−λ)Mρ2 for ρ1, ρ2 ∈ Z(H),
0 ≤ λ ≤ 1.

The map M generally admits a wide range of interpreta-
tions, such as the representation of a quantum system by a
classical model, but for the purpose of this Letter, let it be
understood as a quantum measurement. It is not difficult to
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= ? |ψ⟩ |ξ⟩ ρ ∈ Z(H) ρ = |ψ⟩⟨ψ| |ψ⟩ ∈ H

ε(Â) :=

√
⟨ψ ⊗ ξ|(Û †(Î ⊗ M̂A)Û − Â ⊗ Î)2|ψ ⊗ ξ⟩

η(B̂) :=

√
⟨ψ ⊗ ξ|(Û†(B̂ ⊗ Î)Û − B̂ ⊗ Î)2|ψ ⊗ ξ⟩

ε(Q̂)η(P̂ ) + ε(Q̂)σ(P̂ ) + σ(Q̂)η(P̂ ) ≥ 1

2
h̄

B|b⟩ = b|b⟩

f(B) =

∫
f(b)|b⟩⟨b| db

Aw(B) =

∫
Aw(b)|b⟩⟨b| db =

∫ ⟨b|A|ψ⟩
⟨b|ψ⟩ |b⟩⟨b| db

(PA)w =
⟨φ|PA|ψ⟩

⟨φ|ψ⟩ ̸= 0 PA := |a⟩⟨a|

(PE)w = (PF )w = 0,

(PA)w ̸= 0, (PB)w ̸= 0, (PC)w ̸= 0,
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat
ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,
consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus
rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem
vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis
ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu,
accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Introduction.— Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum
gravida mauris. Nam arcu libero, nonummy eget, con-
sectetuer id, vulputate a, magna. Donec vehicula augue
eu neque. Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas. Mauris
ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis
in, pretium quis, viverra ac, nunc. Praesent eget sem
vel leo ultrices bibendum. Aenean faucibus. Morbi dolor
nulla, malesuada eu, pulvinar at, mollis ac, nulla. Cur-
abitur auctor semper nulla. Donec varius orci eget risus.
Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollici-
tudin vel, wisi. Morbi auctor lorem non justo. Nam la-
cus libero, pretium at, lobortis vitae, ultricies et, tellus.
Donec aliquet, tortor sed accumsan bibendum, erat ligula
aliquet magna, vitae ornare odio metus a mi. Morbi ac
orci et nisl hendrerit mollis. Suspendisse ut massa. Cras
nec ante. Pellentesque a nulla. Cum sociis natoque pe-
natibus et magnis dis parturient montes, nascetur ridicu-
lus mus. Aliquam tincidunt urna. Nulla ullamcorper
vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat,
congue non, volutpat at, tincidunt tristique, libero. Vi-
vamus viverra fermentum felis. Donec nonummy pellen-
tesque ante. Phasellus adipiscing semper elit. Proin fer-
mentum massa ac quam. Sed diam turpis, molestie vitae,
placerat a, molestie nec, leo. Maecenas lacinia. Nam ip-
sum ligula, eleifend at, accumsan nec, suscipit a, ipsum.
Morbi blandit ligula feugiat magna. Nunc eleifend con-
sequat lorem. Sed lacinia nulla vitae enim. Pellentesque
tincidunt purus vel magna. Integer non enim. Praesent
euismod nunc eu purus. Donec bibendum quam in tel-
lus. Nullam cursus pulvinar lectus. Donec et mi. Nam

vulputate metus eu enim. Vestibulum pellentesque felis
eu massa.

Setup.— We first introduce the state space of a quan-
tum system defined as the convex set Z(H) of all the
density operators on a Hilbert space H. Its classical coun-
terpart is the convex set W (X) of all the probability dis-
tributions on a sample space X. Our primary objects
of investigation are affine maps M : Z(H) → W (X)
from quantum state spaces to classical state spaces,
i.e., maps that take a density operator to a probabil-
ity distribution while maintaining the convex structure
M(λρ1 + (1 − λ)ρ2) = λMρ1 + (1 − λ)Mρ2 for ρ1, ρ2 ∈
Z(H), 0 ≤ λ ≤ 1. The map M generally admits a wide
range of interpretations, e.g., representation of a quan-
tum system into a classical statistical system, but for the
purpose of this letter, let it be understood as a quantum
measurement. One can convince oneself that this inter-
pretation is indeed possible by considering the archety-
pal projection measurement associated with a quantum
observable. More precisely, given a quantum observable
M̂ , its spectral decomposition M̂ =

∑N
i=1 mi |mi⟩⟨mi|

induces a unique map defined by the Born rule

M : ρ '→ (Mρ)(mi) := Tr[|mi⟩⟨mi|ρ]. (1)

One may readily see that the map M indeed takes a
density operator ρ to a probability distribution Mρ on
the sample space X := {m1, . . . , mN} of its eigenvalues
in a probabilistic-mixture-preserving manner.

The next important observation to make is that a
quantum measurement M uniquely induces a map M ′

that takes functions to Hilbert space operators. This
dual notion of quantum measurements, called their ad-
joints, is uniquely characterized by the equality

⟨M ′f⟩ρ = ⟨f⟩Mρ (2)

valid for all complex functions f on X and quantum
states ρ on H. Here, we have introduced the short-
hands ⟨X⟩ρ := Tr[Xρ] for a given pair of a Hilbert

(affine map)
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space operator X and a density operator ρ on H, and
⟨f⟩p :=

∫
X

f(x)p(x) dx for that of a complex function f
and a probability distribution p on X. Again, the pro-
jection measurement (1) provides a simple example, of
which adjoint can be readily confirmed to read

M ′f :=

N∑

i=1

f(mi) |mi⟩⟨mi|. (3)

Rigorous proofs for the existence and uniqueness of the
adjoint M ′ for the special case X = R are found in var-
ious literatures; that for arbitrary X will be also found
in our subsequent paper targeted to the mathematically
oriented audiences.

Pushforward and Pullback.— The key to our frame-
work is the observation that a quantum measurement,
which is a global map between state spaces, gives rise
to an adjoint pair of local (i.e., state-dependent) maps
we call the pullback and pushforward. To expound on
this, let us start by introducing the observable space of
a quantum system modeled as the linear space S(H) of
all the self-adjoint (alias Hermitian) operators on H, to-
gether with its classical counterpart R(X) of all the real
functions on the sample space X. Now, each quantum
state ρ ∈ Z(H) defines a seminorm ∥A∥ρ :=

√
⟨A†A⟩ρ

on S(H) that allows for the identification A ∼ρ B ⇐⇒
∥A−B∥ρ of quantum observables into equivalence classes.
These equivalence classes of quantum observables collec-
tively form a quotient space, which we denote by Sρ(H).
By a similar procedure, a classical probability distribu-
tion p ∈ W (X) induces a seminorm ∥f∥p :=

√
⟨f†f⟩p,

thereby reducing the space R(X) of real functions into
the quotient space Rp(X) with respect to the identifica-
tion f ∼p g ⇐⇒ ∥f − g∥p. As is common practice, we
make a slight abuse of notation to denote the equivalence
class with one of its representatives. The same abuse also
goes for the quotient norm [1].

