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Quantum Trajectories based on the Weak Value
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The notion of the trajectory of an individual particle is strictly inhibited in quantum mechanics
because of the uncertainty principle. Nonetheless, the weak value, which has been proposed as a
novel and measurable quantity definable to any quantum observable, can offer a possible description
of trajectory on account of its statistical nature. In this paper, we explore the physical significance
provided by this “weak trajectory” by considering various situations where interference takes place
simultaneously with the observation of particles, that is, in prototypical quantum situations for
which no classical treatment is available. These include the double slit experiment and Lloyd’s
mirror, where in the former case it is argued that the real part of the weak trajectory describes
an average over the possible classical trajectories involved in the process, and that the imaginary
part is related to the variation of interference. It is shown that this average interpretation of the
weak trajectory holds universally under the complex probability defined from the given transition
process. These features remain essentially unaltered in the case of Lloyd’s mirror where interference
occurs with a single slit.

PACS numbers: 03.65.Ta, 03.67.-a, 06.30.-k.

I. INTRODUCTION

In quantum mechanics, we all know that one cannot
associate a trajectory to a particle on an observational
basis because, as dictated by the uncertainty principle,
any measurement of the position disturbs the momentum
of the particle, rendering the successive determination of
the position within a certain limit of accuracy impossible.
A typical situation illustrating this is found in the double
slit experiment, where the assumption of trajectory–the
particle goes through either of the two slits–contradicts
the interference pattern actually observed on the screen.
In this respect, the weak value, which was proposed

earlier by Aharonov et al. [1] as a novel physical quantity
obtainable with a minimal disturbance, offers an inter-
esting possibility. Namely, under the given process of
transition from an initial state, called the “pre-selected
state,” |φ〉, and a final state called the “post-selected
state,” |ψ〉, for which the process is assumed not to be
forbidden: 〈ψ|φ〉 6= 0, one can measure an observable A
by the standard von Neumann measurement to obtain
the weak value,

Aw =
〈ψ|A|φ〉
〈ψ|φ〉 , (1)

in the weak (vanishing) limit of the measurement inter-
action. As such, one may expect that the weak value Aw

has something to say about the physical being of the ob-
servable A peculiar to the process, revealing its raw fea-
tures that are accessible only under the undisturbed con-
dition. In the same vein, one may also contemplate that
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the weak value, albeit being complex, has an “element
of reality” [2] analogous to that argued in the Einstein-
Podolsky-Rosen paper [3].

Recently, Kocsis et al. demonstrated experimentally
that particle trajectory in the double slit experiment can
be reconstructed for an ensemble of particles by combin-
ing the weak value of the momentum and the determina-
tion of the position in a systematic way [4]. The emergent
trajectory agrees with that of the de Broglie-Bohm the-
ory, confirming the prediction made in [5, 6]. This is
an enlightening result illuminating the physical meaning
of the weak value, but in view of the indirect nature of
the systematic treatment of the data, one may wonder if
there are other ways to define the trajectory based on the
weak value. Indeed, an alternative and more direct tra-
jectory can be delineated from the time-dependent weak
value [7] with an iterative procedure of measurements
[8]. This can be regarded as the dynamical version of the
weak value that emerges naturally in the context of the
time-symmetric formulation of quantum mechanics [9].

In the present paper, we consider the dynamical tra-
jectory defined directly in this context, called the “weak
trajectory” for short, and thereby examine if it allows
for an intuitive picture from the physical point of view.
When the given process consists of the pre- and post-
selections given either by position eigenstates or by well-
localized (Gaussian) states, the weak trajectory forms a
curve with the two ends specified by the selections. The
interest in this case is then to see how the trajectory
deviates from the classical one, which has been analyzed
earlier in [7, 8, 10]. In contrast, in our study we are inter-
ested in situations where the selections are performed not
by those (semi)classical states but by genuinely quantum
states, that is, by superposed states for which no particu-
lar position is assignable to the particle, at one of the ends
at least. Specifically, we consider a number of examples
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including the double slit experiment and its extensions to
multiple slit and further to the continuous case, and also
Lloyd’s mirror for which no unique classical trajectory
is available. These examples offer us a reasonably good
testing ground for the validity of the weak trajectory.
Another question we address is the generic complex-

valuedness of the weak trajectory implied in the defini-
tion of the weak value (1). Through the examples we
study, we find that, albeit with complex probability for
the general case, the weak trajectory admits interpreta-
tion as an average over the possible distinct trajectories
involved in the transition process, while the imaginary
part is related to the rate of variation in the interference
observed. The condition for the weak trajectory to be-
come entirely real will be discussed in some detail. Inter-
estingly, we shall see that the average nature of the weak
trajectory can be made into an individual one while pre-
serving the interference, if we install a device to provide
the which-path information by measuring the spin of the
particle at the time of the post-selection [11]. In the more
general case, including the multiple slit case, we find that
the interpretation of the weak value can be maintained
if we adopt the extended notion of complex probability
assigned to the process of transition mentioned earlier
[12, 13]. Finally, in the example of Lloyd’s mirror in
which interference with a single slit is realized, the weak
trajectory is mostly seen to yield a smoothed average of
the two classical trajectories appearing in the process.
The plan of the paper is as follows. After providing

some preliminaries in Sect. II necessary for our later dis-
cussions, we discuss in Sect. III the weak trajectory in the
double slit experiment. Then we go on to consider the
triple slit case in Sect. IV and, further, the multiple slit
case in Sect. V together with the reality condition of the
trajectory. Section VI is devoted to the question of how
to obtain the which-path information that is available in
these experiments. We then study the completely general
case of pre-selection in Sect. VII, where the momentum
eigenstate is seen to yield a classical picture for the weak
trajectory. Lloyd’s mirror is treated in Sect. VIII before
Sect. IX provides our conclusion and discussions.

