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Abstract

We clarify the significance of quasiprobability (QP) in quantum mechanics that is relevant in describing

physical quantities associated with a transition process. Our basic quantity is Aharonov’s weak value, from

which the QP can be defined up to a certain ambiguity parameterized by a complex number. Unlike the

conventional probability, the QP allows us to treat two noncommuting observables consistently, and this is

utilized to embed the QP in Bohmian mechanics such that its equivalence to quantum mechanics becomes

more transparent. We also show that, with the help of the QP, Bohmian mechanics can be recognized as an

ontological model with a certain type of contextuality.
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I. INTRODUCTION

Probability is a cornerstone of quantum theory, making its radical departure from classical

theory which is deterministic in principle. The probabilistic aspect of quantum theory arises in

the form of the Born rule, which tells us how probable a particular outcome of measurement is,

given a state of the system and an observable to be measured. In the conventional interpretation,

this probability is directly linked to the relative frequency of the particular outcome among all

possible outcomes in the measurement and, as such, it lies within the range of zero to one. This

range remains unchanged even if one adopts the Bayesian interpretation of probability advocated

recently in quantum mechanics [1, 2].

This may no longer be the case when one looks into a process of transition from one (initial) state

to another (final) state. In fact, the notion of transition process is arguably the most foundational

element of quantum theory in which a probability amplitude assigned to each process forms the

basic building block for determining the rate of transition, whether it is described in the form of

wave function or path integration. During a given process, one may consider the value of a physical

observable as a function of the two states which specify the process, and this leads to the so-called

weak value advocated by Aharonov et al. [3]. Despite being generically complex, the weak value

has been measured in a number of systems via the weak measurement, which has now been used

for applications including precision measurement and direct measurement of quantum states (for

a recent review, see, e.g.,[4]).

The characteristics of the weak value become particularly acute when the observable is a projec-

tion, in which case the conventional expectation value takes a value in the usual range between zero

and one allowing for the probabilistic interpretation. In contrast, the weak value of the projection

may take a complex value, as has recently been vindicated experimentally [5]. The question posed

for us is then whether the weak value of the projection can really be interpreted as something

analogous to probability and, if so, how.

The present paper is an attempt to give an answer to this question both from the structural and

the conceptual point of view. Specifically, we clarify how the complex analogue of probability –

occasionally called ‘quasiprobability’ (or ‘pseudo-probability’) – appears naturally in the context of

the weak value when one considers the outcome of measurement. We shall find that the resultant

quasiprobability (QP) possesses an intrinsic ambiguity expressed by a complex number α ∈ C.

Starting from the conditional QP assigned in the given process, we first furnish both the joint

QP and marginal QP according to the standard procedure of probability theory in a consistent
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manner. The weak value arises as an average value with respect to the conditional QP, much like

the expectation value arising as an average value with respect to the conditional probability.

This result is then brought to Bohmian mechanics (or de Broglie-Bohm theory), which is pre-

sumably the most familiar model of hidden variable theories that can fully reproduce the outcomes

of quantum mechanics, where one sees that the physical quantity assigned to an observable takes

the form of the weak value. Interestingly, in terms of the QP, one can reformulate Bohmian mechan-

ics without changing its content such that the Born rule can be derived directly, thereby rendering

the equivalence to quantum mechanics in treasting measurement outcomes more transparent.

The conceptual aspect of QP is then studied further in a more general setting of ontological

models, where we show that Bohmian mechanics [6, 7] can be regarded as an ontological model

with a certain type of contextuality. This provides an arena where one can examine the validity

of QP and at the same time see how the ambiguity represented by the parameter α disappears in

physical quantities obtained experimentally.

This paper is organized as follows. After the Introduction, in section 2 we recall how the weak

value calls for the notion of QP in quantum mechanics in a given transition process. From the

conditional QP defined there follows the joint QP as well as the marginal one. In section 3, by

reconsidering Bohmian mechanics based on the QP, we exhibit the significance of the weak value

and also present the Born rule as a direct consequence of the premises we revise. The fact that

Bohmian mechanics falls into the category of ontological models is discussed in section 4, where

the nonlocality of Bohmian mechanics is addressed with respect to the conventional formalism of

hidden variable theories. Finally, section 5 is devoted to our conclusion and discussion.

II. QUASIPROBABILITY UNDERLYING THE WEAK VALUE

We begin our discussion by observing how QP emerges in quantum mechanics when a transition

process is considered. Specifically, the QP we shall find is conditioned by a pair of states which

specifies the transition, and from this conditional QP both the joint QP and the marginal QP

are derived according to the standard procedure of probability theory. It will be seen that our

conditional QP fulfills (an extended version of) the Kolmogorov axioms and shares some, though

not all, common features with the conventional probability.
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A. Conditional QP Distribution

We first recall that, given two states |ψ〉 and |φ〉 of a Hilbert space H with 〈φ|ψ〉 6= 0, the weak

value of an observable A is defined by

Aw =
〈φ|A |ψ〉

〈φ|ψ〉
. (1)

Despite its complex-valuedness, the weak value can actually be measured by the process called ‘weak

measurement’ [3]. It has thus become important for us to investigate the conceptual significance

of the weak value regarding its physical reality, and for this we explore below the implication of

the weak value in the extension of probability in quantum mechanics.

