
ar
X

iv
:1

41
0.

07
87

v1
  [

qu
an

t-
ph

] 
 3

 O
ct

 2
01

4

Weak Value and the Wave-Particle Duality

Takuya Mori1∗ and Izumi Tsutsui1,2†
1Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2Theory Center, Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

(Dated: October 6, 2014)

The weak value, introduced by Aharonov et al. to extend the conventional scope of physical
observables in quantum mechanics, is an intriguing concept which sheds new light on quantum
foundations and is also useful for precision measurement, but it poses serious questions on its
physical meaning due to the unconventional features including the complexity of its value. In this
paper we point out that the weak value has a direct connection with the wave-particle duality, in
the sense that the wave nature manifests itself in the imaginary part while the particle nature in
the real part. This is illustrated by the double slit experiment, where we argue, with no conflict
with complementarity, that the trajectory of the particle can be inferred based on the weak value
without destroying the interference.

The weak value, proposed earlier by Aharonov et al. [1]
as a novel measurable quantity for an observable A, has
been attracting much attention in recent years. It is de-
fined by

Aw =
〈ψ|A|φ〉
〈ψ|φ〉 , (1)

to a given process of transition from the initial (pre-
selected) state |φ〉 to the final (post-selected) state |ψ〉.
One of the reasons for the rise of interest is that it may
provide a deeper understanding of ‘quantum paradoxes’
and thereby elucidate the foundation of quantum me-
chanics. The other is that the weak measurement, which
is the procedure designed to obtain the weak value under
negligible disturbance, can be useful for precision mea-
surement or even for a direct measurement of quantum
states (for a recent review, see [2]).
Despite numerous studies motivated by these expecta-

tions, the physical meaning of the weak value Aw remains
still obscure, partly because it is complex-valued rather
than real, and also because it can become ‘anomalous’
exceeding the range of the eigenvalues of A [1] or even ‘in-
explicable’ realizing the separation of physical property
from its holder [3, 4]. In this respect, it is argued that the
real part of the weak value Aw can be interpreted as the
conditional average of A pertinent to the process, while
the imaginary part is related to the change of the transi-
tion probability [5]. Meanwhile, we have witnessed a fur-
ther puzzling phenomena involving the time-symmetric
interpretation of quantum dynamics [6]. Quite recently,
the anomalous weak value has been attributed to contex-
tually of physical values [7].
In this paper, we point out yet another intriguing

property of the weak value in connection with the wave-
particle duality. Specifically, we show that the wave na-
ture manifests itself in the imaginary part of Aw while the

∗Email:takumori@post.kek.jp
†Email:izumi.tsutsui@kek.jp

particle nature appears in the real part. This is demon-
strated by the double slit (gedanken) experiment, where
the momentum weak value pw is directly related to the
interference effect on the screen and similarly the po-
sition weak value xw to the trajectory of the particle.
The weak trajectory allows us to infer, without destroy-
ing the interference, that the particle takes either of the
two classical paths from the slits when it is ‘not mea-
sured’ or undisturbed, which is the situation presumed
by weak measurement. Although this does not contradict
with complementarity since the weak value is obtained
for an ensemble, not for an individual particle, our result
suggests the possibility of arguing both the wave and
particle-nature simultaneously based on the weak value.
We begin our discussion by showing a direct link be-

tween the imaginary part ImAw and interference, ex-
tending the work [5]. For this, we first consider the tran-
sition amplitude K(α) = 〈ψ|VA(α)|φ〉 between the two
states |φ〉 and |ψ〉 intervened by the unitary operator
VA(α) = exp (−iαA). The weak value is then obtained
by

Aw = i lim
α→0

1

K(α)

∂K(α)

∂α
. (2)

We may regard V †
A(α)|ψ〉 as a family of post-selected

states (ignoring the time evolution momentarily) and
consider the variation of the transition probability. If,
during the transition, some interference effect with re-
spect to a basis set of intermediate states {|χk〉} arises,
it can be argued explicitly by inserting the completeness
relation I =

