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Equation of State for the One-Dimensional Attractive δ-Potential Bose Gas
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Tsubasa Ichikawa,1, ∗ Izumi Tsutsui,2, † and Nobuhiro Yonezawa3, ‡

1Research Center for Quantum Computing, Interdisciplinary Graduate School of Science and Engineering,
Kinki University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan

2Theory Center, Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

3Osaka City University Advanced Mathematical Institute (OCAMI),
3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

(Dated: July 24, 2012)

Approximated formulas for real quasimomentum and the associated energy spectrum are presented
for one-dimensional Bose gas with weak attractive contact interactions. On the basis of the energy
spectrum, we obtain the equation of state in the high-temperature region, which is found to be the
van der Waals equation without volume correction.
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Introduction. One-dimensional quantum gas has been
attracting considerable attention since its seminal exper-
imental demonstrations by using cold atoms [1, 2]. To
date, one of the bosonic gas models extensively studied
is the Lieb-Liniger model [3], which is solvable and char-
acterized by a tunable coupling constant.

In the case of repulsive interaction, much literature is
found both for the zero-temperature region [3–6] and the
finite-temperature region [7–10]. The Yang-Yang equa-
tions [7], whose solutions describe the thermodynami-
cal behavior of the system, have been demonstrated ex-
perimentally [10]. Generalization to anyonic systems is
also found in [11–13]. In parallel, the case of attrac-
tive interaction has been investigated [14–21] in the last
decade, which uncovered various exotic features includ-
ing bound states with complex quasimomentum [3, 14–
17, 21]. Phase structure with respect to the coupling
strength is found in the paradigm of Gross-Pitaevskii
mean-field theory [19, 20].

In this Brief Report, we present two simple but no-
table results about the Lieb-Liniger model valid for weak
attractive interactions. One of them is the explicit form
of the quasimomentum and energy spectrum, and the
other is the equation of state in the high-temperature re-
gion which resembles the van der Waals equation of state
[22].

Energy Spectrum in the Weak Coupling Limit. The
Lieb-Liniger model [3] describes an N -partite bosonic
system in one-dimensional space with point interactions.
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It is governed by the Hamiltonian

H = −
~
2

2m

N
∑

i=1

∂2

∂x2i
− c

∑

i<j

δ(xi − xj), (1)

where m is the mass of the particle, c ≥ 0 is the
coupling constant of the attractive δ interaction, and
the variable xi ∈ [0, L] represents the coordinate of
the ith particle. The eigenfunctions ψ are symmetric
ψ(· · · , xi, · · · , xj , · · · ) = ψ(· · · , xj , · · · , xi, · · · ) and obey
the periodicity conditions ψ(· · · , xi, · · · ) = ψ(· · · , xi +
L, · · · ) for all i. For convenience we hereafter work with
the unit ~ = m = 1.
Following the standard treatment of the model, we

adopt the Bethe ansatz,

ψ(x) =
∑

σ

aσ exp

(

i

N
∑

i=1

kσ(i)xi

)

(2)

for the simplex region 0 < x1 < x2 < · · · < xN < L. Here
ki is a quasi-momentum (rapidity) and the summation
is over all permutations σ of the particles i 7→ σ(i) on
which the coefficients aσ depend. Plugging (2) into the
Schrödinger equation Hψ = Eψ, we obtain the Bethe
equations [3]

Lki = (2ni +N − 1)π + 2
∑

j 6=i

arctan δi,j . (3)

Here, ni is an integer, δi,j is the rescaled relative rapidity
defined by

δi,j = (ki − kj)/c (4)

for c 6= 0, and the arctangent takes the principal value,
|arctan δi,j | ≤ π/2. The energy E then reads E =
∑

i k
2
i /2.
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In what follows, we consider the integer set {ni} so that
ki ∈ R for all i for the (dimensionless) weak coupling,

ǫ := cL/π ≪ 1. (5)

We can confine ourselves to the case of the ordering,

k1 < k2 < · · · < kN , (6)

by relabeling the indices i appropriately. Note that (6)
implies δi,j > 0 for i > j. We also assume that in the
weak regime ki are all regular with respect to c.
Two remarks are in order. First, there actually exist

{ni} for few-partite systems on which the condition (5)
is satisfied. For example, it is shown in [3] that ki ∈ R

for bipartite systems for ǫ < 4/π. For tripartite systems,
the same holds in the weak-coupling regime if the system
has nonzero {ni} at the noninteracting limit c → 0 [15].
Second, under the regularity assumption the ordering (6)
implies no level crossing in the weak regime.
We now show the following proposition.