To this end, let us first consider the spectrum decomposition of the observable A =
∫

aEA (a) da,

where EA (a) = |a〉 〈a| is the projector associated with the eigenstate A |a〉 = a |a〉 of A. With this

decomposition, the weak value (1) may be written as

Aw =

∫

a
〈φ|EA (a) |ψ〉

〈φ|ψ〉
da =

∫

a p (a |ψ, φ ) da, (2)

in terms of the weak value of the projection operator,

p (a |ψ, φ ) =
〈φ|EA (a) |ψ〉

〈φ|ψ〉
. (3)

The expression (2) suggests that the function a 7→ p (a |ψ, φ ) may be interpreted as an analogue

of probability in the sense that its average yields the weak value, despite that the value p (a |ψ, φ )

may go beyond the standard range [0, 1] or even becomes complex. Such an extended probability

provides an example of the QP, but before we mention its general properties, we briefly sketch how

it appears in quantum mechanics when a process of transition is considered.

Let P be the set of all projection operators on a (finite dimensional) Hilbert space H. We

denote by P|χ〉 = |χ〉〈χ| ∈ P the projection operator associated with a state |χ〉 ∈ H, and assume

hereafter that all states are normalized. Now, let fψ,φ : P → C be a map from P to the complex

plane C for a given pair of states, |ψ〉, |φ〉 ∈ H for which 〈φ|ψ〉 6= 0. We demand that the map fψ,φ

fulfill the following conditions:

C1) For Pi, Pj ∈ P which are mutually orthogonal PiPj = 0, i 6= j, we have

fψ,φ

(

∑

i

Pi

)

=
∑

i

fψ,φ (Pi) . (4)

C2) Let
∣

∣χ⊥
〉

be a state orthogonal to |χ〉, that is,
〈

χ⊥|χ
〉

= 0. Then we have

fψ,φ
(

P|ψ〉

)

= 1, fψ,φ

(

P|ψ⊥〉

)

= 0, fψ,φ
(

P|φ〉

)

= 1, fψ,φ

(

P|φ⊥〉

)

= 0. (5)
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It has been shown by Morita et al. [8] that, for dimH ≥ 3, any map fψ,φ that obeys conditions

C1 and C2 must be of the form,

fψ,φ (Pi) = α
〈φ|Pi |ψ〉

〈φ|ψ〉
+ (1− α)

〈ψ|Pi |φ〉

〈ψ|φ〉
(6)

for some α ∈ C. We mention that condition C1 is tantamount to one of the conditions used in

Gleason’s theorem [9] to derive the Born rule and condition C2 is also analogous to the other one

used there, or more specifically, C2 imposes consistency for two states while the counterpart in [9]

does it for one state. Indeed, as we shall see shortly, when the two states are identical |ψ〉 = |φ〉,

the form (6) reduces to the expectation value 〈ψ|Pi |ψ〉 leading to the Born rule.

In view of the generality admitted to the map (6), let us extend the QP in (3) with the parameter

α and consider

pα (a |ψ, φ ) := α
〈φ|EA (a) |ψ〉

〈φ|ψ〉
+ (1− α)

〈ψ|EA (a) |φ〉

〈ψ|φ〉
. (7)

For the reason that will soon become apparent, we call pα (a |ψ, φ ) the α-parameterized conditional

QP distribution of an observable A.

One of the advantages of this α-extension is that we can then tune the mixture of the processes

associated with the QP in (7) freely by choosing the value of α properly. For example, by choosing

α = 1, we have

pα=1 (a |ψ, φ ) =
〈φ|EA (a) |ψ〉

〈φ|ψ〉
, (8)

which is our original one (3) defined for the process |ψ〉 → |φ〉, while by choosing α = 0, we find

pα=0 (a |ψ, φ ) =
〈ψ|EA (a) |φ〉

〈ψ|φ〉
= pα=1 (a |ψ, φ )∗ (9)

which is the one for the reverse process |φ〉 → |ψ〉. The intermediate choice α = 1/2 then gives the

equal mixture of the two, which amounts to taking the real part of the original one,

pα=1/2 (a |ψ, φ ) =
1

2

{

〈φ|EA (a) |ψ〉

〈φ|ψ〉
+

〈ψ|EA (a) |φ〉

〈ψ|φ〉

}

= Re
〈φ|EA (a) |ψ〉

〈φ|ψ〉
. (10)

In particular, for a closed process |ψ〉 → |ψ〉, one observes that the α-dependence disappears to

yield

pα (a |ψ,ψ ) = 〈ψ|EA (a) |ψ〉 = |〈a|ψ〉|2 . (11)
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We thus notice that, if one is allowed to interpret that a closed process is equivalent to adopting

no further condition other than the initial state |ψ〉 allowing for the identification pα (a |ψ,ψ ) =

p (a |ψ ) where p (a |ψ ) represents the probability of finding the value a when the state is |ψ〉,

one obtains p (a |ψ ) = |〈a|ψ〉|2, namely, the Born rule. Although we do not actually adopt this

interpretation in this paper, the connection with the Born rule suggests that our QP is somehow

consistent with the standard notion of probability in quantum mechanics.

