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Outcome Independence of Entanglement in One-Way Computation
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We show that the various intermediate states appearing in the process of one-way computation at
a given step of measurement are all equivalent modulo local unitary transformations. This implies,
in particular, that all those intermediate states share the same entanglement irrespective of the
measurement outcomes, indicating that the process of one-way computation is essentially unique
with respect to local quantum operations.
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I. INTRODUCTION

Entanglement is a key ingredient to make the ‘quan-
tum’ distinctive against the ‘classical’. The superiority of
quantum computation (e.g. speed-up) over the classical
counterpart, for instance, rests on the exploitation of en-
tanglement, and it is a fundamental problem to figure out
how it can be achieved effectively. For implementation of
quantum computation [1, 2], two schemes have been pri-
marily investigated; one is computation by synthesis of
quantum logic gates [3, 4], and the other is one-way com-
putation by local measurements of quantum states [5–10].
The significance of entanglement in the former has been
studied [11–13], and it is confirmed that entanglement is
essential to realize the superiority. Meanwhile, the sig-
nificance of entanglement in the latter scheme has also
been examined recently [9, 10], where it is found that
while not all entangled states are useful, cluster states
provide a preferable basis for the activation.

One-way computation has a notable affinity with en-
tanglement in that it consumes entanglement in local
measurements. This prompts us to ask precisely how en-
tanglement is created and consumed in the actual process
of computation. However, this question has been deemed
difficult to answer, because the process involves various
intermediate states generated by local measurements. In
fact, the number of different intermediate states will grow
exponentially as the increase in the number of measure-
ments, making the analysis of entanglement virtually im-
possible.

In this article, we show that this is not the case – specif-
ically, we prove that for one-way computation realized by
a standard quantum circuit consisting of controlled-NOT
(CNOT) gates and rotation (ROT) gates, all intermedi-
ate states appearing in the process are related by local

unitary transformations. Since entanglement is invariant
under such transformations, this implies that the con-
sumption process of entanglement in one-way computa-
tion is actually unique, irrespective of the outcomes of
the measurements.

II. PRELIMINARIES

To recall the prerequisite of one-way computation, con-
sider an n-qubit system whose constituent qubits are la-
beled by V = {1, 2, · · · , n}. Elements of the set V may be
regarded as vertices on a plane, where edges are formed
by connecting two pairs i, j ∈ V we choose. A graph

G(V,E) is then defined as the union of V and the set
E of edges chosen. Each vertex i in the graph G has
the neighbor Ni = {j ∈ V | {i, j} ∈ E} connected by
the edges. We may divide V into three mutually exclu-
sive subsets V = CI ∪ CM ∪ CO, where CI , CM and CO

are called ‘input’, ‘middle’ and ‘output’ section, respec-
tively, such that the number of the vertices in CI is equal
to that of CO. Each qubit represented by the vertex i
carries the Hilbert space Hi = C2, and accordingly any
set of vertices has the corresponding space given by the
tensor product of the constituent Hi. For example, the
input section CI has H(CI) =

⊗

i∈CI
Hi, and as a space

it is identical to the logical qubit space H(CI) = Hlog in
which a desired unitary gate Udesired is realized. The ba-
sic idea of one-way computation is to acquire the output
state Udesired|ψin〉 in CO to a given input state |ψin〉 in
CI , thereby achieving |ψin〉 → Udesired|ψin〉 in Hlog.
For the actual implementation, we first prepare each of

the qubits i not belonging to CI (i.e., i ∈ V \CI) in the
+1 eigenstate |+〉i of the spin operator σi

x in Hi. Thus
our initial n-qubit state is

|Ψ0〉 = |ψin〉 ⊗
⊗

i∈V \CI

|+〉i. (1)

Let 1i be the identity operator onHi, and |0〉i, |1〉i be the
+1, −1 eigenstates of σi

z , respectively. The conditional
phase gate associated with the edge {i, j} ∈ E reads

Sij = |0〉ii〈0| ⊗ 1j + |1〉ii〈1| ⊗ σj
z . (2)