II. PRELIMINARIES

Our primary concern in this paper is the question of
how the weak value develops in time, and for this we
consider the time-dependent weak value,

Aw(t) :=
〈ψ|U(T − t)AU(t)|φ〉

〈ψ|U(T )|φ〉 , (2)

which represents the outcome of the weak measurement
of an observable A performed at time t ∈ [0, T ]. Here,
the measurement is made under the premise that the sys-
tem undergoes the transition process starting from the
pre-selected state |φ〉 at t = 0 and ending with the post-
selected state |ψ〉 at t = T . The unitary operator U(t)
describes the time development of the system from the

initial t = 0 to an arbitrary intermediate time 0 < t < T
when the value of the observable A is measured weakly,
and likewise U(T − t) describes the time development
from that moment to the final t = T . From the concep-
tual viewpoint advocated in the time-symmetric formu-
lation of quantum mechanics [9], the formula (2) is just
the standard weak value (1) evaluated at time t under
the pre-selected state which evolves forward in time to
U(t)|φ〉 and the post-selected state which evolves back-

ward in time to U(t− T )|ψ〉.
Note that the quantity Aw(t) may be regarded as

an extension of the expectation value, since it reduces
to the conventional expectation value of the Heisen-
berg operator A(t) = U(t)−1AU(t) in the particular
case where we have |ψ〉 = U(T )|φ〉, that is, the post-
selected state happens to be the time-developed pre-
selected state. As such, for the unitary time develop-
ment U(t) = exp(−iHt/~) governed by the Hamiltonian
H , the weak value Aw(t) obeys the equation

d

dt
Aw(t) = − i

~

〈ψ|U(T − t) [A,H ]U(t)|φ〉
〈ψ|U(T )|φ〉

= − i

~
[A,H ]w(t), (3)

which is analogous to one stipulated by the Ehrenfest
theorem for the expectation value, despite that Aw(t) is
complex in general.
In what follows we consider the system of a particle of

massm under the non-relativistic HamiltonianH = p2

2m+
V (x). If, in particular, the particle is free (V (x) = 0),
by putting p and x for the observable A in (3) we find
that the momentum weak value pw and the position weak
value xw obey

d

dt
pw(t) = 0, (4)

d

dt
xw(t) =

1

m
pw(t). (5)

It then follows from (4) and (5) that xw(t) is a linear
(complex) function of t. This implies that xw(t) is a real
function during the entire interval t ∈ [0, T ] if and only
if both the initial and final values xw(0) and xw(T ) are
real. This occurs, for instance, when both of the two
selections are made by position eigenstates, |φ〉 = |xi〉
and |ψ〉 = |xf 〉, in which case we have the endpoints,
xw(0) = xi and xw(T ) = xf , and accordingly the position
weak value, or the weak trajectory,

xw(t) =
〈xf |U(T − t)xU(t)|xi〉

〈xf |U(T )|xi〉
, (6)

coincides with the classical trajectory xw(t) = xcl(t)
given by

xcl(t) :=
(xf − xi)t+ xiT

T
. (7)

We thus learn that, at least in the simple situation
of a free particle residing at a particular location at the
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FIG. 1: Our simplified double slit (gedanken) experiment.
The orange filled curve describes the transition probability
in our idealized situation where the slits S± are treated as
point-like, whereas the dotted curve describes the transition
probability in a more realistic situation where the slits S± are
of a finite size and the particle distribution is Gaussian.

ends t = 0 and t = T , the particle trajectory in quantum
mechanics viewed in terms of the weak value provides a
reasonable intuitive picture of the location of the particle
during the period [0, T ]: it follows precisely the classical
trajectory. This reassuring feature of the weak trajectory
will, of course, no longer be valid when the particle is not
free, or when the particle does not reside at a particular
location at the ends. These two cases where the simple
outcome cannot be expected possess distinct character-
istics of their own.
In the former case, despite that the weak trajectory

will give a different path from the classical one, it still
yields some unique path which may be given a physi-
cal significance in one way or another. The latter case,
where the particle can reside at more than one point,
occurs if we choose pre- or post-selections by a superpo-
sition of more than one position eigenstates. Obviously,
this poses a more serious problem for the interpretation
of the weak trajectory, because of the nonlocality inher-
ent to the generic quantum states. Starting with the
next section, we shall provide a case study of this latter
case to examine what happens when the pre-selection is
made nonlocal, starting with the typical example offered
by the double slit experiment and then generalizing it
gradually. In the last example, we touch upon the case
of Lloyd’s mirror, where the element of the former case
is also involved.

III. THE DOUBLE SLIT EXPERIMENT

As a first attempt at examining the weak trajectory in
a nontrivial case, let us consider the case in which the
pre-selection is made by the the superposition of the two
position eigenstates, |xi〉 and | − xi〉, i.e.,

|φ〉 = 1√
2
(|xi〉+ | − xi〉) (8)

S+

S
−

t

T

0

Imxw

Rexw

FIG. 2: Weak trajectories xw(t) in the complex plane for var-
ious different post-selections. The lines are plotted with den-
sity proportional to the transition probability |〈ψ|U(T )|φ〉|2.
The real and imaginary parts are depicted in orange and green
lines and projected on the bottom and the left-back planes,
respectively.

whereas the post-selection remains as the position eigen-
state |ψ〉 = |xf 〉. Clearly, this offers a simplified ver-
sion of the double slit (gedanken) experiment in which
a Gaussian distribution around the slits is replaced by
the pre-selected state (see FIG. 1). For simplicity of the
analysis, in the following we consider only the degrees of
freedom (x, p) which are parallel to the screen, ignoring
those perpendicular to the screen which are inessential
for our argument.