B. Joint QP Distribution

Next, we proceed to define the joint QP and the marginal QP from the conditional QP intro-

duced above. Let B be an observable which we use as a ‘reference’ in providing the joint QP, and

let {b} be the set of eigenvalues of B. The observable B is chosen independently from A and hence

it does not commute with A in general. As before we denote by p (b |ψ ) the probability that the

observable B takes the value b when the state is |ψ〉. Then, following the standard procedure of

probability theory, we may define the α-parameterized joint QP distribution as

pα (b, a |ψ ) := pα (a |ψ, b) p (b |ψ ) , (12)

from the conditional QP in (7) adopted in the present situation, that is,

pα (a |ψ, b ) = α
〈b |EA (a) |ψ〉

〈b |ψ〉
+ (1− α)

〈ψ|EA (a) |b〉

〈ψ|b〉
. (13)

Here we make an assumption that for the reference observable B we have the probability formula,

p (b |ψ ) = |〈b|ψ〉|2 . (14)

This allows us to obtain

pα (b, a |ψ ) = α
〈b|EA (a) |ψ〉

〈b|ψ〉
|〈b|ψ〉|2 + (1− α)

〈ψ|EA (a) |b〉

〈ψ|b〉
|〈b|ψ〉|2

= α 〈ψ|EB (b)EA (a) |ψ〉+ (1− α) 〈ψ|EA (a)EB (b) |ψ〉 , (15)

where EB (b) = |b〉 〈b| is the projection onto the eigenspace of the eigenvalue b. This suggests that

the α-parameterized joint QP distribution may be regarded as the generalization of the Kirkwood-

Dirac function [10, 11] or the weak joint QP argued by Ozawa [12]. It should be noted that the

joint QP distribution pα (b, a |ψ ) is not invariant pα (b, a |ψ ) 6= pα (a, b |ψ ) under the interchange

of EA (a) and EB (b), and that our use of the probability formula (14) to derive the joint QP in

(15) is restricted to the particular reference observable B we have chosen.
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In order to investigate the properties of the α-parameterized joint QP, it is convenient for us to

introduce the ◦α-product for two operators X and Y on H as

X ◦α Y := αXY + (1− α)Y X, (16)

with which the joint QP becomes

pα (b, a |ψ ) = 〈ψ|EB (b) ◦α E
A (a) |ψ〉 . (17)

One then confirms at once that the α-parameterized joint QP distribution with α = 1/2 is real-

valued and invariant under the interchange of EA (a) and EB (b),

pα=1/2 (a, b |ψ ) = Re 〈ψ|EB (b)EA (a) |ψ〉

= Re 〈ψ|EA (a)EB (b) |ψ〉 = pα=1/2 (b, a |ψ ) . (18)

Moreover, one can observe (see (A.8) in the Appendix) that

pα (b, a |ψ )− pα (a, b |ψ ) = (2α− 1) 〈ψ|
[

EB (b) , EA (a)
]

|ψ〉 , (19)

which shows that, if A and B commute, then the joint QP pα (b, a |ψ ) = pα (a, b |ψ ) becomes

α-independent and reads

pα (b, a |ψ ) = 〈ψ|EB (b)EA (a) |ψ〉 = 〈ψ|EA (a)EB (b) |ψ〉 (20)

for any α ∈ C. In fact, when the two observables commute, the conditional QP in (13) is already

α-independent and simplifies as

pα (a |ψ, b) =
〈b |EA (a) |ψ〉

〈b |ψ〉
=

〈ψ|EA (a) |b〉

〈ψ|b〉
. (21)

C. Marginal QP Distribution

Finally, we shall define the marginal QP distribution of A on ψ by analogy with the usual joint

probability,

pα (a |ψ ) :=

∫

pα (b, a |ψ ) db =

∫

pα (a |ψ, b ) p (b |ψ ) db. (22)

We then find from (17) and (A.6) that this marginal QP distribution is independent of the param-

eter α and reduces to the conventional probability of obtaining a value a of A,

pα (a |ψ ) =

∫

〈ψ|EB (b) ◦α E
A (a) |ψ〉 db

= 〈ψ|EA (a) |ψ〉

= |〈a|ψ〉|2 . (23)

7



Since the choice of A is arbitrary, the result (23) shows that, whatever the interpretation one

attaches to the α-parameterized conditional QP distribution (7), one ends up with the conventional

Born rule at the level of the marginal distribution that can be directly tested by measurement.

At this point, we remark that (23) together with (22) resembles the reproduction condition in

the ontological model considered in [14], if the eigenstate |b〉 of the observable B is regarded as an

ontic state. However, this is not quite the case since our QP is ψ-dependent in general while it is

not in the ontological model. More on this will come later when we discuss the relevance of QP in

the ontological model.