Proposition 1 For ǫ ≪ 1, the rescaled relative rapidity

and the coupling have the tradeoff relation,

ǫδi,j = 2(n̄i − n̄j) +O(ǫ) (7)

with

n̄i := ni + i− 1. (8)

Proof. To show this, we first note that for c→ 0,

arctan δi,j →

{

π/2 for i > j,

−π/2 for i < j.
(9)

Substituting this to the Bethe equations (3), we find

ki →
2π

L
n̄i, (10)

with n̄i given by (8). This implies that the number n̄i is
nothing but the quantum number of the free case c = 0.
Since (6) holds for c = 0, for the weak coupling regime
the regularity condition assures that

n̄1 < n̄2 < · · · < n̄N , (11)

and also that

ki =
2π

L
n̄i +

1

L
O(ǫ), (12)

on account of O(c) = (1/L)O(ǫ) from (5). We then ob-
tain

ǫδi+1.i =
L

π
(ki+1 − ki) = 2(n̄i − n̄j) +O(ǫ), (13)

which completes the proof.

The tradeoff relation (7) implies |δi,j | = 2(n̄i− n̄j)/ǫ+
O(1) ≫ 1 or 1/ |δi,j | = O(ǫ), which is useful to approxi-
mate ki. Indeed, with

arctanx =

{

−1/x+ π/2 +O(1/x3), x > 1,

−1/x− π/2 +O(1/x3), x < −1,
(14)

substituted for Eq. (3), we find

ki =
2π

L
n̄i −

2

L

N
∑

j 6=i

1

δi,j
+

1

L
O(ǫ3). (15)

Utilizing (7) again, we can eliminate δi,j from (15) to
arrive at the following theorem.

Theorem 1 For ǫ≪ 1, the rapidity is approximated by

ki =
2π

L
n̄i −

ǫ

L

N
∑

j 6=i

1

n̄i − n̄j
+

1

L
O(ǫ2). (16)

This is one of the announced results of this paper.
Let us now derive the approximated energy spectrum

E to the order of O(ǫ). Summing up all the squared
rapidities (16), we obtain

En̄1,n̄2,...,n̄N
=

N
∑

i=1

k2i
2

≈

N
∑

i=1

2π2n̄2
i

L2
− 2π

ǫ

L2

N
∑

i=1

∑

j 6=i

n̄i

n̄i − n̄j

=

N
∑

i=1

2π2n̄2
i

L2
− c

N(N − 1)

L
, (17)

where we have used

2

N
∑

i=1

∑

j 6=i

n̄i

n̄i − n̄j
=

N
∑

i=1

∑

j 6=i

n̄i

n̄i − n̄j
+

N
∑

j=1

∑

i6=j

n̄j

n̄j − n̄i

=
N
∑

i=1

∑

j 6=i

n̄i − n̄j

n̄i − n̄j

= N(N − 1). (18)

The energy spectrum (17) is additive for the particles,

and we may rewrite it as En̄1,n̄2,···n̄N
≈
∑N

i=1En̄i
with

En̄i
=

2π2

L2
n̄2
i − c

N − 1

L
. (19)

The system thus behaves as an assembly of non-
interacting particles of the energy En̄, consisting of the
kinetic part 2π2n̄2/L2 and the averaged potential part
−c(N − 1)/L which is proportional to the number den-
sity (N − 1)/L.
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FIG. 1. (Color online) Pressure of one-dimensional Cs gas
as a function of the one-dimensional scattering length a1D,
evaluated for N = 25, L = 30µm, T = 0.16 nK. For lower
values of a1D, we find that P may become negative, which
occurs before reaching the shaded range a1D < 2 × 10µm
where the weak coupling condition (5) is no longer valid.