The graph state |G〉 corresponding to G(V,E) is defined
from the initial state by applying the conditional phase
gate for all edges in the graph:

|G〉 = S|Ψ0〉, S =
∏

{i,j}∈E

Sij . (3)
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For brevity we hereafter omit the symbols ⊗ and 1i when
no confusion arises. Note that S satisfies

KiS = Sσi
x, Ki = σi

x

⊗

j∈Ni

σj
z . (4)

It then follows from (1), (3) and (4) that

Ki|G〉 = |G〉, (5)

for all i ∈ V \CI [5–8].
Suppose that we measure the spin of the i-th qubit in

the x-y plane with angle θ using the operator σi
x cos θ +

σi
y sin θ. According to the measurement outcomes s =

±1, the state undergoes the change |G〉 → P i
s(θ)|G〉,

where the acquired post-measurement state (PMS) is
characterized by the projector,

P i
s(θ) =

1i + s
(

σi
x cos θ + σi

y sin θ
)

2
, (6)

which fulfills

P i
s(θ)σ

i
x = σi

xP
i
s(−θ), P i

s(θ)σ
i
z = σi

zP
i
−s(θ). (7)

From these we have

P i
s(θ)Kj =











KiP
i
s(−θ) if i = j,

KjP
i
−s(θ) if i 6= j, i ∈ Nj,

KjP
i
s(θ) if i 6= j, i 6∈ Nj.

(8)

III. LOCAL UNITARY EQUIVALENCE

Since our one-way computation consists of a set of
ROT gates and CNOT gates, we first argue that these
two admit independently the local unitary equivalence for
intermediate states, before combining the results to show
that the same is true for a generic one-way computation.

A. Rotation Gate

Let us start with the one-qubit ROT gate, which can
be parameterized by the Euler angles ξ = (ξ, η, ζ) as

UROT(ξ) = exp
[

−iζ
σx
2

]

exp
[

−iη
σz
2

]

exp
[

−iξ
σx
2

]

.

(9)
This gate can be implemented by the n = 5 cluster state
with the graph GROT shown in Fig.1. Let si = ±1 be
the outcomes of measurement for the i-th qubit with an-
gle θi, which is performed successively by the ascending
order of i. The actual measurement axis θi = θi(ξ, s) is
determined from the Euler angles ξ in the ROT gate and
the measurement outcomes s = {s1, s2, s3} as

θ1 = 0, θ2 = −s1ξ, θ3 = −s2η, θ4 = −s1s3ζ. (10)

θ2 θ3 θ4

COCI

1 2 3 4 5

CM

0

FIG. 1: The graph GROT for the ROT gate. The lines between
the numbered vertices represent the edges, and we have, e.g.,
the neighbor N2 = {1, 3}. Measurement angles θi above the
vertices i are specified by Eq. (10).

The measurement of the 1st qubit on the graph state
(3) yields the PMS P 1

s1
(0)|GROT〉, which fulfills

P 1
s1
(0)|GROT〉 = P 1

s1
(0)K2|GROT〉 = K2P

1
−s1

(0)|GROT〉,
(11)

on account of Eqs. (5) and (8) with 1 ∈ N2. This shows
that the local unitary operator K2 transforms a PMS to
another PMS having the opposite measurement outcome.
We also observe, from Eqs. (5) and (8) with 1 6∈ N3 and
2 ∈ N3, that the PMS obtained after the 2nd measure-
ment obeys

P 2
s2
(θ2)P

1
s1
(0)|GROT〉 = P 2

s2
(θ2)P

1
s1
(0)K3|GROT〉

= P 2
s2
(θ2)K3P

1
s1
(0)|GROT〉

= K3P
2
−s2

(θ2)P
1
s1
(0)|GROT〉.