The foregoing discussions indicate that our (α-parameterized) conditional QP in (7) provides

a key ingredient of quantum theory in that it yields the Born rule as marginal distribution. The

assumption we adopted to achieve this is the probability formula (14) for the reference observable B,

and at this point, we mention that, because of this special status of input, the reference observable

B acquires a deterministic property in the sense that

pα
(

b′ |ψ, b
)

=











1, for b = b′,

0, for b 6= b.

(24)

When the reference observable B is chosen to be the position observable X, our observation implies

that the position becomes a deterministic variable, as will be seen in Bohmian mechanics in the

next section.

D. General Description of QP

Before closing this section, we give a brief account of the mathematical description of QP in

a form slightly more general than (7). Let us denote by ∆ ⊂ R a collection of outcomes for the

measurement of an observable A. The α-parameterized conditional QP associated with ∆ is then

written as

pα (a ∈ ∆ |ψ, φ ) =

∫

∆
pα (a |ψ, φ ) da. (25)

From (7) we learn that it satisfies

pα (a ∈ ∆ |ψ, φ ) = α
〈φ|EA (∆) |ψ〉

〈φ|ψ〉
+ (1− α)

〈ψ|EA (∆) |φ〉

〈ψ|φ〉
, (26)

where EA (∆) is the projection onto the subspace spanned by the eigenstates associated with ∆.

The QP distribution defined above qualifies as a complex-valued version of the Kolmogorov axioms

of the probability measure, namely,
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K1) Countable additivity:

pα (a ∈ ∆ |ψ, φ ) =
∑

i

pα (a ∈ ∆i |ψ, φ ) (27)

for any mutually disjoint sequence of intervals ∆1,∆2, . . . with ∆ = ∪i∆i, and

K2) Normalization condition:

pα (a ∈ R |ψ, φ ) = 1. (28)

Indeed, for K1 we observe

pα (a ∈ ∆ |ψ, φ ) = α
〈φ|
∑

iE
A (∆i) |ψ〉

〈φ|ψ〉
+ (1− α)

〈ψ|
∑

iE
A (∆i) |φ〉

〈ψ|φ〉

=
∑

i

{

α
〈φ|EA (∆i) |ψ〉

〈φ|ψ〉
+ (1− α)

〈ψ|EA (∆i) |φ〉

〈ψ|φ〉

}

=
∑

i

pα (a ∈ ∆i |ψ, φ ) , (29)

and for K2 we have

pα (a ∈ R |ψ, φ ) = α
〈φ|EA (R) |ψ〉

〈φ|ψ〉
+ (1− α)

〈ψ|EA (R) |φ〉

〈ψ|φ〉
= 1, (30)

since EA (R) = I.

Those maps satisfying K1 and K2 are termed QP measure or complex probability measure. The

difference between the QP and the conventional probability is simply that the value of the latter

is restricted to the real range [0, 1] whereas the former is allowed to take any complex numbers.

III. QUASIPROBABILITY AND BOHMIAN MECHANICS

We have so far argued that the QP may be regarded as a fundamental ingredient of quantum

mechanics leading to the Born rule. We now show that the QP can also be found in the most

familiar type of realistic interpretations of quantum mechanics, namely, Bohmian mechanics. In

particular, with the QP we can safely say that Bohmian mechanics is a contextual version of the

ontological model proposed by Spekkens [13, 14].

A. Bohmian Mechanics and the Local Expectation Value

To confirm the above statements, we first recall the framework of Bohmian mechanics [6, 7].

The basic postulates of Bohmian mechanics, considered here for a nonrelativistic scalar particle
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with mass m for simplicity (the extension to the multi-particle or non-scalar case can be made

straightforwardly), may be stated as follows:

B1) The state of the particle is described partly by a vector |ψ〉 in a Hilbert space H which obeys

the Schrödinger equation,

i~
∂

∂t
|ψ〉 = H|ψ〉, (31)

with H being a self-adjoint operator called ‘Hamiltonian’.

B2) The position x ∈ R
3 of the particle in the state |ψ〉 is distributed randomly according to the

probability,

p(x |ψ ) = |ψ(x)|2 , (32)

where ψ (x) = 〈x|ψ〉 is the position representation of the state called ‘wave function’.

B3) Given a position x of the particle in the state |ψ〉, the momentum p = m(dx/dt) of the

particle in the state |ψ〉 is determined by

p = ~ Im
∇ψ (x)

ψ (x)
. (33)

Note that, like in classical mechanics, in Bohmian mechanics the dynamical evolution of the

particle x(t) is completely determined from (31) and (33), once the initial data, x(0) and p(0),

are provided. In this sense, Bohmian mechanics is deterministic, even though it is statistical on

account of the random distribution of the position (32). However, the price Bohmian mechanics

pays for it is that, compared to the standard quantum mechanics, it requires to use the position x

of the particle as an additional variable, which plays the role of the so-called ‘hidden variable’ even

though it can be measured (what is hidden instead is the state |ψ〉 which is not subject to direct

measurement).

Note also that the wave function ψ(x) plays a double role, i.e., it gives the probability distri-

bution (32) and, at the same time, determines the dynamical development of the position by (33).