Now, an important fact regarding quantum measure-
ments is the validity of the inequality

∥f∥Mρ ≥ ∥M ′f∥ρ (4)

for any quantum measurement M : Z(H) → W (X),
quantum state ρ on H, and function f on X. An in-
tuitive interpretation of this fact can be obtained by
first observing the equivalence of (4) with the condi-
tion σMρ(f) ≥ σρ(M

′f) for real functions f , where

σρ(A) :=
√

∥A∥2
ρ − ⟨A⟩2ρ and σp(f) :=

√
∥f∥2

p − ⟨f⟩2p re-

spectively denote the quantum and classical standard de-
viations. This allows us to frame the inequality as the
following statement regarding efficiency of the measure-
ment: the operational cost of obtaining the expectation
value of a quantum observable by means of any mea-
surement can never be reduced below the quantum limit
imposed by the said observable. To illustrate this, con-
sider obtaining the expectation value of an observable

M M⇤
⇢

⇢

S⇢(H)

Z(H)

M⇢⇤

M⇢

W (X)

f

M⇤
⇢ f

A

M⇢⇤A

RM⇢(X)

FIG. 1. Visualization of the bundle of a quantum system,
i.e., the state space Z(H) together with the local space of
quantum observables Sρ(H) attached to each of its points
ρ ∈ Z(H), along with that of its classical counterpart. A
quantum measurement M locally induces a pair of adjoint
contractions we call the pullback and pushforward between
their fibres.

Ã = M ′f by means of a measurement M with respect to
some estimator f . The inequality states that the opera-
tional cost σMρ(f) of the acquisition of the expectation

value ⟨Ã⟩ρ = ⟨M ′f⟩ρ = ⟨f⟩Mρ is bounded from below by

the quantum standard deviation σρ(Ã) of the said ob-
servable. The proof for the special case X = R can be
found in various literatures. Our subsequent paper also
provides proof for general X.

An immediate consequence of (4) is the implication
f ∼Mρ g =⇒ M ′f ∼ρ M ′g. This allows the adjoint M ′,
which was initially introduced as a map from functions
to operators, to be passed to the map from equivalence
classes of functions to that of operators. We call the
resultant map

M∗
ρ : RMρ(X) → Sρ(H) (5)

between quotient spaces, the pullback of the measure-
ment M on the quantum state ρ. Here, note that (4)
trivially implies ∥f∥Mρ ≥ ∥M∗

ρ f∥ρ by construction, which
is to say that the pullback is a contraction.

It now remains to introduce the dual notion of the pull-
back we call the pushforward. To this, let us note that
the quotient norm on Sρ(H) admits a unique inner prod-
uct ⟨A, B⟩ρ := ⟨{A, B}⟩ρ/2 that is compatible with the
said norm in the sense that ∥A∥2

ρ := ⟨A, A⟩ρ. In the same
manner, one may readily confirm that the inner product
⟨f, g⟩p := ⟨fg⟩p satisfies ∥f∥2

p := ⟨f, f⟩p on Rp(X). We
then introduce the pushforward

Mρ∗ : Sρ(H) → RMρ(X) (6)

as the adjoint of the pullback (5) regarding the inner
products described above (FIG. 1). More precisely, the

= ? |ψ⟩ |ξ⟩ ρ ∈ Z(H) ρ = |ψ⟩⟨ψ| |ψ⟩ ∈ H

p ∈ W (X) p = p(x) Rp(X)

ε(Â) :=

√
⟨ψ ⊗ ξ|(Û †(Î ⊗ M̂A)Û − Â ⊗ Î)2|ψ ⊗ ξ⟩

η(B̂) :=

√
⟨ψ ⊗ ξ|(Û†(B̂ ⊗ Î)Û − B̂ ⊗ Î)2|ψ ⊗ ξ⟩

ε(Q̂)η(P̂ ) + ε(Q̂)σ(P̂ ) + σ(Q̂)η(P̂ ) ≥ 1

2
h̄

B|b⟩ = b|b⟩

f(B) =

∫
f(b)|b⟩⟨b| db

Aw(B) =

∫
Aw(b)|b⟩⟨b| db =

∫ ⟨b|A|ψ⟩
⟨b|ψ⟩ |b⟩⟨b| db

(PA)w =
⟨φ|PA|ψ⟩

⟨φ|ψ⟩ ̸= 0 PA := |a⟩⟨a|

(PE)w = (PF )w = 0,

space of quantum states

space of probability distributions

= ? |ψ⟩ |ξ⟩ ρ ∈ Z(H) ρ = |ψ⟩⟨ψ| |ψ⟩ ∈ H

p ∈ W (Ω) p = p(m) Rp(Ω) p = Mρ

ε(Â) :=

√
⟨ψ ⊗ ξ|(Û †(Î ⊗ M̂A)Û − Â ⊗ Î)2|ψ ⊗ ξ⟩

η(B̂) :=

√
⟨ψ ⊗ ξ|(Û†(B̂ ⊗ Î)Û − B̂ ⊗ Î)2|ψ ⊗ ξ⟩

ε(Q̂)η(P̂ ) + ε(Q̂)σ(P̂ ) + σ(Q̂)η(P̂ ) ≥ 1

2
h̄

B|b⟩ = b|b⟩

f(B) =

∫
f(b)|b⟩⟨b| db

Aw(B) =

∫
Aw(b)|b⟩⟨b| db =

∫ ⟨b|A|ψ⟩
⟨b|ψ⟩ |b⟩⟨b| db

(PA)w =
⟨φ|PA|ψ⟩

⟨φ|ψ⟩ ̸= 0 PA := |a⟩⟨a|

(PE)w = (PF )w = 0,

FIG. 1. Our basic premise of quantum measurements. The space
of quantum states (density operators) Z(H) is depicted as a sphere,
while the space of probability distributions W (Ω) is depicted as a
tetrahedron. Quantum measurement M can in general be regarded
as a map M : Z(H) → W (Ω), given the fact that in any mea-
surement (of statistical nature) all we have at the end is a probability
distribution p ∈ W (Ω) over the possible set of outcomes associated
with the quantum state ρ ∈ Z(H) of our concern.

convince oneself that this interpretation is indeed possible by
considering the archetypal projection measurement associated
with an arbitrary quantum observable M̂ . More explicitly, the
spectral decomposition M̂ =

∑N
i=1mi |mi〉〈mi| of an ob-

servable on an N -dimensional Hilbert space induces a natural
map

M : ρ 7→ (Mρ)(mi) := Tr[|mi〉〈mi|ρ] (1)

defined by the Born rule. It is easy to see that (1) is an affine
map that takes a density operator ρ to a probability distri-
bution Mρ on the sample space Ω := {m1, . . . ,mN} con-
sisting of the observable’s eigenvalues. These eigenvalues
are regarded as the possible measurement outcomes, and the
probability distribution given in (1) provides the probability
p(mi) = (Mρ)(mi) of finding the respective outcomes mi

in the measurement, which we now identify with the map M
as a whole (see FIG. 1). Throughout this Letter, the reader
may safely assume the map M to be that of the familiar pro-
jection measurement described above without missing much
of the essence of the subject, although our M is by no means
restricted to that particular class. In fact, the sole constraint
we impose onM , i.e., affineness, is indispensable for the self-
consistent statistical interpretation of density operators: the
outcome probability distribution should be invariant under ev-
ery (pure-state) decomposition of a mixed quantum state. In
other words, ourM effectively belongs to the broadest class of
quantum measurements ever conceivable of statistical nature.