(12)

A similar argument using K2, instead of K3 above, yields

P 2
s2
(θ2)P

1
s1
(0)|GROT〉 = K2P

2
s2
(−θ2)P

1
−s1

(0)|GROT〉. (13)

Since −θ2 = −(−s1)ξ, we conclude from (12) and (13)
that PMS in the 2nd measurement with different out-
comes can be related by combining {K2,K3}.
Generalizing our reasoning, we see that the PMS of the

3rd measurement with the outcome (s1, s2, s3) can also
be transformed into any PMS with a different outcome
(s′1, s

′
2, s

′
3) by an appropriate combination of local unitary

transformations {K2,K3,K4}. Clearly, the number of
choices of Ki is 2

3 which is just the number of all possible
different outcomes. An analogous result holds for the
PMS in the 4th measurement with (s1, s2, s3, s4).
To summarize, we find that for the ROT gate all the

PMS appearing at any stage of the measurement can be
transformed into each other by local unitary transforma-
tions.

B. CNOT Gate

Next we turn to the CNOT gate. If implemented with
i-th qubit as the control qubit and j-th as the target, the
gate is represented by

UCNOT = |0〉ii〈0| ⊗ 1j + |1〉ii〈1| ⊗ σj
x. (14)



3

0

0 0000

COCI CM

π/2 π/2 π/2 π/2 π/2

π/2

π/2

1 2 3 4 5 6 7

8

9 10 11 12 13 14 15

FIG. 2: The graph GCNOT for the CNOT gate. Above the
vertices i the measurement angles θi, which are either 0 or
π/2, are indicated.

The gate, with the choice i = 7, j = 15, is realized by the
n = 15 graph GCNOT shown in Fig.2. Unlike the ROT
case (10), all the measurement angles are predetermined
independently from the outcomes.
Consider the local measurements over all qubits in

V \CO = CI ∪ CM . The PMS with the measurement
outcomes si are then given by

∏

i∈V \CO
P i
si
(θi)|GCNOT〉

up to a normalization factor. Using the identity P i
s(θ) =

P i
−s(θ + π) and (8), we obtain

Ki

∏

j∈{i}∪Ni

P j
sj
(θj) = P i

si
(0)

∏

j∈Ni

P j
−sj

(θj)Ki (15)

for i with θi = 0, and

Ki

∏

j∈{i}∪Ni

P j
sj
(θj) =

∏

j∈{i}∪Ni

P j
−sj

(θj)Ki (16)

for i with θi = π/2. These relations show that the action
of Ki on the PMS flips the measurement outcomes on
the qubits in Ni (including i-th qubit for θi = π/2) in
PMS. In the left half of Table I, we summarize the sets
of sj whose elements are flipped by Ki. By combining
these Ki appropriately, we can construct unitary opera-
tors which flip the outcomes of a specific qubit without
flipping the outcomes of the other qubits (see the right
half of Table I). This implies that all PMS can be related
to each other by local unitary transformations.
The above argument also ensures that, by an appro-

priate local unitary operation, we can change the mea-
surement outcomes freely even when not all of the qubits
are measured.

C. Universal Gate Set

Now we come to the point to show that one-way com-
putation for the universal gate set enjoys the same uni-
tary equivalence. To this end, recall first that in the
logical space Hlog any unitary gate Udesired can be de-
composed into a product of ROT and CNOT gates,

Udesired = Um(ξm)Um−1(ξ
m−1) · · · U1(ξ

1), (17)

operator flipped qubits qubit combined operator

K2 1, 2, 3 1 K2K3K5K6

K3 2, 3, 4 2 K3K4K5K7K8K13K15

K4 3, 4, 5, 8 3 K4K6K7K8K13K15

K5 4, 5, 6 4 K5K6

K6 5, 6 5 K6K7

K7 6 6 K7

K8 4, 8, 12 8 K5K6K8K13K15

K10 9, 11 9 K5K6K8K10K12K14

K11 10, 12 10 K11K13K15

K12 8, 11, 12, 13 11 K5K6K8K12K14

K13 12, 14 12 K13K15

K14 13 13 K14

K15 14 14 K15

TABLE I: (Left) The action Ki and the flipped qubits j in
the measurement outcomes sj . (Right) The qubit i and the
combined operator required to flip only the outcome si leaving
all the rest sj for j 6= i unaltered.