Because of the latter role, the wave function is sometimes called the guiding wave. It should be

mentioned that Bohmian mechanics does not contain the Born rule in the premises, and hence one

has to argue separately how it can be gained in order to reproduce the predictions of quantum

theory completely. This has been done in [6, 7] by taking account of the measurement procedure.
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Concerning the representation of an observable A in Bohmian mechanics, Holland [15] has

introduced the local expectation value,

〈A〉ψ (x) := Re
ψ∗ (x) (Aψ) (x)

ψ∗ (x)ψ (x)
= Re

〈x|A |ψ〉

〈x|ψ 〉
. (34)

One confirms that the average 〈A〉ψ of the local expectation value over the probability p(x|ψ) is

equal to the expectation value of quantum mechanics,

〈A〉ψ =

∫

〈A〉ψ (x) p(x|ψ) dx

=

∫

Re
〈x|A |ψ〉

〈x|ψ〉
|〈x|ψ〉|2 dx

= 〈ψ|A |ψ〉 . (35)

An important point is that the local expectation value (34) may be regarded as a generalization

of the relation (33). Indeed, recalling that −i~∇ is the representation of the momentum operator

P in the position representation, one has

〈P 〉ψ (x) = Re
〈x|P |ψ〉

〈x|ψ〉
= Re

−i~∇ψ (x)

ψ (x)
. (36)

This coincides with (33) if one identifies the local expectation value of the momentum observable P

with the value of the momentum p of the particle. By virtue of (35) and (36), the local expectation

value of A can be understood as a physical value associated with A, and with this in mind, one

may replace (33) with the more general (34). Obviously, the key element behind this is the fact

that the local expectation value is none other than the real part of weak value, which has been

mentioned earlier in [16] for the case of momentum (or velocity).

B. Bohmian Mechanics with QP

We now introduce the α-parameterized QP in Bohmian mechanics, but before doing so, let us

consider the position operator X and the projection operator EX (x) = |x〉 〈x| on the eigenstate

|x〉 of X. Consider then the α-parameterized joint QP distribution (15) in the notation (17) by

choosing the reference observable as B = X, that is,

pα (x, a |ψ ) = 〈ψ|EX (x) ◦α E
A (a) |ψ〉 . (37)

Recall that the joint QP leads to the marginal QP which ensures the probability formula (23) for

any observable A, i.e., the Born rule. As mentioned before, this formula is not included in the

original postulates B1 - B3 of Bohmian mechanics and hence has to be proven separately.
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We also note that, once the joint QP given by (37) is adopted, the conditional QP distribution

of an observable A is deduced from (12) as

pα (a |ψ,x ) = α
〈x|EA (a) |ψ〉

〈x|ψ〉
+ (1− α)

〈ψ|EA (a) |x〉

〈ψ|x〉
. (38)

In particular, the conditional QP distribution (38) of position X becomes

pα
(

x′ |ψ,x
)

= α
〈x|x′〉〈x′|ψ〉

〈x|ψ〉
+ (1− α)

〈ψ|x′〉〈x′|x〉

〈ψ|x〉

=

{

α
〈x′|ψ〉

〈x|ψ〉
+ (1− α)

〈ψ|x′〉

〈ψ|x〉

}

δ
(

x− x′
)

. (39)

This shows that, should the joint QP in (37) be introduced, the deterministic nature of Bohmian

mechanics becomes manifest as mentioned earlier in (24) (in the discrete case).

From the α-parameterized conditional QP, the conditional average of A is evaluated as
∫

a pα (a |ψ,x ) da = α
〈x|A |ψ〉

〈x|ψ〉
+ (1− α)

〈ψ|A |x〉

〈ψ|x〉
. (40)

We thus observe that Holland’s local expectation value 〈A〉ψ (x) in (34) arises as our expectation

value at α = 1/2. Note that the expectation value (40) is a linear combination of the conjugate

pair of the two weak values (1) obtained by reversing the process of transition.

Now, since (33) in postulate B3 can be replaced with (34), and since (34) allows for the extension

(40), we may just replace B3 with the new postulate:

B3′) Given a position x of the particle in the state |ψ〉, the value of an observable A is given by

〈A〉αψ (x) := α
〈x|A |ψ〉

〈x|ψ〉
+ (1− α)

〈ψ|A |x〉

〈ψ|x〉
, (41)

with α ∈ C.

At this point, it is important to recognize that adopting B3′ in place of B3 does not modify the

content of Bohmian mechanics, since the α-dependence appears only in the association of the value

(41) but not in the final probability. Indeed, as in (35) the average value has no α-dependence and

remains the same,

〈A〉αψ =

∫

〈A〉αψ (x) p(x|ψ)dx = 〈ψ|A |ψ〉 , (42)

as can be confirmed readily by use of (32) in B2. Similarly, from (41) one can derive (38) by

choosing EA(a) for A, and again by using (32) one can obtain the joint QP in (37) from which the

Born rule follows directly. We thus learn that our QP can be embedded in Bohmian mechanics

without altering its physical content. As shown in (42), the α-dependence in (41), which exhibits

the ambiguity in the value of A at a position x, disappears in the physically measurable quantities

after the average over all possible x is performed.
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IV. BOHMIAN MECHANICS AND THE ONTOLOGICAL MODEL

Finally, in order to see a deeper role of QP in Bohmian mechanics, we examine the connection

between Bohmian mechanics and the ontological model of quantum theory introduced by Harrigan

and Spekkens [14]. It has been pointed out in [17] that the conventional framework of the ontological

model cannot accommodate Bohmian mechanics. Below we show that this is no longer the case

if the framework is extended properly, that is, we can actually regard Bohmian mechanics as an

(extended) ontological model in which the QP is embedded.