Equation of State. Let us consider the equation of
state of the system for the high-temperature region:

β := 1/kBT ≪ L2/2π2, (20)

where kB is the Boltzmann constant and T is the tem-
perature. Under the Maxwell-Boltzmann distribution,
the partition function Z becomes

Z ≈

∫

[−∞,∞]N

N
∏

i=1

dpi e
−βEp1,p2,...,pN

≈ LN (2πβ)
−N/2

exp
βcN2

L
. (21)

To obtain this, we approximated the sum over {n̄i} by the
integral over pi := 2πn̄i/L, ignoring the case of complex
rapidities (i.e., pi = pj for some i, j) which is measure
zero.
Since the volume of the system is given by L in our

one dimensional model, the pressure P is evaluated as
P = 1

β
d
dL lnZ. We then obtain the following theorem.

Theorem 2 The equation of state in the high-

temperature region reads

(

P + c
N2

L2

)

L ≈ NkBT. (22)

This is in fact the van der Waals equation without the
volume correction. The absence of the volume correction
is understood by the fact that the Lieb-Liniger model
adopts only point particles.
The one-dimensional system of bosons with attractive

interactions of our interest has actually been realized as
the super-Tonks-Girardeau (sTG) phase of an ultracold
gas of cesium (Cs) atoms using the confinement-induced
resonance [23]. In this experiment, one observes a multi-
ple of elongated tubes, each consisting of approximately
25 atoms along the size of 3× 10µm on average. To an-
alyze this in our context, we take these numbers for N

and L, respectively, with the mass m ≈ 2.2 × 10−25 kg.
From (20), we then find that our equation of state (22)
is valid for T ≫ 2π2

~
2/mL2kB ≈ 8 × 10 pK. On the

other hand, according to [24] our coupling c is related to
the tunable one-dimensional scattering length a1D > 0
by c = 2~2/ma1D. Thus our weak coupling condition (5)
implies a1D ≫ 2L/π ≈ 2 × 10µm. In contrast, we find
a1D ≈ 3 × 102 nm in the experiment [23], which is way
out of the valid range.

If we are allowed to extend the range by tuning the
parameters of experiment such as the strength of applied
magnetic field appropriately without spoiling the sTG
phase up to the valid range, then our formula suggests
an intriguing possibility. This is seen in the behavior
of pressure P (see Fig. 1) which becomes negative for
lower values of a1D. This takes place when the pressure
correction term surmounts the ideal gas term in (22),
suggesting a phase transition there. This may also be
realized, e.g., by increasing the number density N/L even
if a1D is fixed.

Conclusion and Discussions. In this paper we ob-
tained the approximated energy spectrum of the one-
dimensional attractive Bose gas where particles interact
weakly with each other via the contact δ potential. The
coupling ǫ and the rescaled relative rapidity δi,j fulfill
the tradeoff relation (Proposition 1). As a result, we ob-
tained the closed expression of the approximated rapidity
(Theorem 1). Based on this, we found that the equation
of state is the van der Waals equation without the volume
correction (Theorem 2).

The induced correction term is proportional to the
attractive coupling c with the squared number density,
which is precisely the same as the standard correction.
This correction is conventionally ascribed to the average
interparticle potentials in the classical thermodynamics
derivation, whereas in our quantum-mechanical model
the effect is taken care of by the nontrivial boundary con-
ditions of the δ potential imposed at the positions of the
particles. The valid range of our analysis does not seem
to overlap with the parameter range of the present exper-
iment with ultracold Cs gas, but if it can be extended we
may observe a novel phase transition as a consequence of
the quantum boundary effect.

In closing, we mention that the δ potential is not the
only possible point interactions admitted in quantum me-
chanics. Indeed, it has been known that in one dimension
we have a U(2) family of point interactions each charac-
terized by distinct boundary conditions [25] including the
δ potential as a special case. Despite that all of them are
equally zero-range, these potentials can in principle give
rise to different spectra through the non-trivial boundary
conditions, bearing a variety of palpable physical effects
as pointed out in [26–29]. We may therefore expect sim-
ilar exotic outcomes to appear, for instance, in the equa-
tion of state when such potentials other than the δ are
considered.
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