An important observation is that a quantum measurement
M uniquely induces a map M ′ that takes functions on Ω to

operators on H. This dual notion of a quantum measurement,
termed its adjoint, is uniquely characterized by the relation

〈M ′f〉ρ = 〈f〉Mρ (2)

valid for all complex functions f on Ω and quantum states ρ on
H. Here, we have introduced the shorthand 〈X〉ρ := Tr[Xρ]
for a given pair of a Hilbert space operator X and a density
operator ρ on H, as well as 〈f〉p :=

∫
Ω
f(ω)p(ω) dω for a

pair of a complex function f and a probability distribution p
on Ω. Again, the projection measurement (1) provides a prime
example, the adjoint of which can be confirmed to read

M ′f :=

N∑

i=1

f(mi) |mi〉〈mi| (3)

which fulfills (2). Projection measurements are convenient
in that they admit concrete expressions for the measurement
(1) and its adjoint (3) using familiar notions, allowing for the
verification of the various claims in this Letter by means of
direct computation. (A rigorous proof for general affine M
will be given elsewhere [40].)

Pushforward and Pullback.— The key element of our
framework is the fact that a quantum measurement, which is
a global map between state spaces, gives rise to an adjoint
pair of local (i.e., state-dependent) maps which allow us to
evaluate the accuracy of the measurementM of an observable
A with respect to a function f (see FIG. 2). To expound on
this, let us introduce the observable space of a quantum sys-
tem modeled as the linear space S(H) of all the self-adjoint
(alias Hermitian) operators on H. Given a self-adjoint oper-
ator A, each quantum state ρ ∈ Z(H) furnishes a seminorm
‖A‖ρ :=

√
〈A†A〉ρ on S(H) that allows for the identifica-

tion A ∼ρ B ⇐⇒ ‖A − B‖ρ = 0 of quantum observables
into their equivalence classes. These equivalence classes col-
lectively form a quotient space, the completion of which we
denote by Sρ(H). By a similar procedure, a probability distri-
bution p ∈ W (Ω) induces a seminorm ‖f‖p :=

√
〈f†f〉p on

the spaceR(Ω) of all the real functions on the sample space Ω.
The completion of the quotient space induced by the identifi-
cation f ∼p g ⇐⇒ ‖f − g‖p = 0 on R(Ω) will be denoted
byRp(Ω). As commonly practiced, we make a slight abuse of
notation to denote the equivalence class with one of its repre-
sentatives. Also, in the above we have used the adjointA† and
the complex conjugate f† to expose the structure of the semi-
norm, although they are equivalent to A and f , respectively,
for A ∈ S(H) and f ∈ R(Ω).

An important observation regarding quantum measure-
ments M : Z(H)→W (Ω) is the validity of the inequality

‖f‖Mρ ≥ ‖M ′f‖ρ (4)

for any quantum state ρ on H and complex function f on
Ω, with the definitions of the respective seminorms being
extended verbatim to those for normal operators and com-
plex functions. This can be understood as a corollary to the
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space operator X and a density operator ρ on H, and
⟨f⟩p :=

∫
X

f(x)p(x) dx for that of a complex function f
and a probability distribution p on X. Again, the pro-
jection measurement (1) provides a simple example, of
which adjoint can be readily confirmed to read

M ′f :=
N∑

i=1

f(mi) |mi⟩⟨mi|. (3)

Rigorous proofs for the existence and uniqueness of the
adjoint M ′ for the special case X = R are found in var-
ious literatures; that for arbitrary X will be also found
in our subsequent paper targeted to the mathematically
oriented audiences.

Pushforward and Pullback.— The key to our frame-
work is the observation that a quantum measurement,
which is a global map between state spaces, gives rise
to an adjoint pair of local (i.e., state-dependent) maps
we call the pullback and pushforward. To expound on
this, let us start by introducing the observable space of
a quantum system modeled as the linear space S(H) of
all the self-adjoint (alias Hermitian) operators on H, to-
gether with its classical counterpart R(X) of all the real
functions on the sample space X. Now, each quantum
state ρ ∈ Z(H) defines a seminorm ∥A∥ρ :=

√
⟨A†A⟩ρ

on S(H) that allows for the identification A ∼ρ B ⇐⇒
∥A−B∥ρ of quantum observables into equivalence classes.
These equivalence classes of quantum observables collec-
tively form a quotient space, which we denote by Sρ(H).
By a similar procedure, a classical probability distribu-
tion p ∈ W (X) induces a seminorm ∥f∥p :=

√
⟨f†f⟩p,

thereby reducing the space R(X) of real functions into
the quotient space Rp(X) with respect to the identifica-
tion f ∼p g ⇐⇒ ∥f − g∥p. As is common practice, we
make a slight abuse of notation to denote the equivalence
class with one of its representatives. The same abuse also
goes for the quotient norm [1].

Now, an important fact regarding quantum measure-
ments is the validity of the inequality

∥f∥Mρ ≥ ∥M ′f∥ρ (4)

for any quantum measurement M : Z(H) → W (X),
quantum state ρ on H, and function f on X. An in-
tuitive interpretation of this fact can be obtained by
first observing the equivalence of (4) with the condi-
tion σMρ(f) ≥ σρ(M

′f) for real functions f , where

σρ(A) :=
√

∥A∥2
ρ − ⟨A⟩2ρ and σp(f) :=

√
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p − ⟨f⟩2p re-

spectively denote the quantum and classical standard de-
viations. This allows us to frame the inequality as the
following statement regarding efficiency of the measure-
ment: the operational cost of obtaining the expectation
value of a quantum observable by means of any mea-
surement can never be reduced below the quantum limit
imposed by the said observable. To illustrate this, con-
sider obtaining the expectation value of an observable
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Ã = M ′f by means of a measurement M with respect to
some estimator f . The inequality states that the opera-
tional cost σMρ(f) of the acquisition of the expectation

value ⟨Ã⟩ρ = ⟨M ′f⟩ρ = ⟨f⟩Mρ is bounded from below by

the quantum standard deviation σρ(Ã) of the said ob-
servable. The proof for the special case X = R can be
found in various literatures. Our subsequent paper also
provides proof for general X.

An immediate consequence of (4) is the implication
f ∼Mρ g =⇒ M ′f ∼ρ M ′g. This allows the adjoint M ′,
which was initially introduced as a map from functions
to operators, to be passed to the map from equivalence
classes of functions to that of operators. We call the
resultant map

M∗
ρ : RMρ(X) → Sρ(H) (5)

between quotient spaces, the pullback of the measure-
ment M on the quantum state ρ. Here, note that (4)
trivially implies ∥f∥Mρ ≥ ∥M∗

ρ f∥ρ by construction, which
is to say that the pullback is a contraction.

It now remains to introduce the dual notion of the pull-
back we call the pushforward. To this, let us note that
the quotient norm on Sρ(H) admits a unique inner prod-
uct ⟨A, B⟩ρ := ⟨{A, B}⟩ρ/2 that is compatible with the
said norm in the sense that ∥A∥2

ρ := ⟨A, A⟩ρ. In the same
manner, one may readily confirm that the inner product
⟨f, g⟩p := ⟨fg⟩p satisfies ∥f∥2

p := ⟨f, f⟩p on Rp(X). We
then introduce the pushforward

Mρ∗ : Sρ(H) → RMρ(X) (6)

as the adjoint of the pullback (5) regarding the inner
products described above (FIG. 1). More precisely, the
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space operator X and a density operator ρ on H, and
⟨f⟩p :=

∫
X

f(x)p(x) dx for that of a complex function f
and a probability distribution p on X. Again, the pro-
jection measurement (1) provides a simple example, of
which adjoint can be readily confirmed to read

M ′f :=
N∑

i=1

f(mi) |mi⟩⟨mi|. (3)

Rigorous proofs for the existence and uniqueness of the
adjoint M ′ for the special case X = R are found in var-
ious literatures; that for arbitrary X will be also found
in our subsequent paper targeted to the mathematically
oriented audiences.