A. Ontological Models and Synlogicality

For the extension, we first introduce a certain type of contextuality and then formulate the on-

tological model based on the QP. Since our contextuality is slightly different from the contextuality

discussed in [13], we employ the term ‘synlogical’ instead of ‘contextual’ which was initially used

in [18].

Let ψ be a preparation of the system, whether or not it is classical or quantum, for which we

measure an observable A. The preparation may be realized by preparing a state for the system,

and in classical mechanics its complete specification is provided by a point γ in phase space Γ

but more generally it is specified by a probability distribution p (γ |ψ ) in Γ. Thus, in classical

mechanics for which the physical reality is taken for granted, the probability distribution p (a |ψ )

of obtaining the measurement result a under the preparation ψ can be written in the form,

p (a |ψ ) =

∫

Γ
p (a |γ, ψ ) p (γ |ψ ) dγ. (43)

On the other hand, in quantum mechanics for which no physical reality analogous to the classical

one is attached, the complete specification of preparation is provided by a vector (pure state) in a

Hilbert space H. Nevertheless one may consider an ontological model which purports to describe

experimentally observed phenomena supposing some physical reality, and such a model may be

formulated as follows [13, 14]. Let Λ be a set of elements λ which correspond to parameters (or

hidden variables) representing the purported physical reality of the system. We shall call the

element λ an ontic state and the set Λ an ontic state space. An ontological model is a model that

is characterized by an ontic state λ ∈ Λ and a (conditional) joint probability p (λ, a |A,ψ ) of λ with

outcome a ∈ KA, where KA is a set of all possible outcomes of the measurement of an observable

A. The argument A in p (λ, a |A,ψ ) might look redundant, but it proves important to keep track

of what is measured in order to specify the condition of measurement in the following argument.
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Let p (a |ψ ) be the probability distribution of the outcomes a ∈ KA obtained under the prepara-

tion ψ. From the conditional joint probability p (λ, a |A,ψ ) provided in the model, the probability

p (a |ψ ) may be given by summing over all possible ontic states appearing in the preparation,

p (a |ψ ) =

∫

Λ
p (λ, a |A,ψ ) dλ. (44)

We assume that in our ontological model the conditional joint probability always fulfills this ‘re-

production condition’ (44). For our later purpose, we also extend the framework of the ontological

model by allowing the conditional joint probability p (λ, a |A,ψ ) to be complex so that the QP may

be admitted. This extension does not affect the formal structure of the ontological model we are

currently considering.

Given the conditional joint probability, the marginal probability of λ is defined according to the

standard procedure as

p (λ |A,ψ ) :=

∫

KA

p (λ, a |A,ψ ) da, (45)

which has been referred to as epistemic state in [14]. Note that the marginal probability (45) may

not be uniquely determined from the preparation ψ alone. In fact, as the argument suggests, it

could depend on the choice of the observable A. If, however, the marginal probability is independent

of A so that we can write

p (λ |A,ψ ) = p (λ |ψ ) , (46)

for any A and a pair of ψ and λ ∈ Λ, then we call such a model observable-asynlogical (O-AS).

Otherwise, it is called observable-synlogical (O-S).

Out of the joint probability p (λ, a |A,ψ ) and other marginal probabilities mentioned above, we

define two types of conditional probabilities,

p (a |λ,A, ψ ) :=
p (λ, a |A,ψ )

p (λ |A,ψ )
, p (λ |a,A, ψ ) :=

p (λ, a |A,ψ )

p (a |A,ψ )
, (47)

which are called indicator functions in [14]. By construction, these functions fulfill Bayes’ formula,

p (λ |a,A, ψ ) =
p (a |λ,A, ψ ) p (λ |A,ψ )

p (a |A,ψ )
. (48)

We also notice that the resultant conditional probabilities (47) depend on the preparation ψ

in general. This alludes us to call an ontological model preparation-asynlogical (P-AS) if it is

independent of ψ allowing us to write

p (a |λ,A, ψ ) = p (a |λ,A ) , (49)
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for any A, λ ∈ Λ and a ∈ KA. Otherwise, it is called preparation-synlogical (P-S).

Using the materials we have introduced, the reproduction condition (44) can now be expressed

as

p (a |ψ ) =

∫

Λ
p (a |λ,A, ψ ) p (λ |A,ψ ) dλ. (50)

If, in particular, the ontological model is both O-AS and P-AS, we have

p (a |ψ ) =

∫

Λ
p (a |λ,A) p (λ |ψ ) dλ. (51)

When an ontological model is of this type, we shall simply call the model asynlogical, and otherwise

we call it synlogical. The conventional framework of the ontological (or hidden variable) model

[14, 19] is confined to the asynlogical case, but below we need to deal with the synlogical case in

order to accommodate Bohminan mechanics in the framework.