Assuming that the particle is governed by the free
Hamiltonian, one has the Feynman kernel for the transi-
tion amplitude,

〈xf |U(T )|xi〉 =
( m

2πi~T

)1/2

exp

[

i

~

m

2

(xf − xi)
2

T

]

, (9)

from which the transition probability showing the inter-
ference pattern on the screen follows immediately,

|〈xf |U(T )|φ〉|2 =
m

2π~T

{

1 + cos

(

m

~

2xfxi
T

)}

. (10)

The weak trajectory xw(t) can be obtained by solving
the equations (4) and (5) with the boundary values de-
termined by the pre- and post-selections. Alternatively,
one may also obtain xw(t) directly from the amplitude
(9) as

xw(t) =
〈xf |U(T − t)xU(t)|φ〉

〈xf |U(T )|φ〉

=
〈xf |U(T )|xi〉x+w(t) + 〈xf |U(T )| − xi〉x−w(t)

〈xf |U(T )|xi〉+ 〈xf |U(T )| − xi〉

= xf
t

T
− ixi tan

(m

~

xfxi
T

)

(

1− t

T

)

, (11)
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FIG. 3: The weak value xw(t) as a function of the post-
selection xf for a fixed t for 0 ≤ t < T . The thick line repre-
sents Rexw while the thin line represents Imxw. The imagi-
nary part Imxw diverges at the locations where the transition
probability, indicated by the orange filled line, vanishes.

where we have used the fact that the weak trajectories
for the non-superposed selections are given by the corre-
sponding classical ones,

x±w(t) =
〈xf |U(T − t)xU(t)| ± xi〉

〈xf |U(T )| ± xi〉

=
(xf ∓ xi)t± xiT

T
, (12)

thanks to the equality (7).
We thus find that, unlike the previous case where both

the pre- and post-selections are made by position eingen-
states, in the present double slit case the weak trajectory
becomes complex in general, starting with the pure imag-
inary value xw(0) = −ixi tan

(

m
~

xfxi

T

)

and ending with
the real value xw(T ) = xf (see FIG. 2). This already
shows that the weak trajectory does not admit the sim-
ple classical picture that we might hope for. Hence, to
consider its physical meaning, we need to examine the
profile of the trajectory in the complex plane during the
period [0, T ] closely, which is important if we are to argue
the local reality of the particle in the period based on the
weak value.
To this end, let us inspect the real and imaginary parts

of the weak trajectory xw(t) separately. We then observe
that the real part Rexw(t) follows just the mid-path or
the average of the classical trajectories, one from xi to
xf and the other from −xi to xf . As for the imaginary
part Imxw(t), we notice that it oscillates quite wildly
in such a way that it vanishes when the interference at
the screen becomes constructive while it diverges when
it is destructive (see FIG. 3), as can be easily seen by
comparing it with the transition probability (10). As
such, the imaginary part may be regarded as an indicator
of the interference effect, which can be shown to be valid
in a more general context [11].
The validity of our observation on the weak trajectories

made for the simple two cases must further be examined
by cases where more general selections are considered.
We now do this for the triple slit case, before going on to
the multiple slit case later.

IV. THE TRIPLE SLIT EXPERIMENT

As a next step toward generalization, we discuss the
triple slit experiment where the slits are distanced equally
from each other. This is realized by choosing the pre-
selected state as

|φ〉 = 1√
3
(|xi〉+ |0〉+ | − xi〉) , (13)

while keeping the post-selected state |xf 〉 as before. As-
suming again the free Hamiltonian, we find the transition
probability,

|〈xf |U(T )|φ〉|2 =
m

6π~T

{

3 + 2 cos

(

m

~

2xfxi
T

)

+ 4 cos
(m

~

xfxi
T

)

cos

(

m

~

x2i
2T

)}

. (14)

Note that the transition probability oscillates as a func-
tion of xf on the screen, but unlike the previous double
slit case it does not necessarily vanish even at the most
destructive interference points (see FIG. 4).
Now, the weak trajectory xw(t) can be obtained in

an analogous manner as in the double slit case, and the
result is

xw(t) =
〈xf |U(T − t)xU(t)|φ〉

〈xf |U(T )|φ〉

= xf
t

T
+ g(xi, xf )

(

1− t

T

)

, (15)

where g = g(xi, xf ) is a complex coefficient function
given by

Re g =
2xi sin

(

m
~

xfxi

T

)

sin
(

m
~

x2
i

2T

)

3 + 2 cos
(

m
~

2xfxi

T

)

+ 4 cos
(

m
~

xfxi

T

)

cos
(

m
~

x2
i

2T

) ,

Im g = −
2xi

{

2 cos
(

m
~

xfxi

T

)

+ cos
(

m
~

x2
i

2T

)}

sin
(

m
~

xfxi

T

)

3 + 2 cos
(

m
~

2xfxi

T

)

+ 4 cos
(

m
~

xfxi

T

)

cos
(

m
~

x2
i

2T

) ,

(16)

for the real and imaginary parts, respectively.
Since the denominator of the function g is proportional

to the transition probability (14), and since g has both
real and imaginary parts, the weak value xw(t) moves
away from the origin in the complex plane when the in-
terference becomes destructive. This implies that the
imaginary part of the weak value Imxw continues to pos-
sess the basic property as an indicator of the interference,
although it does not exhibit a simple behavior as it does
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FIG. 4: The weak value xw(t) as a function of the post-
selection xf for a fixed t for 0 ≤ t < T . Both Rexw (thick
line) and Imxw (thin line) show distinctively different be-
haviors from the double slit case, yielding finite peaks at the
locations where the transition probability becomes minimal.