Pushforward and Pullback.— The key to our frame-
work is the observation that a quantum measurement,
which is a global map between state spaces, gives rise
to an adjoint pair of local (i.e., state-dependent) maps
we call the pullback and pushforward. To expound on
this, let us start by introducing the observable space of
a quantum system modeled as the linear space S(H) of
all the self-adjoint (alias Hermitian) operators on H, to-
gether with its classical counterpart R(X) of all the real
functions on the sample space X. Now, each quantum
state ρ ∈ Z(H) defines a seminorm ∥A∥ρ :=
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on S(H) that allows for the identification A ∼ρ B ⇐⇒
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tively form a quotient space, which we denote by Sρ(H).
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thereby reducing the space R(X) of real functions into
the quotient space Rp(X) with respect to the identifica-
tion f ∼p g ⇐⇒ ∥f − g∥p. As is common practice, we
make a slight abuse of notation to denote the equivalence
class with one of its representatives. The same abuse also
goes for the quotient norm [1].

Now, an important fact regarding quantum measure-
ments is the validity of the inequality
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following statement regarding efficiency of the measure-
ment: the operational cost of obtaining the expectation
value of a quantum observable by means of any mea-
surement can never be reduced below the quantum limit
imposed by the said observable. To illustrate this, con-
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which was initially introduced as a map from functions
to operators, to be passed to the map from equivalence
classes of functions to that of operators. We call the
resultant map

M∗
ρ : RMρ(X) → Sρ(H) (5)

between quotient spaces, the pullback of the measure-
ment M on the quantum state ρ. Here, note that (4)
trivially implies ∥f∥Mρ ≥ ∥M∗

ρ f∥ρ by construction, which
is to say that the pullback is a contraction.

It now remains to introduce the dual notion of the pull-
back we call the pushforward. To this, let us note that
the quotient norm on Sρ(H) admits a unique inner prod-
uct ⟨A, B⟩ρ := ⟨{A, B}⟩ρ/2 that is compatible with the
said norm in the sense that ∥A∥2

ρ := ⟨A, A⟩ρ. In the same
manner, one may readily confirm that the inner product
⟨f, g⟩p := ⟨fg⟩p satisfies ∥f∥2

p := ⟨f, f⟩p on Rp(X). We
then introduce the pushforward

Mρ∗ : Sρ(H) → RMρ(X) (6)

as the adjoint of the pullback (5) regarding the inner
products described above (FIG. 1). More precisely, the

= ? |ψ⟩ |ξ⟩ ρ ∈ Z(H) ρ = |ψ⟩⟨ψ| |ψ⟩ ∈ H

p ∈ W (X) p = p(x) Rp(X)
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ε(Q̂)η(P̂ ) + ε(Q̂)σ(P̂ ) + σ(Q̂)η(P̂ ) ≥ 1

2
h̄

B|b⟩ = b|b⟩

f(B) =

∫
f(b)|b⟩⟨b| db

Aw(B) =

∫
Aw(b)|b⟩⟨b| db =

∫ ⟨b|A|ψ⟩
⟨b|ψ⟩ |b⟩⟨b| db

(PA)w =
⟨φ|PA|ψ⟩

⟨φ|ψ⟩ ̸= 0 PA := |a⟩⟨a|

(PE)w = (PF )w = 0,

2

space operator X and a density operator ρ on H, and
⟨f⟩p :=

∫
X

f(x)p(x) dx for that of a complex function f
and a probability distribution p on X. Again, the pro-
jection measurement (1) provides a simple example, of
which adjoint can be readily confirmed to read

M ′f :=
N∑

i=1

f(mi) |mi⟩⟨mi|. (3)

Rigorous proofs for the existence and uniqueness of the
adjoint M ′ for the special case X = R are found in var-
ious literatures; that for arbitrary X will be also found
in our subsequent paper targeted to the mathematically
oriented audiences.

Pushforward and Pullback.— The key to our frame-
work is the observation that a quantum measurement,
which is a global map between state spaces, gives rise
to an adjoint pair of local (i.e., state-dependent) maps
we call the pullback and pushforward. To expound on
this, let us start by introducing the observable space of
a quantum system modeled as the linear space S(H) of
all the self-adjoint (alias Hermitian) operators on H, to-
gether with its classical counterpart R(X) of all the real
functions on the sample space X. Now, each quantum
state ρ ∈ Z(H) defines a seminorm ∥A∥ρ :=

√
⟨A†A⟩ρ

on S(H) that allows for the identification A ∼ρ B ⇐⇒
∥A−B∥ρ of quantum observables into equivalence classes.
These equivalence classes of quantum observables collec-
tively form a quotient space, which we denote by Sρ(H).
By a similar procedure, a classical probability distribu-
tion p ∈ W (X) induces a seminorm ∥f∥p :=

√
⟨f†f⟩p,

thereby reducing the space R(X) of real functions into
the quotient space Rp(X) with respect to the identifica-
tion f ∼p g ⇐⇒ ∥f − g∥p. As is common practice, we
make a slight abuse of notation to denote the equivalence
class with one of its representatives. The same abuse also
goes for the quotient norm [1].

Now, an important fact regarding quantum measure-
ments is the validity of the inequality

∥f∥Mρ ≥ ∥M ′f∥ρ (4)

for any quantum measurement M : Z(H) → W (X),
quantum state ρ on H, and function f on X. An in-
tuitive interpretation of this fact can be obtained by
first observing the equivalence of (4) with the condi-
tion σMρ(f) ≥ σρ(M

′f) for real functions f , where

σρ(A) :=
√

∥A∥2
ρ − ⟨A⟩2ρ and σp(f) :=

√
∥f∥2

p − ⟨f⟩2p re-

spectively denote the quantum and classical standard de-
viations. This allows us to frame the inequality as the
following statement regarding efficiency of the measure-
ment: the operational cost of obtaining the expectation
value of a quantum observable by means of any mea-
surement can never be reduced below the quantum limit
imposed by the said observable. To illustrate this, con-
sider obtaining the expectation value of an observable

M M⇤
⇢

⇢

S⇢(H)

Z(H)

M⇢⇤

M⇢

W (X)

f

M⇤
⇢ f

A

M⇢⇤A

RM⇢(X)

FIG. 1. Visualization of the bundle of a quantum system,
i.e., the state space Z(H) together with the local space of
quantum observables Sρ(H) attached to each of its points
ρ ∈ Z(H), along with that of its classical counterpart. A
quantum measurement M locally induces a pair of adjoint
contractions we call the pullback and pushforward between
their fibres.
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between quotient spaces, the pullback of the measure-
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trivially implies ∥f∥Mρ ≥ ∥M∗
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Rigorous proofs for the existence and uniqueness of the
adjoint M ′ for the special case X = R are found in var-
ious literatures; that for arbitrary X will be also found
in our subsequent paper targeted to the mathematically
oriented audiences.
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which is a global map between state spaces, gives rise
to an adjoint pair of local (i.e., state-dependent) maps
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thereby reducing the space R(X) of real functions into
the quotient space Rp(X) with respect to the identifica-
tion f ∼p g ⇐⇒ ∥f − g∥p. As is common practice, we
make a slight abuse of notation to denote the equivalence
class with one of its representatives. The same abuse also
goes for the quotient norm [1].