B. Bohminan Mechanics as a Synlogical Ontological Model

Now we show that Bohmian mechanics is a quasiprobabilistic P-S ontological model. To this

end, we first recall that the ontic state space of Bohmian mechanics is just the position eigenspace,

Λ =
{

|x〉
∣

∣x ∈ R
N
}

, (52)

where N = 3n if n particles are present in the three dimensional space. Next, we observe that, in

view of (40), the QP underlying condition B3′ is the indicator function pα (a |ψ,x ) given in (38), or

the joint QP in (37) from which the Born rule follows directly as noted earlier. Combining these,

we find that Bohmian mechanics can actually be regarded as an ontological model defined by the

ontic state space Λ in (52) and the joint QP pα (a |ψ,x ) in (37). Since pα (a |ψ,x ) depends on ψ,

Bohmian mechanics, regarded this way, is a P-S ontological model.

Having found the intrinsic QP associated with Bohmian mechanics, we now proceed backwardly

and deduce the basic ingredients of Bohmian mechanics from the QP. First, from the QP the

epistemic state (45) is given by

∫

pα (x, a |ψ ) da = p(x|ψ) = |〈x|ψ〉|2 , (53)

which is just condition B2. Second, the indicator functions (47) imply

pα (a |x, ψ ) =
pα (x, a |ψ )

p(x|ψ)
, pα (x |a, ψ ) =

pα (x, a |ψ )

p (a |ψ )
, (54)
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and, accordingly, the physical value corresponding to the observable A takes the form,

〈A〉αψ (x) =

∫

a pα (a |x, ψ ) da

= α
〈x|A |ψ〉

〈x|ψ〉
+ (1− α)

〈ψ|A |x〉

〈ψ|x〉
, (55)

which is just condition B3′.

Proceeding a step further, let us consider the question of quantum nonlocality in Bohmian me-

chanics. For this, we need to examine the correlation of measurement outcomes of two observables,

A and B, which may be evaluated by a straightforward extension of (55):

〈AB〉αψ (x) =

∫

ab pα (a, b |x, ψ ) dadb, (56)

using the conditional probability,

pα (a, b |x, ψ ) =
pα (x, a, b |ψ )

p(x|ψ)
, (57)

defined from the joint probability,

pα (x, a, b |ψ ) = 〈ψ|EX (x) ◦α
(

EA (a)EB (b)
)

|ψ〉 . (58)

For definiteness, let us consider two particles labeled by 1 and 2 with position x1 and x2 for

which we measure A for particle 1 and B for particle 2, respectively. First, if the observables

A, B commute with the positions x1,x2, as in the case where, e.g., we measure the spins of

respective particles, then the α-dependence disappears as we mentioned earlier. Moreover, if the

state |ψ〉 is a direct product of the states of the two particles, |ψ〉 = |ψ1〉 |ψ2〉, then, noting

EX (x) = EX (x1)E
X (x2), we have (suppressing α which does not appear in this case),

p (x, a, b |ψ ) = 〈ψ1|E
X (x1)E

A (a) |ψ1〉 〈ψ2|E
X (x2)E

B (b) |ψ2〉

= p (x1, a |ψ1 ) p (x2, b |ψ2 ) . (59)

Using the relation,

p(x|ψ) = |〈x|ψ〉|2 = |〈x1|ψ1〉|
2 |〈x2|ψ2〉|

2 = p(x1 |ψ1 ) p(x2 |ψ2 ), (60)

we see that in this particular case,

〈AB〉ψ (x) =

∫

a p(a |x1, ψ1 ) b p(a |x2, ψ2 ) dadb

= 〈A〉ψ1
(x1) 〈B〉ψ2

(x2) , (61)
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where

〈A〉ψ1
(x1) =

〈x1|A |ψ1〉

〈x1|ψ1〉
, 〈B〉ψ2

(x2) =
〈x2|A |ψ2〉

〈x2|ψ2〉
, (62)

which coincide with the local expectation value (34) for the respective particles. It is evident from

the resultant product structure in (61) that the correlation is local, which is to be compared with

the familiar expression of the value in the hidden variable theory [20]. On the other had, the above

argument implies that the correlation may become nonlocal if the state is not a direct product

|ψ〉 6= |ψ1〉 |ψ2〉.

If the observables A, B do not commute with the positions x1, x2, as in the case where, e.g.,

we measure the angular momenta of the respective particles, then we see that the α-dependence

remains intact in general even for the product state. Indeed, in this setting we have

pα (a, b |x, ψ ) = α
〈x|EA (a)EB (b) |ψ〉

〈x|ψ〉
+ (1− α)

〈ψ|EA (a)EB (b) |x〉

〈ψ|x〉

= α
〈x1|E

A (a) |ψ1〉

〈x1|ψ2〉

〈x2|E
B (b) |ψ2〉

〈x2|ψ2〉
+ (1− α)

〈ψ2|E
A (a) |x1〉

〈ψ2|x1〉

〈ψ|EA (a) |x2〉

〈ψ2|x2〉
.