in the previous case (see FIG. 4) including the nondiver-
gence at the destructive points on account of the nonva-
nishing transition probability (14).
We also notice that, unlike the previous double slit

case, the real part of the weak value Rexw shows a syn-
chronous behavior with the imaginary part as they share
the same denominator. As a result, it does not allow the
simple intuitive picture of the average

xf

T t of the three
classical trajectories starting from x = xi, 0, and −xi.
However, a notable feature still remains, that is, as a
complex function it is linear in time, and hence the tra-
jectory is a straight line connecting xw(0) = g(xi, xf ) and
xw(T ) = xf . In fact, it can be seen that the weak tra-
jectory xw(t) yields an average path under an extended
notion of probability for the processes, which we shall
discuss in the following sections.

V. THE MULTIPLE SLIT EXPERIMENT AND

THE REALITY CONDITION

Now we consider the general case where there are N
slits at x = x1, x2, . . . , xN . Here we have the correspond-
ing pre-selected state,

|φ〉 =
N
∑

n=1

cn|xn〉, cn ∈ C, (17)

and the post-selected state as |xf 〉. The weak trajectory
can then be written as

xw(t) =
〈xf |U(T − t)xU(t)|φ〉

〈xf |U(T )|φ〉

=

N
∑

n=1

ωnx
n
w(t), (18)

where we have introduced the weight factor,

ωn =
cn〈xf |U(T )|xn〉

∑

n cn〈xf |U(T )|xn〉
. (19)

In (18), the function xnw(t) is just the weak trajectory
with the pre-selected state |xn〉, i.e.,

xnw(t) =
〈xf |U(T − t)xU(t)|xn〉

〈xf |U(T )|xn〉
, (20)

which, as we have seen in (7), is equal to the classical
trajectory xnw(t) = xncl(t) given by

xncl(t) :=
(xf − xn)t+ xnT

T
. (21)

Plugging this expression into (18), we obtain

xw(t) = xf
t

T
+

(

1− t

T

) N
∑

n=1

ωnxn. (22)

At this point, we note that the weight factor ωn is, in
general, complex, but satisfies

∑

n ωn = 1. Thus, the ex-
pression (18) alludes to the interpretation that the weak
trajectory xw(t) represents an average of N classical tra-
jectories going from xn over to xf with the “complex
probability” ωn. In fact, this simple interpretation is seen
to be valid for more general cases, and can be regarded
as a basic and universal property of the weak trajectory.

Now, let us consider the special situation in which the
trajectory xw(t) becomes entirely real, Im[xw(t)] = 0.
This occurs if

Im

N
∑

n=1

ωnxn = 0, (23)

which imposes a condition on the combination of the
transition amplitudes and the form of the pre-selected
state. Since varying the final point xf alters each of
the transition amplitudes associated with the slits at
x1, x2 . . . , xN , it is clear that there are infinitely many
isolated points xf for which the above condition (23) is
satisfied, ensuring that the real trajectories appear there.

In fact, the condition (23) can be made simpler in
terms of transition functions as

d

dxf
|〈xf |U(T )|φ〉|2 = 0. (24)



6

To see this, we first observe that

N
∑

n=1

ωnxn =

N
∑

n=1

cn
〈xf |U(T )|xn〉
〈xf |U(T )|φ〉 xn

=

N
∑

n=1

cn
〈xf |U(T )x|xn〉
〈xf |U(T )|φ〉

=
〈xf |

(

x− p
mT

)

U(T )|φ〉
〈xf |U(T )|φ〉

= xf − T

m

〈xf |pU(T )|φ〉
〈xf |U(T )|φ〉

= xf + i~
T

m

d

dxf
ln 〈xf |U(T )|φ〉, (25)

where in the last equality we have used 〈xf |p =

−i~ d
dxf

〈xf |. Then, taking the imaginary part of the

above, we obtain

Im

N
∑

n=1

ωnxn =
~T

2m

d

dxf
ln |〈xf |U(T )|φ〉|2, (26)

from which the equivalence of the conditions (23) and
(24) follows. From the latter, we can state that the weak
trajectory xw(t) becomes entirely real at the points on
the screen where the transition probability becomes sta-
ble under the change of position. In other words, it occurs
when the profile of interference is extremal.
At this point we also mention that, in the present free

case V (x) = 0, the weak value of the momentum pw
admits the form

pw(t) =
〈xf |U(T − t) pU(t)|φ〉

〈xf |U(T )|φ〉 =
〈xf |pU(T )|φ〉
〈xf |U(T )|φ〉

= −i~ d

dxf
ln〈xf |U(T )|φ〉. (27)

Thus, the reality condition (24) is nothing but the reality
condition Im pw = 0 of the weak momentum as well.
Moreover, plugging the relation (25) into (22), we arrive
at

xw(t) = xf − i~

(

t− T

m

)

d

dxf
ln〈xf |U(T )|φ〉. (28)

This establishes a direct relation between the weak tra-
jectory and the transition amplitude in the free particle
case.
In the presence of the potential V (x), Eq. (3) becomes

d

dt
pw(t) = −

(

∂V

∂x

)

w

(t),

d

dt
xw(t) =

1

m
pw(t). (29)

From (29) it is clear that, if xw(t) is purely real at any
time t, then pw(t) is also purely real in the entire period
[0, T ]. Taking its contraposition, one sees that, if pw(t)

becomes imaginary at some t, then xw(t) also develops a
region where it has an imaginary part. In this sense, the
momentum weak value pw(t) is a convenient quantity to
inspect the reality of the weak trajectory, which is most
readily done when the potential vanishes, for which it is
only necessary to examine the boundary value (27) at
t = T .
Regarding the relation to the interference, one notes

that (27) is valid even in the presence of the potential
V (x) if restricted to t = T , i.e., as an equation for pw(T ).
Combining (27) with (29), one realizes that the velocity
of the weak trajectory d

dtxw(t)|t=T at the moment when
the particle hits the screen vanishes for those xf where
the transition amplitude becomes extremal. This offers
the intuitive picture that, viewed from the flow of weak
trajectories, the extremal constructive (or destructive)
interference points are those toward which the trajec-
tories of the particle gather (or from which they move
away) in the imaginary direction for which the transition
probability |〈xf |U(T )|φ〉|2 is concerned.