Now, an important fact regarding quantum measure-
ments is the validity of the inequality

∥f∥Mρ ≥ ∥M ′f∥ρ (4)

for any quantum measurement M : Z(H) → W (X),
quantum state ρ on H, and function f on X. An in-
tuitive interpretation of this fact can be obtained by
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found in various literatures. Our subsequent paper also
provides proof for general X.
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make a slight abuse of notation to denote the equivalence
class with one of its representatives. The same abuse also
goes for the quotient norm [1].

Now, an important fact regarding quantum measure-
ments is the validity of the inequality

∥f∥Mρ ≥ ∥M ′f∥ρ (4)

for any quantum measurement M : Z(H) → W (X),
quantum state ρ on H, and function f on X. An in-
tuitive interpretation of this fact can be obtained by
first observing the equivalence of (4) with the condi-
tion σMρ(f) ≥ σρ(M

′f) for real functions f , where

σρ(A) :=
√

∥A∥2
ρ − ⟨A⟩2ρ and σp(f) :=
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spectively denote the quantum and classical standard de-
viations. This allows us to frame the inequality as the
following statement regarding efficiency of the measure-
ment: the operational cost of obtaining the expectation
value of a quantum observable by means of any mea-
surement can never be reduced below the quantum limit
imposed by the said observable. To illustrate this, con-
sider obtaining the expectation value of an observable
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FIG. 1. Visualization of the bundle of a quantum system,
i.e., the state space Z(H) together with the local space of
quantum observables Sρ(H) attached to each of its points
ρ ∈ Z(H), along with that of its classical counterpart. A
quantum measurement M locally induces a pair of adjoint
contractions we call the pullback and pushforward between
their fibres.

Ã = M ′f by means of a measurement M with respect to
some estimator f . The inequality states that the opera-
tional cost σMρ(f) of the acquisition of the expectation

value ⟨Ã⟩ρ = ⟨M ′f⟩ρ = ⟨f⟩Mρ is bounded from below by

the quantum standard deviation σρ(Ã) of the said ob-
servable. The proof for the special case X = R can be
found in various literatures. Our subsequent paper also
provides proof for general X.

An immediate consequence of (4) is the implication
f ∼Mρ g =⇒ M ′f ∼ρ M ′g. This allows the adjoint M ′,
which was initially introduced as a map from functions
to operators, to be passed to the map from equivalence
classes of functions to that of operators. We call the
resultant map

M∗
ρ : RMρ(X) → Sρ(H) (5)

between quotient spaces, the pullback of the measure-
ment M on the quantum state ρ. Here, note that (4)
trivially implies ∥f∥Mρ ≥ ∥M∗

ρ f∥ρ by construction, which
is to say that the pullback is a contraction.

It now remains to introduce the dual notion of the pull-
back we call the pushforward. To this, let us note that
the quotient norm on Sρ(H) admits a unique inner prod-
uct ⟨A, B⟩ρ := ⟨{A, B}⟩ρ/2 that is compatible with the
said norm in the sense that ∥A∥2

ρ := ⟨A, A⟩ρ. In the same
manner, one may readily confirm that the inner product
⟨f, g⟩p := ⟨fg⟩p satisfies ∥f∥2

p := ⟨f, f⟩p on Rp(X). We
then introduce the pushforward

Mρ∗ : Sρ(H) → RMρ(X) (6)

as the adjoint of the pullback (5) regarding the inner
products described above (FIG. 1). More precisely, the
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pushforward is defined as the unique map that satisfies
the relation

⟨Mρ∗A, f⟩Mρ = ⟨A, M∗
ρ f⟩ρ (7)

for all self-adjoint operators A and real functions f . In
other words, the pushforward Mρ∗A of an observable A
is the classical local representative of A induced by M
in the following sense: it is the unique function that pre-
cisely replicates the “quantum” correlation of A and M ′f
for every f by means of the “classical” correlation of itself
and f . Specifically, observe that the expectation values
⟨A⟩ρ = ⟨Mρ∗A⟩Mρ of the original observable and its push-
forward coincide, which can be immediately confirmed
by choosing the constant function f = 1 in (7). Since
the pullback is a contraction, its adjoint, i.e., the push-
forward, is also a contraction ∥A∥ρ ≥ ∥Mρ∗A∥Mρ.

Error of Quantum Measurement.— Armed with the
above framework, let us introduce our definition of the
(quantum) error

ερ(A; M) :=
√

∥A∥2
ρ − ∥Mρ∗A∥2

Mρ (8)

associated with a measurement M of an observable A
performed on ρ. Non-negativity of the error is guaranteed
due to the contractivity of the pushforward. It is also
easy to check the homogeneity ερ(tA; M) = |t| ερ(A; M),
∀t ∈ R and the subadditivity ερ(A+B; M) ≤ ερ(A; M)+
ερ(B; M) of the error. In other words, our definition of
the error is a seminorm defined on the local space of
quantum observables.

An operational interpretation of our error is possible
by considering the problem of reconstructing a quantum
observable A locally at ρ by means of a quantum mea-
surement M . The local reconstruction is implemented by
the pullback Ã := M∗

ρ f of the measurement M , which

creates quantum observables out of real functions. We
then introduce the error with respect to the estimator f
(abbr. f -error)

ερ(A; M, f) :=

√
∥A − M∗

ρ f∥2
ρ +

(
∥f∥2

Mρ − ∥M∗
ρ f∥2

ρ

)

(9)
as a gauge of the precision of the reconstruction. Here,
the first term ∥A − M∗

ρ f∥ρ of the gauge provides an
evaluation of the algebraic deviation between the target
and the reconstructed observables, while the second term
∥f∥2

Mρ − ∥M∗
ρ f∥2

ρ = σMρ(f)2 − σρ(M
∗
ρ f)2 ≥ 0 captures

the added cost in the reconstruction of the observable
Ã = M∗

ρ f itself, which may have arisen from the subop-
timal choice of the measurement M or the estimator f
(see the arguments below (4)). Now, one readily verifies
that the square of the f -error admits a decomposition

ερ(A; M, f)2 = ερ(A; M)2 + ∥Mρ∗A − f∥2
Mρ (10)

into the squared sum of the quantum and estimation er-
rors by simple computation utilizing (7). This provides
an operational characterization of the quantum error as

ερ(A; M) = inf
f

ερ(A; M, f), (11)

of which infimum is attainable with the choice f = Mρ∗A.
Uncertainty Relation.— We are now ready to intro-

duce our uncertainty relation. In fact, one may actually
find several inequalities that mark the trade-off relation
between the error of quantum measurements, the details
of which will be expounded on in our subsequent paper.
For the purpose of this short letter, let us introduce the
simplest among them. Let A and B be quantum observ-
ables, and ρ be a quantum state on H. Then, for any
quantum measurement M : Z(H) → W (X), the inequal-
ity

ερ(A; M)2 ερ(B; M)2 ≥
∣∣∣∣
〈{A, B}

2

〉

ρ

−
〈
Mρ∗A, Mρ∗B

〉
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2i

〉

ρ
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[M∗
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〉