where Uα(ξ
α), α = 1, . . . ,m, are either UROT in (9) or

UCNOT in (14) acting in (generally different) subspaces
in Hlog, with ξα = (ξα, ηα, ζα) being relevant only for
UROT. Each Uα is implemented at step α in the whole
process of computation and, accordingly, we consider a
graph G consisting of subgraphs Gα, with their own ver-
tices V α = Cα

I ∪ Cα
M ∪ Cα

O, which are either GROT or
GCNOT in correspondence with Uα in (17). The actual
process of step α involves an extended graph Gα

ext ⊃ Gα

rigged with vertices which are irrelevant for the imple-
mentation of Uα but necessary to provide Hlog as the
operational space. We denote by Xα

I and Xα
O the input

and the output section of Gα
ext containing C

α
I and Cα

O, re-
spectively, for which we have H(Xα

I ) = H(Xα
O) = Hlog.

The input section Xα
I contains those vertices in Cβ

O with
β ≤ α which have not been used in earlier steps, and

likewise Xα
O contains those vertices in Cβ

I with β ≥ α
which will be used in later steps, such that X1

I = CI ,

Xk
O = Xk+1

I for k = 1, . . . ,m − 1 and Xm
O = CO (see

Fig.3 for illustration).

To describe the process more explicitly, consider a pro-
jection associated with the measurements over an arbi-
trary subset Lα ⊂ V α\Cα

O of qubits in Gα with outcomes
sα = {sαi = ±1 | i ∈ Lα},

P (Lα, ξα, sα) =
∏

i∈Lα

P i
sα
i
(θαi ), (18)

where θαi are given by θαi = θi(ξ
α, sα) as in (10) for Gα =

GROT, while θ
α
i = 0 or π/2 for Gα = GCNOT according

to Fig. 2. With modified angles fαξα (to be discussed
shortly) with f1ξ1 = ξ1, the PMS of the entire system at
an intermediate step α = k after the measurements over
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FIG. 3: (Left) The graph G for the unitary gate Udesired = UCNOTUROTUCNOT. (Right) The diagram of the process of
computation with extended graphs Gα

ext obtained by adding to Gα virtual vertices (open circles) which are aliases of the
nearest vertices connected by the dotted lines. All the input and output sections Xα

I and Xα
O in Gα

ext possess the same number
of qubits to provide the space Hlog.

Λk = ∪k
α=1L

α can then be written as

|Ψ(Σk; Λk)〉 :=

[

k
∏

α=1

P (Lα, fαξα, sα)Sα

]

|Ψ0〉, (19)

where the product is in the descending order of α from
the left. In (19), Sα =

∏

{i,j}∈Eα Sij is the operator (2)

associated with the edges Eα in Gα, |Ψ0〉 is the initial
state (1) for the total graph G, and we have introduced
the notation Σk = {s1, . . . , sk} for the collection of the
measurement outcomes up to step k.
We now notice that, by using the k = 1 PMS states

in (19), the local unitary equivalence argued earlier for
ROT and CNOT may be expressed concisely as

|Ψ(Σ1; Λ1)〉 = U(Σ1,Σ
′
1) |Ψ(Σ′

1; Λ1)〉, (20)

with a local unitary transformation U(Σ1,Σ
′
1). Indeed,

this is so because |Ψ0〉 in (19) contains
⊗

i∈(C1
M

∪C1
O)

|+〉i

which is sufficient for our argument there.
An important property in one-way computation is

that, after the full measurements Lα = V α\Cα
O, the PMS

at each step k admits the form,

|Ψ(Σk; Λk)〉 = |ψk
out〉 ⊗ |φk〉, (21)

where |ψk
out〉 ∈ H(Xk

O) is the output state, and |φk〉 ∈
H(V \Xk

O). The output state |ψk
out〉, which becomes the

input state |ψk+1
in 〉 in the next step, turns out to be

|ψk
out〉 = Rk Uk(f

kξk)|ψk
in〉, (22)

with a qubit-wise local unitary (byproduct) operator
Rk = Rk(s

k), where |ψ1
in〉 is given by |ψin〉 in (1). The

maps fα are then determined [7] from the demand that
at the final step m we obtain

|ψm
out〉 =

[

RmUm(fmξm) · · ·R1U1(f
1ξ1)

]

|ψ1
in〉

= T Udesired|ψ
1
in〉, (23)

with some local unitary gate T .