VI. WEAK TRAJECTORY AND WHICH-PATH

INFORMATION

So far, we have observed that, albeit via complex prob-
ability, the weak trajectory is related to the average of
classical trajectories and, as such, it does not tell us from
which slit the particle comes when it is detected at xf on
the screen. In this section we briefly digress from our
main line of argument and discuss how this problem can
be removed, generalizing the idea presented in [11].
In order to distinguish particles based on the slits they

come from, all we need is to furnish an extra N degrees of
“spin” freedom {|n〉}Nn=1 which encodes the information
of the slit. Indeed, equipped with a supplemental device
to detect the spin furnished, we can prepare the pre-
selected state by

|φ〉 =
N
∑

n=1

cn|xn〉 ⊗ |n〉, cn ∈ C, (30)

so that the which-path information is gained by measur-
ing the spin together with the position simultaneously.
This amounts to considering the observable

x(n) = x⊗ |n〉〈n|, (31)

which fulfills
∑

n x
(n) = x⊗ I.

Now, for the post-selection, we consider the state in
the form

|ψ〉 = |xf 〉 ⊗
N
∑

n=1

en|n〉, en ∈ C. (32)

As we can see easily, if we choose en = δnl for all n
and some l in the post-selection (32), we pick up parti-
cles which only come from the slit at xl; namely, we ob-
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, (−xi

ment. The particle is localized around (xi, y

=

xf +
x̃

(1)
w

(t)

w

x̃
(2)
w

(t)

FIG. 5: Renormalized weak trajectories for the double slit
case N = 2 with x1 = xi, x2 = −xi. As the post-selected
state, we choose en = 1/

√
2. Thus, the interference fringe

reappears. To a given post-selection xf , if we measure x̃
(1)
w (t)

we find the classical path (solid line) coming from the upper

slit at xi, but if we measure x̃
(2)
w (t) we find the classical path

(dashed line) coming from the lower slit at −xi. In this mea-
surement we can maintain the interference without conflicting
with complementarity.

tain the complete “which-path information.” This, how-
ever, necessarily destroys the interference pattern in ac-
cordance with quantum complementarity. If, instead, we
choose en = 1/

√
N , we lose the which-path information

but maintain the interference pattern, as is well known
in the context of the quantum eraser [14]. Our post-
selection (32) yields an arbitrary interpolation between
the two extremes.
With these preparations, the weak value of the observ-

able x(n) defined in (31) reads

x(n)w (t) =
〈ψ|U(T − t)x(n) U(t)|φ〉

〈ψ|U(T )|φ〉
= ωnx

n
w(t), (33)

where now the weight factor ωn is slightly generalized
from (19) as

ωn =
cne

∗
n〈xf |U(T )|xn〉

∑

n cne
∗
n〈xf |U(T )|xn〉

, (34)

which still satisfies the normalization condition
∑

n ωn =
1. As before, on account of the equality we can replace
xnw(t) with the classical solution xncl(t) to obtain

x(n)w (t) = ωnx
n
cl(t). (35)

The outcome above shows that, by using the pre- and
post-selections (30) and (32) under generic weight fac-
tors (34) together with the spin-tagged position operator
(31), the weak trajectory of the particle can be inferred
while preserving the interference pattern. The only snag
is that the outcome (35) is not quite xncl(t) but scaled
with the factor ωn, which arises because of the need for
renormalization of the particular element we picked up
in the two selections.

One may carry out this renormalization by demanding
that the final position of the particle at t = T be xf in
accordance with the actual measurement outcome of the
position. Since xncl(T ) = xf , this suggests that we con-
sider, instead of xiw(t), the renormalized weak trajectory,

x̃(n)w (t) :=
x
(n)
w (t)

ωn
= xncl(t), (36)

which meets the demand x̃
(n)
w (T ) = xf and yields pre-

cisely the classical path xncl(t). Consequently, once the
renormalized weak trajectory is adopted, we infer that
each of the particles which arrives at the screen comes
from a single slit, rather than from two or more slits “si-
multaneously.” We illustrate this by the simplest case
N = 2 of the double slit experiment in FIG. 5. This is
an interesting observation which becomes available un-
der the description of the weak value. However, we also
stress that this does not violate the complementarity of
quantum mechanics, because the weak value is intrinsi-
cally statistical and hence cannot be attributed to a sin-
gle event in the actual procedure of measurement. The
aforementioned statement is valid only in the sense of
inference from the statistical outcome of the weak value.
In passing, we also note that our outcome that the

weak trajectory is equal to the classical one–which is af-
forded under the free Hamiltonian (though this can be
generalized to the case of quadratic potentials)–is not at
all important in our argument for the inference. The
point is that the (renormalized) weak trajectory yields
a definite function of time such that it can be regarded
as some trajectory, and the question whether it coincides
with the classical one or not is secondary. However, once
the trajectory is established, then it should be interesting
to investigate the characteristic feature of the weak tra-
jectory compared to the classical one, as has been done
in [7, 8] for the case of selections where semiclassical ap-
proximation is valid.