ρ
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2

holds. The proof of the inequality is actually quite sim-
ple: it is just a direct corollary of the renowned Cauchy-
Schwarz inequality. A quick and simple way to see this
is to first introduce the semi-inner product

⟨(X, f), (Y, g)⟩ := ⟨X†Y ⟩ρ + ⟨f†g⟩Mρ − ⟨(M ′f)†M ′g⟩ρ
(12)

defined on the product space of the Hilbert space oper-
ators and that of complex functions, together with the
seminorm p(X, f) :=

√
⟨(X, f), (X, f)⟩ it induces. We

then observe the validity of the equality

ερ(A; M) = p(XA, fA) (13)

while introducing the shorthands XA := A − M∗
ρ Mρ∗A

and fA := Mρ∗A for better readability. The final step is
to apply the Cauchy-Schwartz inequality to the seminorm
to obtain

ερ(A; M) ερ(B; M) ≥ |⟨(XA, fA), (XB , fB)⟩|2, (14)

and subsequently to compute both the real part R and
the imaginary part I of ⟨(XA, fA), (XB , fB)⟩, which can
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space operator X and a density operator ρ on H, and
⟨f⟩p :=

∫
X

f(x)p(x) dx for that of a complex function f
and a probability distribution p on X. Again, the pro-
jection measurement (1) provides a simple example, of
which adjoint can be readily confirmed to read

M ′f :=
N∑

i=1

f(mi) |mi⟩⟨mi|. (3)

Rigorous proofs for the existence and uniqueness of the
adjoint M ′ for the special case X = R are found in var-
ious literatures; that for arbitrary X will be also found
in our subsequent paper targeted to the mathematically
oriented audiences.

Pushforward and Pullback.— The key to our frame-
work is the observation that a quantum measurement,
which is a global map between state spaces, gives rise
to an adjoint pair of local (i.e., state-dependent) maps
we call the pullback and pushforward. To expound on
this, let us start by introducing the observable space of
a quantum system modeled as the linear space S(H) of
all the self-adjoint (alias Hermitian) operators on H, to-
gether with its classical counterpart R(X) of all the real
functions on the sample space X. Now, each quantum
state ρ ∈ Z(H) defines a seminorm ∥A∥ρ :=

√
⟨A†A⟩ρ

on S(H) that allows for the identification A ∼ρ B ⇐⇒
∥A−B∥ρ of quantum observables into equivalence classes.
These equivalence classes of quantum observables collec-
tively form a quotient space, which we denote by Sρ(H).
By a similar procedure, a classical probability distribu-
tion p ∈ W (X) induces a seminorm ∥f∥p :=

√
⟨f†f⟩p,

thereby reducing the space R(X) of real functions into
the quotient space Rp(X) with respect to the identifica-
tion f ∼p g ⇐⇒ ∥f − g∥p. As is common practice, we
make a slight abuse of notation to denote the equivalence
class with one of its representatives. The same abuse also
goes for the quotient norm [1].

Now, an important fact regarding quantum measure-
ments is the validity of the inequality

∥f∥Mρ ≥ ∥M ′f∥ρ (4)

for any quantum measurement M : Z(H) → W (X),
quantum state ρ on H, and function f on X. An in-
tuitive interpretation of this fact can be obtained by
first observing the equivalence of (4) with the condi-
tion σMρ(f) ≥ σρ(M

′f) for real functions f , where

σρ(A) :=
√

∥A∥2
ρ − ⟨A⟩2ρ and σp(f) :=

√
∥f∥2

p − ⟨f⟩2p re-

spectively denote the quantum and classical standard de-
viations. This allows us to frame the inequality as the
following statement regarding efficiency of the measure-
ment: the operational cost of obtaining the expectation
value of a quantum observable by means of any mea-
surement can never be reduced below the quantum limit
imposed by the said observable. To illustrate this, con-
sider obtaining the expectation value of an observable
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FIG. 1. Visualization of the bundle of a quantum system,
i.e., the state space Z(H) together with the local space of
quantum observables Sρ(H) attached to each of its points
ρ ∈ Z(H), along with that of its classical counterpart. A
quantum measurement M locally induces a pair of adjoint
contractions we call the pullback and pushforward between
their fibres.

Ã = M ′f by means of a measurement M with respect to
some estimator f . The inequality states that the opera-
tional cost σMρ(f) of the acquisition of the expectation

value ⟨Ã⟩ρ = ⟨M ′f⟩ρ = ⟨f⟩Mρ is bounded from below by

the quantum standard deviation σρ(Ã) of the said ob-
servable. The proof for the special case X = R can be
found in various literatures. Our subsequent paper also
provides proof for general X.

An immediate consequence of (4) is the implication
f ∼Mρ g =⇒ M ′f ∼ρ M ′g. This allows the adjoint M ′,
which was initially introduced as a map from functions
to operators, to be passed to the map from equivalence
classes of functions to that of operators. We call the
resultant map

M∗
ρ : RMρ(X) → Sρ(H) (5)

between quotient spaces, the pullback of the measure-
ment M on the quantum state ρ. Here, note that (4)
trivially implies ∥f∥Mρ ≥ ∥M∗

ρ f∥ρ by construction, which
is to say that the pullback is a contraction.

It now remains to introduce the dual notion of the pull-
back we call the pushforward. To this, let us note that
the quotient norm on Sρ(H) admits a unique inner prod-
uct ⟨A, B⟩ρ := ⟨{A, B}⟩ρ/2 that is compatible with the
said norm in the sense that ∥A∥2

ρ := ⟨A, A⟩ρ. In the same
manner, one may readily confirm that the inner product
⟨f, g⟩p := ⟨fg⟩p satisfies ∥f∥2

p := ⟨f, f⟩p on Rp(X). We
then introduce the pushforward

Mρ∗ : Sρ(H) → RMρ(X) (6)

as the adjoint of the pullback (5) regarding the inner
products described above (FIG. 1). More precisely, the
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then introduce the pushforward

Mρ∗ : Sρ(H) → RMρ(X) (6)

as the adjoint of the pullback (5) regarding the inner
products described above (FIG. 1). More precisely, the

= ? |ψ⟩ |ξ⟩ ρ ∈ Z(H) ρ = |ψ⟩⟨ψ| |ψ⟩ ∈ H

p ∈ W (X) p = p(x) Rp(Ω) p = Mρ

ε(Â) :=

√
⟨ψ ⊗ ξ|(Û †(Î ⊗ M̂A)Û − Â ⊗ Î)2|ψ ⊗ ξ⟩

η(B̂) :=

√
⟨ψ ⊗ ξ|(Û†(B̂ ⊗ Î)Û − B̂ ⊗ Î)2|ψ ⊗ ξ⟩

ε(Q̂)η(P̂ ) + ε(Q̂)σ(P̂ ) + σ(Q̂)η(P̂ ) ≥ 1

2
h̄

B|b⟩ = b|b⟩

f(B) =

∫
f(b)|b⟩⟨b| db

Aw(B) =

∫
Aw(b)|b⟩⟨b| db =

∫ ⟨b|A|ψ⟩
⟨b|ψ⟩ |b⟩⟨b| db

(PA)w =
⟨φ|PA|ψ⟩

⟨φ|ψ⟩ ̸= 0 PA := |a⟩⟨a|

(PE)w = (PF )w = 0,

FIG. 2. The pullback and the pushforward of the measurement.
(Left) Our quantum measurement map M entails the pullback M∗ρ
from the space of real functionsRp(Ω) attached to each of the points
p = Mρ ∈ W (Ω) to the space of self-adjoint operators Sρ(H) at-
tached to each of the points ρ ∈ Z(H). (Right) Conversely, the
inner products furnished on each of the spaces Rp(Ω) and Sρ(H)
uniquely induces the pushforwardMρ∗ as the adjoint to the pullback.
Both the pullback and the pushforward are contractions, that is, the
norm decreases (or remains unchanged) under each of the maps.