∑

k |χk〉〈χk| into the probability as

|K(α)|2 =
∑

k

|Kk(α)|2 +
∑

j 6=k

Kk(α)K
∗
j (α), (3)

where Kk(α) = 〈ψ|VA(α)|χk〉〈χk|φ〉 is the transition am-
plitude via the intermediate process k through the state
|χk〉. It is then recognized that the first ‘diagonal part’
in the r.h.s. of (3) corresponds to the classical transition,
while the second ‘off-diagonal part’ describes the quan-
tum interference among the intermediate processes.
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In the case of the double slit experiment, A is the gen-
erator of translation on the screen, i.e., the traverse mo-
mentum p of the particle that goes through the slits, and
α specifies the translation in the position of the particle
along the screen. Once observed, the particle is ideally in
the post-selected state given by the corresponding posi-
tion eigenstate, and the interference reduces to the usual
one, that is, the variation of the transition probability on
the screen. The strength of interference may be evaluated
by the ‘index of interference’ defined by the logarithmic
derivative of the off-diagonal part of (3):

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(

|K(α)|2 −
∑

k

|Kk(α)|2
)

. (4)

Using the weak value Ak
w = 〈ψ|A|χk〉/〈ψ|χk〉 associated

with the intermediate process k which admits a formula
analogous to (2) withK(α) replaced byKk(α), we obtain

I = Im

(

Aw −
∑

k

ΠkA
k
w

)

=
∑

j 6=k

Im

(

A
k
w

Kk(0)K
∗
j (0)

|K(0)|2

)

,(5)

with Πk := |Kk(0)|2/|K(0)|2 being the relative proba-
bility for the intermediate process k. This expresses the
strength of interference I as the gap in the imaginary
part of the weak value between the entire process and
the average of the intermediate processes.
Note that each of the processes through |χk〉 is coun-

terfactual in the sense that it is not actually measured.
In fact, this is the crucial element of the quantum tran-
sition and to be sharply contrasted to the classical coun-
terpart for which all the processes are factual and Πk is
a true probability (so that

∑

k Πk = 1 holds, unlike the
quantum case). The last expression (5) shows the rate
of change in the interference in terms of quantities asso-
ciated with the off-diagonal part exclusively, where one
finds that the index I diverges for K(0) → 0, that is,
when the amplitudes sum up destructively.
We now illustrate our argument by the double slit ex-

periment. Consider a particle passing through two nar-
row slits S± and later hits the screen to form an interfer-
ence pattern (see FIG.1). To make our analysis simpler,
we choose our state at t = 0 by the superposition of two
localized states,

|φ〉 = 1√
2
(|xi〉+ | − xi〉) . (6)

Our post-selection at time t = T is then made by the
position eigenstate at x = xf ,

|ψ〉 = |xf 〉, (7)

corresponding to the point where the particle is spotted.
Ignoring the dynamics in the y-direction which plays

no essential role in the following discussion, we just take
account of the dynamics of free motion in the x-direction
described by the Hamiltonian, H = p2/2m, where m is
the mass of the particle and p the momentum along x.

, (−xi

ment. The particle is localized around (xi

=

xf +
S+

S
−

x

y

0

FIG. 1: Our simplified double slit (gedanken) experiment.
The orange filled curve describes the transition probability
when the slits are point-like, whereas the dotted curve de-
scribes the transition probability for the case where the slits
are finite in size and the particle distribution is given by a
Gaussian distribution around S±.

The time evolution is then given by the unitary transfor-
mation U(t) = exp (−iHt/ℏ), and for the present process
the transition probability reads

|〈ψ|U(T )|φ〉|2 =
m

π~T
cos2

(m

ℏ

xfxi
T

)

. (8)

This picture of interference yields undiminished fringes
and is admittedly too simplistic, and perhaps one can
render it more realistic by considering a Gaussian distri-
bution for the initial state (see FIG.1). However, it will
be seen that our picture is sufficient to capture the key
feature of the weak value on the wave-particle duality.
To put the present case in the general context, we

introduce |φ(T )〉 := U(T )|φ〉 and consider the fam-
ily of post-selected states V †

p (α)|xf 〉 with Vp(α) =
exp [−iαp]. Since p is the generator of translation, we
have V †

p (α)|xf 〉 = |xf − α〉. The probability ampli-
tude is then K(α) = 〈ψ|Vp(α)|φ(T )〉, and the tran-
sition probability (8) is just |K(0)|2. Now, the rele-
vant completeness relation of the intermediate states is

I =
∫∞

0
dx|x〉〈x| +

∫ 0

−∞
dx|x〉〈x|, according to which the

transition amplitude splits as K(α) = K+(α) + K−(α),

where K±(α) = 〈ψ|Vp(α)|φ±(T )〉/
√
2 with |φ±(T )〉 =

U(T )| ± xi〉.
Under our choice of selections, on the screen at t = T

the weak value of the momentum pw and those for the
partial processes (p±)w are given by

pw =
〈ψ| p |φ(T )〉
〈ψ|φ(T )〉 = m

xf + ixi tan
(

m
ℏ

xfxi

T

)

T
, (9)

(p±)w =
〈ψ| p |φ±(T )〉
〈ψ|φ±(T )〉

= m
xf ∓ xi
T

. (10)

Since (p±)w are both real, the index (5) turns out to be

I = Im pw = m
xi tan

(

m
ℏ

xfxi

T

)

T
. (11)

We thus see that the index I is just the imaginary part
Im pw, which diverges when the interference becomes
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S+

S
−

t

T

0

.