VII. THE GENERAL CASE

The foregoing argument can readily be extended to the
general case of an arbitrary pre-selected state,

|φ〉 =
∫

dxi φ(xi)|xi〉, φ(xi) = 〈xi|φ〉 ∈ C. (37)

If we continue to use the position eigenstate |xf 〉 for the
post-selected state of the free particle, the weak value of
the observable A is

Aw(t) =
〈xf |U(T − t)AU(t)|φ〉

〈xf |U(T )|φ〉

=

∫

dxi ω(xi)Aw(xi; t), (38)

where Aw(xi; t) is the weak value when the pre-selection
is made by the eigenstate |φ〉 = |xi〉. The coefficient
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ω(xi) is given by

ω(xi) =
〈xf |U(T )|xi〉φ(xi)

∫

dxi 〈xf |U(T )|xi〉φ(xi)
, (39)

which, in general, is a complex function and satisfies
∫

dxi ω(xi) = 1. So far, the result (38) holds for an
arbitrary potential V (x).
One obtains the weak trajectory when the observable

A is chosen to be the position operator x. In particular,
for the free Hamiltonian, the equality (38) implies

xw(t) =

∫

dxi ω(xi)xcl(t), (40)

where xcl(t) is the classical trajectory (7) going from xi to
xf . As in the discrete case, one can immediately confirm
that the relation analogous to (25),

∫

dxi ω(xi)xi = xf + i~
T

m

d

dxf
ln 〈xf |U(T )|φ〉, (41)

holds just by replacing the sum over n with the integral
over xi. Consequently, the reality condition for the tra-
jectory, Imxw(t) = 0, which in view of (40) is equivalent
to

Im

∫

dxi ω(xi)xi = 0, (42)

again boils down to the condition (24).
One might think from the experience of the case of mul-

tiple slits that, since the post-selected state is in general
a superposition of infinitely many position eigenstates, it
is almost impossible to find a situation, except those al-
ready mentioned, for which the weak trajectory becomes
purely real and may admit an intuitive classical picture.
That this is not the case is readily seen by the example
of the momentum eigenstate |φ〉 = |p〉, where one has

φ(xi) = 〈xi|p〉 =
1√
2π~

eipxi/~. (43)

One then finds the weak values of pw and xw as

pw(t) =
〈xf |U(T − t) pU(t)|p〉

〈xf |U(T )|p〉 = p, (44)

xw(t) =
〈xf |U(T − t)xU(t)|p〉

〈xf |U(T )|p〉 = xf +
p

m
(t− T ).

(45)

These results are consistent with (3) and certainly agree
with the classical picture of a free particle moving with
momentum p and arriving at x = xf at time t = T .
The reality of these weak values is also consistent with
the fact that the condition (24) is fulfilled by the choice
|φ〉 = |p〉 as can be confirmed easily:

d

dxf
|〈xf |U(T )|p〉|2 =

d

dxf

∣

∣

∣

∣

e−i p2

2m~
T 1√

2π~
eipxi/~

∣

∣

∣

∣

2

=
d

dxf

1

2π~

= 0. (46)

A less trivial example is provided by the (complex)
Gaussian state,

|ψ〉 = k

∫

dxi e
iαx2

i+iβxi |xi〉, (47)

with real parameters α, β, and a normalization constant
k. Note that this pre-selected state is neither an eigen-
state of the position nor of the momentum. The transi-
tion amplitude 〈xf |U(T )|φ〉 reads

〈xf |U(T )|φ〉 = k
exp

[

i
x2
fα+xfβ−

~

2mTβ2

1+2 ~

m
Tα

]

√

1 + 2 ~

mTα
, (48)

which obviously meets the condition (24). This ensures
the real weak values for pw(t) and xw(t), which are ex-
plicitly given by

pw(t) = m
xfα+ β

2

Tα+ m
2~

, (49)

xw(t) = xf −
(

1− t

T

)

xfα+ β
2

α+ m
2~T

. (50)

This result shows, in particular, that in the squeezing
limit |α| → ∞ the weak trajectory reduces to the straight
line xw(t) = (t/T )xf going from the center x = 0 to
x = xf , as one expects.
Here we mention that the formula (40) is valid even in

the presence of the potential V (x), if only the classical
trajectory xcl(t) in (40) is replaced by the correspond-
ing weak trajectory xw(xi; t) which is obtained under
the pre-selection |φ〉 = |xi〉. The point to be noted is
that, although now xw(xi; t) is not equal to xcl(t) (un-
less V (x) is quadratic in x), it gives a definite trajectory
obeying the boundary conditions dictated by the pre- and
post-selections, i.e., xw(xi; 0) = xi and xw(xi;T ) = xf .
Consequently, the formula (40) still admits the interpre-
tation that the weak trajectory xw(t) is the average over
such weak trajectories with definite boundary conditions
weighted by the complex probability ω(xi). This reminds
us of Feynman’s path-integral evaluation of the time-
dependent position x(t) in the transition from the initial
state |φ〉 given by the superposition (37) ending up with
the final state |xf 〉. In fact, in that context our formula
amounts to the arrangement of summation over the paths
according to the separate classes of weak trajectories as-
sociated with distinct boundary conditions, rather than
those of classical paths by the analogous classification as
conventionally done in the WKB semiclassical approxi-
mation. In this respect, we are naturally interested in the
distinction between the classical trajectory xcl(t) and the
weak trajectory xw(xi; t), which has been studied earlier
in [7, 8] from different viewpoints.
In our discussion so far, we have only considered the

general case of the pre-selection (37) while keeping the
position eigenstate |xf 〉 for the post-selection |ψ〉, but it
is straightforward to also generalize the post-selection as

|ψ〉 =
∫

dxf ψ(xf )|xf 〉, ψ(xf ) = 〈xf |ψ〉 ∈ C. (51)
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Then, combined with (39), the weight factor for the gen-
eral pre- and post-selections becomes