Having given the relationship between adjacent steps,
it is straightforward to extend the result (20) to the final
step k = m (for detail, see the Appendix):

|Ψ(Σm; Λm)〉 = U(Σm,Σ
′
m) |Ψ(Σ′

m; Λm)〉. (24)

This shows that any two PMS with different outcomes
Σm and Σ′

m, obtained under the measurements on the
same but arbitrary set Λm of qubits, are equal up to
a unitary local transformation U(Σm,Σ

′
m). The equiv-

alence of entanglement possessed by those intermediate
PMS follows immediately from this.

IV. SUMMARY AND DISCUSSIONS

In this article, we have shown that, for the universal
gate set consisting of ROT gates and CNOT gates, all
PMS with different outcomes for an arbitrarily chosen
set of measurements can be related by local unitary op-
erations. This rather simple observation should be handy
for tracking the consumption process of entanglement in
the cluster state during one-way computation. For in-
stance, this will reduce the complexity of evaluating mul-
tipartite entanglement measures such as [14, 15], allowing
us to consider only a single PMS for each measurement.
More generally, the essential uniqueness of PMS pointed
out here may provide a basis for comparing directly the
process of one-way computation with those of quantum
logic gates, assisting our further understanding on quan-
tum computation.
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Appendix

In this Appendix, we prove the local unitary equiv-
alence (24) of PMS by mathematical induction starting
with (20). Our argument will be similar to those given in
the text, except for some technical complication due to
the maps fα which become nontrivial for k ≥ 2. Prior to
the proof, we describe fα and also present two formulas
to be used.
We assume, for simplicity, that unmeasured outcomes

are all +1, which is admissible since they do not influence
the measurement outcomes over Λk. With gi =

1−si
2 , the

byproduct operators Rα(s
α) appearing in (22) under the

given outcomes can be written as (see Ref.[7])

RROT = (σx)
g2+g4(σz)

g1+g3 , (A.1)

if Uα is ROT, and

RCNOT = (σ(c)
x )γ

(c)
x (σ(t)

x )γ
(t)
x (σ(c)

z )γ
(c)
z (σ(t)

z )γ
(t)
z , (A.2)

if Uα is CNOT, where the factors associated with the
spin operators of the control and target qubits are given
by

γ(c)x = g2 + g3 + g5 + g6,

γ(t)x = g2 + g3 + g8 + g12 + g14,

γ(c)z = g1 + g3 + g4 + g5 + g8 + g9 + g11 + 1,

γ(t)z = g9 + g11 + g13. (A.3)

We also record here some useful algebraic relations,

UROT[ξ, η, ζ]σx = σx UROT[ξ,−η, ζ],

UROT[ξ, η, ζ]σz = σz UROT[−ξ, η,−ζ],

UCNOT σ
(t)
x = σ(t)

x UCNOT,

UCNOT σ
(c)
x = σ(c)

x σ(t)
x UCNOT,

UCNOT σ
(t)
z = σ(c)

z σ(t)
z UCNOT,

UCNOT σ
(c)
z = σ(c)

z UCNOT. (A.4)

Now, we set T1 = 1 and define the gate Wα by

Wα =

{

Tα if Uα is ROT,

UCNOT Tα U
−1
CNOT if Uα is CNOT,

(A.5)

and then put Tα+1 = RαWα to proceed to the next step.
This allows us to determine all these quantities for higher
steps iteratively, and the maps fα are defined by the
relation,

Uα(f
αξα) =WαUα(ξ

α)T−1
α . (A.6)