Imxw(0)Imxw

Rexw

=

xf +

|K(0)|2

FIG. 2: (Left) Weak trajectories xw(t) in the complex plane
for various different post-selections with density proportional
to the transition probability |K(0)|2 = |〈ψ|U(T )|φ〉|2. The
real and imaginary parts are depicted in orange and green
lines and projected on the bottom and the left-back planes,
respectively. (Right) The imaginary part Imxw(0) as a func-
tion of xf . The curve diverges when the complete destructive
interference occurs where |K(0)|2 vanishes.

completely destructive K(0) → 0 and vanishes when it is
maximally constructive.
For a one particle system, the most tangible source

of physical quantity is arguably the trajectory of the
particle, so let us examine how the weak value of the
position x varies with time. This is done by setting
formally the pre-selected state by the retarded state
|φ(t)〉 = U(t)|φ〉 and the post-selected state by the ad-
vanced state |ψ(t)〉 = U(t − T )|ψ〉 for 0 ≤ t ≤ T . The
resultant weak value,

xw(t) :=
〈ψ(t)|x|φ(t)〉
〈ψ(t)|φ(t)〉 =

〈ψ|U(T − t)xU(t)|φ〉
〈ψ|U(T )|φ〉 (12)

is in general complex-valued, but it can be readily seen
that, if both |φ〉 and |ψ〉 are position eigenstates, xw(t)
becomes real and agrees with the classical trajectory.
Now, if we instead have the superposition state for |φ〉

given in (6), we find

xw(t) =
xf t

T
+ i

xi(t− T ) tan
(

m
ℏ

xfxi

T

)

T
. (13)

We then notice that the real part Rexw(t) corresponds to
the average of the two classical trajectories coming from
the two slits S± (see FIG. 2). Although this is consis-
tent with the real part of the momentum Re pw in (9),
being the average (Rexw(0) = 0 in particular), it cannot
reasonably be regarded as a true trajectory. In fact, this
is a common feature that arises when the pre-selected
state is formed by superposition, and is caused by the in-
ability of distinction of the individual superposed states
by the post-selection. As we see shortly, this pathologi-
cal behavior can be ‘cured’ by rendering the distinction
possible.

Before doing so, let us briefly discuss the imaginary
part Imxw, which becomes large as the transition prob-
ability becomes small and eventually diverges when the

interference is completely destructive (see FIG. 2). Note
that although x is not treated here as a generator for
unitary transformations as p is, the connection to inter-
ference is still valid, because of the direct dynamical re-
lation between Imxw and Im pw obtained analogously to
the Ehrenfest theorem.
The foregoing result that the real part Rexw(t) gives

the average trajectory of the two classical ones prompts
us to ask what happens if we can know which of the
slits the particle has gone through. To answer this, we
bring in the spin (qubit) degrees of freedom and let the
particle be in the up state |+〉 when it goes through S+,
and likewise in the down state |−〉 when it goes through
S−. Under this revised setup, our pre-selected state is
given by

|φ〉 = 1√
2
(|xi〉 ⊗ |+〉+ | − xi〉 ⊗ |−〉) . (14)

Of course, if we perform the selection at t = T by the
state |+〉 or |−〉, it destroys the interference and gives
nothing different from the previous setup. However, dif-
ferent results arise when we introduce, along the line of
quantum eraser [8], an obscuring element on the ‘which
path information’ by adopting

|ψ〉 = |xf 〉 ⊗
[

cos(θ/2)|+〉+ eiη sin(θ/2)|−〉
]

(15)

for the post-selected state, which is achieved by choosing
the spin up state by the measurement in the direction
(sin θ cos η, sin θ sin η, cos θ). We then expect that, for θ =
0, π, the post-selection by |ψ〉 destroys the interference
pattern as we gain the complete which path information,
whereas for θ = π