ω(xi, xf ) =
ψ∗(xf )〈xf |U(T )|xi〉φ(xi)

∫

dxidxf ψ∗(xf )〈xf |U(T )|xi〉φ(xi)
, (52)

which is normalized as
∫

dxidxf ω(xi, xf ) = 1. In fact,
the complex probability distribution given by the weight
ω(xi, xf ) in the most general case (52) is precisely that
encapsulated by the complex probability measure pro-
posed earlier in [12, 13] as a proper measure for the weak
value assigned to the quantum process specified by the
pre- and post-selections.

VIII. LLOYD’S MIRROR

Finally, we wish to discuss a nontrivial example in
which both the pre- and post-selections are provided by
position eigenstates but the system admits more than one
classical trajectory. In this case, one cannot expect the
weak trajectory to agree with any of the classical ones,
even though the boundary values at t = 0 and t = T are
identical in the two cases. Such an example offers another
type of grounds for examining the physical significance
of the weak value in addition to those considered so far.
The system we consider is a free particle confined in a

half plane, where we have an infinite potential wall at x =
0, i.e., V (x) = ∞ for x < 0 (see FIG. 6). Classically, this
implies that the particle bounces back when it hits the
wall. In quantum mechanics, it is known that there exists
a one-parameter family of possible boundary conditions
at the wall (see, for example, [16]), but for simplicity
we choose to work in the Dirichlet boundary condition
φ(0) = 0 for the wave function φ(x) = 〈x|φ〉.
Now, let our pre- and post-selections be given by

|φ〉 = |xi〉 and |ψ〉 = |xf 〉, respectively, which corre-
sponds to the situation in which the particle departs
from the position x = xi and ends up with the posi-
tion x = xf during the period [0, T ]. In particular, we
fix the initial position of the particle at xi and monitor
the weak trajectories for various final positions xf . As in
the double slit experiment, we have two distinct classes
of available paths, one that goes directly to the point of
post-selection xf and the other that hits the wall before
arriving at xf , which generate an interference pattern on
the screen. This is known as Lloyd’s mirror experiment
in which interference can be observed even with a single
hole (light source) device.
Summing over all possible paths belonging to the two

distinct classes mentioned above, and taking the bound-
ary condition at the wall into account, one finds that the
Feynman kernel for this case reads [17]

〈xf |U(T )|xi〉 =
√

m

2πi~T

(

e
im(xf−xi)

2

2~T − e
im(xf+xi)

2

2~T

)

.

(53)

ment. The particle is localized around (xi, y

=

xf +
S+

x

y

0

FIG. 6: Lloyd’s mirror experiment in which an interference
pattern appears with a single hole. The orange filled curve
describes the transition probability in our simplified situa-
tion where the slit S+ is point-like, whereas the dotted curve
describes the transition probability in a more realistic case
where the slit S+ is finite in size and the particle has a Gaus-
sian distribution.

The transition probability is then found to be

|〈xf |U(T )|xi〉|2 =
2m

π~T
sin2

(m

~

xfxi
T

)

, (54)

which yields a sinusoidal interference pattern analogous
to that observed in the double slit case.
The weak trajectory is now given by

xw(t) =
〈xf |U(T − t)xU(t)|xi〉

〈xf |U(T )|xi〉

=

∫∞

0
dx 〈xf |U(T − t)|x〉x〈x|U(t)|xi〉

〈xf |U(T )|xi〉
. (55)

Using the expression (53) for the kernel, one obtains

xw(t)

= i

e−im
~

xfxi

T (t(xf − xi) + Txi)Erfi

[

(t(xf−xi)+Txi)√
−itT (T−t)

√

m
~

]

(

ei
m
~

xfxi

T − e−im
~

xfxi

T

)

T

+ i

ei
m
~

xf xi

T (t(xf + xi)− Txi)Erfi

[

(−t(xf+xi)+Txi)√
−itT (T−t)

√

m
~

]

(

ei
m
~

xfxi

T − e−im
~

xfxi

T

)

T
,

(56)

where Erfi[z] is the error function defined by

Erfi[z] =
Erf[iz]

i
=

2

i
√
π

∫ iz

0

e−t2dt. (57)

Note that xw(t) is no longer linear in t; actually it
exhibits a rather complicated behavior as a function of
time as can be seen from the numerical result shown in
FIG. 7.
As shown in FIG. 7, in general the weak value xw(t) is

not real, which is also confirmed by examining the reality
condition Im pw = 0 based on the relation (27). If we
adopt the same criterion (ignoring the possible problem



10

S+

t

T

0

Rexw

Imxw

FIG. 7: The weak trajectories xw(t) in the complex plane for
a number of different post-selections xf plotted with density
in proportion to the transition probability (the notations are
the same as in FIG. 2). The imaginary part Im xw varies
violently while the real part Re xw follows more or less a
smoothed average of the two classical trajectories.

of self-adjointness of the momentum operator p on the
half-line) in the present case, we find

Im pw(T ) = −mxi
T

cot
(m

~

xfxi
T

)

. (58)

From this, we can infer that xw(t) is also complex, even
though xw(t) becomes real at the two boundaries at t = 0
and t = T .
Despite these complications, in FIG. 7 we observe that

the real part Re xw(t) yields more or less a smoothed tra-
jectory of the average of the two classical trajectories. It
should be noted, however, that when the interference is
destructive, even the real part tends to show a violent be-
havior. In contrast, the imaginary part fluctuates almost
chaotically during the period except for the ends where
the trajectory is fixed by the value of the two selections.