Kadison-Schwarz inequality [41], which is in a sense a gener-
alization of the renowned Cauchy-Schwarz inequality to C∗-
algebras. Indeed, its straightforward application to the adjoint
M ′ yields the evaluation M ′(f†f) ≥ (M ′f)†(M ′f) valid for
any complex function f . This, combined with the characteri-
zation (2) of the adjoint, leads to the desired result.

An intuitive operational interpretation of inequality (4) is
also available. For this, first observe its equivalence to the
condition σMρ(f) ≥ σρ(M

′f), where the respective symbols

σρ(A) :=
√
‖A‖2ρ − 〈A〉2ρ and σp(f) :=

√
‖f‖2p − 〈f〉2p de-

note the quantum and classical standard deviations. This al-
lows us to frame (4) as a statement regarding the efficiency
of the measurement: the operational cost of acquiring the ex-
pectation value of an observable through measurements can
never overcome the quantum limit imposed by the said ob-
servable. To illustrate this, consider obtaining the expectation
value of an observable A = M ′f by means of a measure-
ment M with respect to some real function f , which we call
an estimator of the observable. The inequality states that the
operational cost σMρ(f) of the acquisition of the expectation
value 〈f〉Mρ = 〈A〉ρ is bounded from below by the quantum
limit σρ(A) imposed by the observable.

An immediate consequence of inequality (4) is the implica-
tion f ∼Mρ g =⇒ M ′f ∼ρ M ′g. This allows the adjoint
M ′, which was initially introduced as a map from functions
to operators, to be passed to the map from equivalence classes
of functions to that of operators. We call the resultant map

M∗ρ : RMρ(Ω)→ Sρ(H) (5)

between quotient spaces the pullback of the measurement

M over the quantum state ρ. In concrete terms, this im-
plies that, given (the equivalence class of) a real function
f ∈ RMρ(Ω), we have (that of) a corresponding self-adjoint
operator M∗ρ f ∈ Sρ(H). Note that, by construction, we have
‖f‖Mρ ≥ ‖M∗ρ f‖ρ, which is to say that the pullback is a con-
traction.

It now remains to introduce the dual notion of the pullback,
which we call the pushforward of the measurement M . To
this, let us remark that the quotient norm on Sρ(H) admits
a unique inner product 〈A,B〉ρ := 〈{A,B}〉ρ/2 compatible
with the said norm in the sense ‖A‖2ρ = 〈A,A〉ρ, where we
have used the anti-commutator {A,B} := AB + BA. In the
same manner, one may readily confirm that the inner product
〈f, g〉p := 〈fg〉p defined on Rp(Ω) satisfies ‖f‖2p = 〈f, f〉p.
We then introduce the pushforward

Mρ∗ : Sρ(H)→ RMρ(Ω) (6)

as the adjoint of the pullback (5) with respect to the inner
products. Again, in concrete terms, this implies that, given
(the equivalence class of) a self-adjoint operator A ∈ Sρ(H),
we have (that of) a corresponding real function Mρ∗A ∈
RMρ(Ω). An important point to note is that the pushforward
is defined as the unique map characterized by the relation

〈A,M∗ρ f〉ρ = 〈Mρ∗A, f〉Mρ (7)

valid for all self-adjoint operators A and real functions f .
Note also that the expectation value of an observable and that
of its pushforward coincide 〈A〉ρ = 〈Mρ∗A〉Mρ, as can be
readily confirmed by choosing the constant function f = 1
in (7). Since the pullback is a contraction, its adjoint, i.e., the
pushforward, is also a contraction ‖A‖ρ ≥ ‖Mρ∗A‖Mρ.

Error of Quantum Measurement.— Armed with our geo-
metric framework, let us introduce our definition of the (quan-
tum) error by the amount of contraction induced by the push-
forward of the measurement M ,

ερ(A;M) :=
√
‖A‖2ρ − ‖Mρ∗A‖2Mρ (8)

for the observable A and the quantum state ρ, both cho-
sen independently from M . Non-negativity ερ(A;M) ≥ 0
of the error follows from the contractivity of the pushfor-
ward. It is also straightforward to check the homogeneity
ερ(tA;M) = |t| ερ(A;M), ∀t ∈ R and the subadditivity
ερ(A;M) + ερ(B;M) ≥ ερ(A+B;M) of the error. In other
words, the error furnishes a seminorm on the local space of
quantum observables.

Our error also admits an operational interpretation as the
minimal cost of the local reconstruction of quantum observ-
ables through quantum measurements. To see this, let us con-
sider the problem of reconstructing the observable A locally
by choosing an estimator function f properly under the mea-
surement M . This may be implemented by using the pullback
(5) of the measurement, which is a map that creates an observ-
able M∗ρ f out of the function f we choose. We then introduce
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the error with respect to the estimator f (abbr. f -error)

ερ(A;M,f) :=

√
‖A−M∗ρ f‖2ρ +

(
‖f‖2Mρ − ‖M∗ρ f‖2ρ

)

(9)
as a gauge of the precision of the reconstruction. Here, the first
term ‖A−M∗ρ f‖ρ of the gauge provides an evaluation of the
algebraic deviation between the target and the reconstructed
observables, while the second term ‖f‖2Mρ − ‖M∗ρ f‖2ρ =

σMρ(f)2 − σρ(M∗ρ f)2 ≥ 0 captures the increased cost in the
reconstruction itself, which may have arisen from the subop-
timal choice of the measurement M or the estimator f (cf.
discussions below (4)). One then readily verifies by simple
computation utilizing (7) that the square of the f -error admits
the decomposition

ερ(A;M,f)2 = ερ(A;M)2 + ‖Mρ∗A− f‖2Mρ (10)

into the squared sum of the quantum and estimation errors.
At this point, one inadvertently finds that the optimal estima-
tor that minimizes the f -error is in fact given by f = Mρ∗A,
which is the pushforward of the observableA by the measure-
ment M . This provides an operational characterization of the
quantum error

ερ(A;M) = min
f
ερ(A;M,f) (11)

as the minimum over the f -errors, along with the interpreta-
tion of the pushforward as the locally optimal estimator.

Uncertainty Relation for Error.— We are now ready to in-
troduce our uncertainty relation. In fact, one finds several in-
equalities that mark the trade-off relation between our mea-
surement errors of incompatible quantum observables, but for
the purpose of this Letter, we shall content ourselves with the
simplest among them. Let A and B be quantum observables,
and ρ be a quantum state on H. Then, for any quantum mea-
surement M : Z(H)→W (Ω), the inequality

ερ(A;M) ερ(B;M) ≥
√
R2 + I2 (12)

holds, where

R :=

〈{A,B}
2

〉

ρ

−
〈
Mρ∗A,Mρ∗B

〉
Mρ

(13)

and

I :=

〈
[A,B]

2i

〉

ρ

−
〈

[M∗ρMρ∗A,B]

2i

〉

ρ

−
〈

[A,M∗ρMρ∗B]

2i

〉

ρ

(14)
with the commutator [A,B] := AB −BA.