This implies that the correlation is nonlocal even for product states, except for the two trivial cases

α = 1 and 0 for which we find

pα=1 (a, b |x, ψ ) = pα=1 (a |x1, ψ1 ) p
α=1 (b |x2, ψ2 ) ,

pα=0 (a, b |x, ψ ) = pα=0 (a |x1, ψ1 ) p
α=0 (b |x2, ψ2 ) , (63)

or equivalently,

〈AB〉α=1
ψ (x) = 〈A〉ψ1

(x1) 〈B〉ψ2
(x2) ,

〈AB〉α=0
ψ (x) = 〈A〉∗ψ1

(x1) 〈B〉∗ψ2
(x2) . (64)

An alternative, reasonable definition of the joint QP for the composite system may be given by

pα1α2 (x, a, b |ψ ) = 〈ψ|EA (a) ◦α1
EX1 (x1)E

B (b) ◦α2
EX2 (x2) |ψ〉 , (65)

where α1 and α2 are the complex parameters specifying the ambiguity of joint QP assigned to the

respective two particles. It is clear that this confines the ambiguity within each of the particles

and, accordingly as in (59), it ensures locality in the correlation for all α1 and α2 for any product

states |ψ〉 = |ψ1〉 |ψ2〉,

pα1α2 (x, a, b |ψ ) = pα1 (x1, a |ψ1 ) p
α2 (x2, b |ψ2 ) . (66)
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Before closing this section, we remark that, even when the preparation ψ is described by a

mixed state ρ in the foregoing arguments, the corresponding result is obtained simply by replacing

〈ψ| . . . |ψ〉 with Tr [. . . ρ]. Incidentally, we also remark that since there are vectors ψ, φ ∈ H such

that

p(x|ψ) p (x |φ) = |〈x|ψ〉|2 |〈x|φ〉|2 6= 0, (67)

Bohmian mechanics is ‘ψ-epistemic’ according to the classification advocated in [13, 14].

V. CONCLUSION AND DISCUSSION

In this paper we have argued, from both the structural and the conceptual viewpoints, that

the conditional QP defined from the weak value provides a basic ingredient of quantum theory.

In the structural viewpoint, we have found that the QP forms the fundamental element in the

description of a quantum transition process, and that it is characterized by a complex α-parameter

representing the ambiguity of the process. Curiously, or reassuredly, this ambiguity disappears at

the final stage of dealing with physically observable quantities.

In the conceptual viewpoint, we have seen that the QP can be embedded in Bohmian mechanics

such that one of the postulates of Bohmian mechanics is replaced by an alternative one from which

the Born rule is derived directly. This observation allows us to recognize Bohmian mechanics as

an ontological model of a certain synlogical (contextual) type, clarifying its so far obscure status

in the category of hidden variable models.

It should be stressed that the QP introduced in this paper is defined for two non-commuting

observables A and B for which no joint probability is admitted in quantum mechanics on account

of the incompatibility of simultaneous measurements of the two observables. Compared to the QP

discussed earlier (e.g., [10, 12, 21]), our QP possesses the α-dependence which specifies the degree

of mixture of transition processes under time reversal. In the practical side, our QP serves as a

useful tool for treating statistical quantities such as the expectation value and the correlation of two

physical observables in a manner analogous to the conventional probability. This will be particularly

convenient for dealing with situations where such expectation values and correlations take non-

standard values, which will occur when the weak value is considered in specific arrangements to

achieve amplification [3] for instance.
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Appendix: Some useful Formulas for the ◦α-Product

The ◦α-product (16) for two operators X and Y on H is defined by

X ◦α Y := αXY + (1− α)Y X, (A.1)

with α ∈ C. For α = 1 and α = 0, the ◦α-product becomes the usual operator product,

X ◦α=1 Y = XY, X ◦α=0 Y = Y X, (A.2)

whereas for α = 1/2 it reduces to the Jordan product [22],

X ◦α= 1

2

Y =
1

2
(XY + Y X) . (A.3)

If we put α = s+ it with real s, t, we have

X ◦α=s+it Y = sXY + (1− s)Y X + it [X,Y ] = X ◦s Y + it [X,Y ] , (A.4)

where [X,Y ] = XY − Y X is the commutator. In particular, for α = 1
2 (1− i) we find

X ◦α= 1

2
(1−i) Y =

1

2
{X,Y }+

1

2i
[X,Y ], (A.5)

where {X,Y } = XY + Y X is the anti-commutator. In addition, the ◦α-product has the following

properties:

I ◦α X = X ◦α I = X, (A.6)

X ◦α X = X2, (A.7)

X ◦α Y − Y ◦α X = (2α− 1) [X,Y ], (A.8)

X ◦α Y + Y ◦α X = XY + Y X, (A.9)

[X,Y ] = 0 ⇒ X ◦α Y = XY = Y X, (A.10)

with I being the identity operator on H.
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