2
we recover the interference fringes but

lose the which path information altogether.
To see if these expectations are realized, we introduce

the spin tagged position operators,

x± = x⊗ |±〉〈±|, (16)

which add up to x+ + x− = x ⊗ I. Obviously, these op-
erators tell us which of the slits S± the particle comes
from. Then, under the free motion of the particle
preserving the spin, the tagged weak values x±w(t) =
〈ψ(t)|x±|φ(t)〉/〈ψ(t)|φ(t)〉 are found to be

x+w(t) =

[

xi + (xf − xi)
t
T

]

cos(θ/2)

cos(θ/2) + eiχ sin(θ/2)
(17)

x−w(t) =

[

−xi + (xf + xi)
t
T

]

sin(θ/2)

sin(θ/2) + e−iχ cos(θ/2)
, (18)

where χ := 2m
ℏ

xfxi

T
− η. Since x±w(t) are both propor-

tional to the corresponding classical trajectories,

x±cl(t) = ±xi + (xf ∓ xi)
t

T
, (19)

we may write x±w(t) = [R±(θ) + iI±(θ)] x±cl(t) in terms of
the scale factors, R±(θ) and I±(θ), associated with the
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, (−xi

)
]
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=

xf +

Re x̃
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w
(t)
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−
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(t)

Re x̃
+
w
(t)
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FIG. 3: Tagged weak trajectories for the cases θ = 0, π
2

and π with density proportional to the transition probability
|〈ψ|U(T )|φ〉|2. At θ = 0, π where we have the perfect which
path information, the interference pattern disappears and ei-
ther of Re x̃±

w(t) gives one possible trajectory for the post-
selection made at xf . At θ = π

2
where no information on the

path is gained and the interference observed, both Re x̃±
w(t)

are available as trajectories from ±xi to xf .

real and imaginary parts of the weak value, respectively.
We then find, for example, the real scale factor,

R+(θ) =
1 + cos θ + sin θ cosχ

2(1 + sin θ cosχ)
, (20)

which has R+(0) = 1, R+(π) = 0 and R+(π/2) = 1/2.
This shows that for θ = 0 the real part of the weak trajec-
tory Rex+w(t) coincides with the classical trajectory x+cl(t)
starting from the slit S+ and that it vanishes for θ = π.
This is actually expected, since θ = 0 (θ = π) means that
only spin up (down) particles are post-selected and hence
they must come from the slit S+ (S−). Meanwhile, at the
midpoint θ = π/2 we find that Rex+w(t) is scaled down
from x+cl(t) by half. An analogous result can be obtained
for Rex−w(t) which is proportional to the classical trajec-
tory x−cl(t) coming from the slit S− with the scaling factor
R−(θ) having R−(0) = 0, R−(π) = 1, R−(π/2) = 1/2.
The discord between the real part of the tagged weak

trajectory and the classical one, appearing when the
post-selection does not allow the complete which path
information, is in fact an artifact arising from the be-
havior of the transition amplitude contained in the de-

nominator of the weak value. To remove this arti-
fact, one may consider the ‘normalized’ weak trajectory
x̃±w(t) := x±w(t)/R

±(θ) so that Re x̃±w(T ) = xf is fulfilled.
This simple adjustment at t = T yields

Re x̃±w(t) = x±cl(t). (21)

Thus, when we measure x̃+ (x̃−) weakly under the post-
selection at xf , the particle is surely found to have passed
through S+ (S−), taking the classical trajectory from x+
(x−) to xf (see FIG.3).

To summarize, we have shown that the imaginary part
ImAw of the weak value signifies the wave nature in
terms of the rate of interference. In particular, in the con-
text of double slit experiment the imaginary part Im pw
of the momentum gives the index of interference. In the
same context, the real part Rexw of the position exhibits
the particle nature through the classical trajectory, if an
additional device that allows for the which-path informa-
tion is equipped. Our weak trajectory is defined purely
from the position and differs from the one considered in
[9, 10] in which a combination of velocity and position is
used to obtain the dynamics of the Bohmian mechanics.

The real part of the normalized weak value of the
tagged position x̃±w(t) indicates that the particle comes
either of the two slits while still yielding the interference
pattern. We emphasize that this is not in conflict with
complementarity, as the weak value is obtained for an
ensemble, not for an individual particle. Nonetheless,
in view of the presumption that the weak measurement
causes negligible disturbance for the particle, our result
seems to suggest the näıve picture that, even when un-
seen, each of the particles in the ensemble is following
the classical path before producing the interference pat-
tern. It is our hope that the present study serves to gain
a deeper understanding of the role played by the weak
value in quantum mechanics.
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