IX. CONCLUSION AND DISCUSSIONS

In the present paper, we have studied the time develop-
ment of the weak value for the position of a particle–the
weak trajectory–and thereby examined to what extent
the weak value admits an intuitive picture, which is im-
portant for associating reality to the particle motion in
quantum mechanics in one way or the other. More specif-
ically, we have defined the weak trajectory xw(t) dur-
ing the period [0, T ] based on the time-dependent weak
value (2) for the position observable A = x under a given
transition process specified by the pre- and post-selected
states at time t = 0 and t = T , respectively. Armed
with this, we have examined the behavior of the weak

trajectory so defined in various situations, starting from
the simple case where the particle is free and resides at a
definite place both at t = 0 and t = T and ending with a
completely general case of post-selections. These include
the (simplified) double slit experiment case and the triple
and multiple slit cases where interference takes place even
with the detection of particles, that is, where a genuine
quantum effect arises. We also considered Lloyd’s mirror
which allows interference with a single slit in the presence
of a reflecting wall.

In the simplest case where the location of the particle
is given by position eigenstates at the two ends, we have
seen that our weak trajectory xw(t) is real and linear in
time, and coincides precisely with the classical trajectory
xcl(t). This reassuring result cannot arise in the double
slit case, because the pre-selection is made by a super-
posed state and hence the particle is not localized at a
single point. Accordingly, no unique classical solution ex-
ists, and the weak trajectory xw(t) becomes complex in
this case. This is, however, harmless because, if we focus
on the real part Rexw(t), we observe that it continues
to yield the average of the two classical trajectories as-
sociated with the two position eigenstates appearing in
the superposition of the pre-selected state. This obser-
vation is no longer valid when we go over to the triple
slit or more generally the multiple slit cases. Nonethe-
less, the weak trajectory xw(t) still affords, as a whole,
interpretation as the average over the trajectories in the
extended sense of “complex probability” attached to the
transitions associated with the position eigenstates in the
superposition. This is actually the notion of probability
which is used to define the probability measure for the
weak value mentioned earlier [12, 13].

We have also noticed that it is possible to define a
modified position operator such that its weak value yields
the classical trajectory from an individual slit specified
by the operator. This is accomplished by supplement-
ing the extra “spin” degrees of freedom and preparing
the pre-selected state in the maximally entangled state
between the position and the spin following the idea of
the quantum eraser [14]. The point is that, because of
the intrinsic statistical nature of the weak value, this can
be done without conflicting with the complementarity of
quantum mechanics (for a fuller discussion on this issue,
see [11]).

Our results on the various pre-selections suggest that,
except for a few cases such as the simplest situation where
it coincides with the classical trajectory, the weak tra-
jectory xw(t) becomes necessarily complex. When the
particle is free, the weak trajectory is shown to be linear
in time and is related directly to the transition ampli-
tude (28). From this, one then realizes that the reality
condition of the weak trajectory is just the extremal con-
dition for the transition probability (24). In other words,
the weak trajectory xw(t) becomes real if and only if
the interference is maximally constructive or maximally
destructive, unless no interference occurs on the whole
screen. One example of the last case is provided by the
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momentum eigenstate |φ〉 = |p〉 for which both the weak
trajectory xw(t) and the weak momentum pw(t) agree
with their classical counterparts. This example is worth
noting, because the momentum eigenstate |p〉 describes
the wave nature of the constant momentum state and yet
it can reveal the classical particle nature if one monitors
the weak values of the relevant physical quantities.
The imaginary part Imxw(t) of the weak trajectory is

also no idle quantity. Indeed, since (28) suggests that
the imaginary part Imxw(t) diverges when the transi-
tion amplitude vanishes, one recognizes the significance
of Imxw(t) as a quantity indicating the strength of inter-
ference, as one can easily gather from the outcomes of the
double and triple slit examples (for the precise meaning
of the imaginary part in the context of interference, see
[11]).
Finally, we have touched upon Lloyd’s mirror as an

instance of allowing interference with a single slit. This
offers an intriguing model where the weak trajectory is
intrinsically quantum, in view of the fact, even if the
initial and final positions of the particle are completely
specified, no unique classical trajectory is allowed as in
the double slit case, because of the presence of the per-
fectly reflecting wall. Our result shows that the weak
trajectory is mostly close to, but not quite equal to, the
average of the two possible classical trajectories.
In conclusion, our investigation on the weak trajectory

xw(t) shows that it admits an intuitive picture of parti-
cle trajectory in some particular cases, but largely it is to

be interpreted as an average based on the complex prob-
ability associated with the given process of transitions.
Obviously, to obtain a fuller grasp of what the weak tra-
jectory is, we need to go beyond the essentially free par-
ticle cases presented here and investigate more general
cases which involve nontrivial potentials. The power of
the weak trajectory, or more generally, the significance of
the time-dependent weak value Aw(t) that can be defined
for any observable A, will then become clearer and, pre-
sumably, be understood in line with the time-symmetric
formulation of quantummechanics [9, 18]. Since the weak
value is a quantity obtained under the weak limit of mea-
surement, if, ideally, it is independent of the type of weak
measurement performed, it should reveal some intrinsic
aspect of the physical property peculiar to the process.
What that aspect can be will be learnt only by accumu-
lating examples, and the elementary ones presented in
this paper are hopefully of some help in moving toward
this goal.
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