The proof of the inequality is actually quite simple: it is just
a direct corollary of the Cauchy-Schwarz inequality. A quick
way to see this is to first introduce the semi-inner product

〈(X, f), (Y, g)〉 := 〈X†Y 〉ρ+ 〈f†g〉Mρ−〈M ′f†M ′g〉ρ (15)

defined on the product of the space of Hilbert space opera-
tors and that of complex functions, as well as the seminorm

p(X, f) :=
√
〈(X, f), (X, f)〉 that it induces. Noticing the

equality

ερ(A;M) = p(XA, fA), (16)

where XA := A −M∗ρMρ∗A and fA := Mρ∗A, we find that
the Cauchy-Schwartz inequality for the product of p(XA, fA)
and p(XB , fB) becomes

ερ(A;M) ερ(B;M) ≥ |〈(XA, fA), (XB , fB)〉|. (17)

The semi-inner product appearing in the R.H.S. of (17) is a
complex number 〈(XA, fA), (XB , fB)〉 = R+i I whose real
part R is given by (13) while the imaginary part I by (14).
This completes our proof of the inequality (12).

From a geometric point of view, the real part R in (13)
represents the diminished metric on the bundle of quantum
observables inevitably caused by the measurement M . We
also note that the invariance of the expectation value under
the pushforward allows us to interpret R = Covρ(A,B) −
CovMρ(Mρ∗A,Mρ∗B) as the difference between the covari-
ances. In fact, as one may demonstrate through parallel argu-
ments, this term is also found to be shared with classical mea-
surements, which suggests that the real partR is not necessar-
ily of quantum origin. On the other hand, the imaginary part
I in (14), which consists of three commutators and gives an
additional contribution to the lower bound, marks the essence
of quantum measurements. In this regard, the reduced simpler
form ερ(A;M) ερ(B;M) ≥ |I| obtained from (12) should be
sufficient to express its distinctive characteristics.

The Uncertainty Principle.— Our uncertainty relation (12)
implies a potential violation of the non-commutativity bound
|〈[A,B]〉ρ/2i| for certain choices of quantum measurements.
It is to be emphasized, however, that even though the prod-
uct of the errors may overcome the non-commutativity bound
quantitatively, the philosophy of the uncertainty principle re-
mains valid: simultaneous errorless measurement of non-
commutative observables is impossible when 〈[A,B]〉ρ 6= 0.
We shall now argue why this is the case.

For this, we need to discuss the situation where the mea-
surement M becomes free from the error. We say that a quan-
tum measurement M is capable of an errorless measurement
of A over ρ, if the error ερ(A;M) vanishes. Several charac-
terizations of the errorless measurement are possible, and here
we note the equivalence of the following three conditions:

(a) ερ(A;M) = 0,

(b) A = M∗ρMρ∗A,

(c) ‖A‖ρ = ‖Mρ∗A‖Mρ = ‖M∗ρMρ∗A‖ρ.

In fact, (c) =⇒ (a) is trivial by definition, (a) =⇒ (b) is
an immediate consequence of (10) with the substitution f =
Mρ∗A, and finally (b) =⇒ (c) is due to the contractivity
‖A‖ρ ≥ ‖Mρ∗A‖Mρ ≥ ‖M∗ρMρ∗A‖ρ = ‖A‖ρ of both the
pullback and the pushforward.
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An immediate corollary of this is that, for a non-commuting
pair of observables A and B, there is no quantum measure-
ment that is capable of measuring both observables error-
lessly, ερ(A;M) = 0 and ερ(B;M) = 0, over ρ for which the
non-commutativity term 〈[A,B]〉ρ is non-vanishing. Indeed, if
there were such a measurement, our uncertainty relation (12)
combined with the equivalence (a) ⇐⇒ (b) would lead to
a contradiction 0 ≥

√
|0|2 + |〈[A,B]〉ρ/2i|2. Another way

to put it is that, for non-trivial (i.e., dim(H) ≥ 2) quantum
systems, there exists no quantum measurement that is capable
of errorlessly measuring every quantum observable over every
quantum state. Note that our formulation does not necessarily
prohibit one of the errors from vanishing. This is in contrast
to other formulations including the KR inequality that respect
the non-commutativity bound, in which a stronger restriction
holds so that neither of the terms may vanish.

Reference to Other Uncertainty Relations.— Since our un-
certainty relation is established on a very simple and general
set of premises of quantum measurement, it is worthwhile to
consider whether it can shed some light on other notable un-
certainty relations mentioned in the Introduction.

In this respect, we first show that the KR inequality actually
emerges as a trivial case of our relation. We may call a quan-
tum measurement M trivial, or non-informative, when it is a
constant map, i.e.,Mρ = p0 for all ρ ∈ Z(H) with some fixed
p0 ∈ W (Ω). In other words, trivial measurements are the
least informative measurements one could possibly make on a
quantum system. It is fairly straightforward to confirm that the
pushforward of an observable A by any trivial measurement
is the constant function Mρ∗A = 〈A〉ρ of the observable’s ex-
pectation value. Triviality of the measurement thus reduces
our error to the standard deviation ερ(A;M) = σρ(A), fur-
ther bringing our overall uncertainty relation (12) down to

σρ(A)σρ(B) ≥
√
R2 + I2 (18)

with R = 〈{A,B}〉ρ/2 − 〈A〉ρ〈B〉ρ and I = 〈[A,B]〉ρ/2i.
This is known as the Schrödinger inequality [42], from which
the KR inequality follows immediately. We thus have ob-
served that, through the process of rendering the measurement
into triviality, our inequality finds a seamless connection be-
tween the two different realms of uncertainty relations: one
regarding measurement errors and the other regarding quan-
tum indeterminacy expressed by standard deviations.

We next note that our framework naturally encompasses
the indirect measurement scheme adopted by several alterna-
tive formulations, for every quantum measurement employing
detector systems also preserves the structure of probabilistic
mixture. Under such model, Ozawa proved [8] the inequality
ε(A)ε(B) ≥ |〈[A,B]〉ρ|/2− ε(A)σ(B)−σ(A)ε(B) for joint
measurements ofA andB, where ε(A) and ε(B) are his errors
for the respective observables and his σ is the same as our σρ.
In fact, our uncertainty relation, with suitable refinements to
accommodate joint measurability, is found to reduce Ozawa’s
relation to one of its corollaries. A simple way to explain
this is to demonstrate that our relation is tighter than Ozawa’s:

one finds that Ozawa’s error is never less than ours, and fur-
ther reveals ε(A)ε(B) ≥ ερ(A)ερ(B) ≥

√
R2 + I2 ≥ |I| ≥

|〈[A,B]〉ρ|/2−ε(A)σ(B)−σ(A)ε(B). Here, the short forms
ερ(A) and ερ(B) denote our errors regarding the respective
observables, and R, I are the terms respectively related to
(13) and (14) that marks the lower bound of the product of
our errors under joint measurement. As should be expected,
AKG’s relations, which is valid under additional unbiasedness
condition assumed on top of the measurement model adopted
by Ozawa, can also be framed as a corollary to ours. Details
on this topic will be reported in our subsequent papers.
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