This in fact ensures (23) with the unitary gate T = Tm+1.
At this point, we note that Tα is regarded as a local

unitary operator on H(Xα
I )(= Hlog), but it may be ex-

tended to a tensor product T̃α := O ⊗ Tα ⊗ 1 acting
on H(V ), where O is an element of the Pauli group on

H(
⋃α−1

i=1 (C
i
I ∪ Ci

M )) and 1 is the identity on the com-
plementary subspace in H(V ). The choice of O is im-
material in our discussion, because it commutes with
P (Xβ, ξβ, sβ) and Sβ for β = α, · · · ,m. Analogously,

one can define W̃α and R̃α as the unitary operators on
H(Xα

O) and on H(Xα
O), respectively, from Wα and Rα.

We these extended operators, we first show

P (Lα, fαξα,sα)SαT̃α|Ψα〉

= W̃αP (L
α, ξα, sα)Sα|Ψα〉,

(A.7)

for

|Ψα〉 = |φin〉 ⊗
⊗

i∈Cα
M

∪Cα
O

|+〉i (A.8)

with arbitrary |φin〉 ∈ H(V \(Cα
M ∪Cα

O)). Indeed, if Uα is
ROT, and if Tα = σz , for example, then from (A.6) we
have Wα = Tα and fαξα = (−ξ, η,−ζ) for ξα = (ξ, η, ζ).

Setting T̃α = Oσ1
z and using (5) and (7), we find

P (Lα, fαξα, sα)SαT̃α|Ψα〉

= OP (Lα, fαξα, sα)σ1
zS

α|Ψα〉

= OP (Lα, fαξα, sα)σ1
zK

α
2K

α
4 S

α|Ψα〉

= OP (Lα, (−ξ, η,−ζ), sα)σ2
xσ

4
xσ

5
zS

α|Ψα〉

= Oσ2
xσ

4
xσ

5
zP (L

α, ξα, sα)Sα|Ψα〉, (A.9)

where the numbers {1, 2, 3, 4, 5} are the labels of qubits
for ROT (see Fig. 1). Since Cα

O = {5} for this case,

we can put W̃α = Oσ2
xσ

4
xσ

5
z , which demonstrates (A.7).

Other choices of Tα or the case of CNOT can be discussed
similarly.
We also wish to establish

P (Lα, ξα, sα)Sα|Ψα〉

= R̃αR̃
′
αP (L

α, ξα, s′α)Sα|Ψα〉,
(A.10)

as a generalization of (20). Again, we examine this with
an example, this time for Uα given by CNOT. Consider
two sets of the measurement outcomes s and s′ with, say,
s3 6= s′3, si = s′i(i 6= 3). In this case, from (A.2) we have
RαR

′
α = σ7

xσ
7
zσ

15
x , whereas from Table I, we find

U(Σα,Σ
′
α) = K4K6K7K8K13K15 = Oσ7

xσ
7
zσ

15
x (A.11)

by choosing an appropriate operator O in the Pauli
group. We thus find U(Σα,Σ

′
α) = R̃αR̃

′
α, which shows

(A.10). Other cases can also be argued analogously.
With these formulas (A.7) and (A.10), we now prove

(24) for

U(Σm,Σ
′
m) = T̃m+1T̃

′
m+1, (A.12)

based on the assumption,

|Ψ(Σα; Λα)〉 = T̃α+1T̃
′
α+1|Ψ(Σ′

α; Λα)〉 (A.13)

for α = k − 1 with some k. For α = 1 we have already
this, because T2 = R1 implies T̃2 = R̃1 and hence (A.13)
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with α = 1 follows from (20). For α = k, we utilize (A.7),
(A.10) and (A.13) with α = k − 1 to observe

|Ψ(Σk; Λk)〉

=
[

P (Xk, fkξk, sk)Sk
]

|Ψ(Σk−1; Λk−1)〉

=
[

P (Xk, fkξk, sk)Sk
]

T̃kT̃
′
k|Ψ(Σ′

k−1; Λk−1)〉

= W̃k

[

P (Xk, ξk, sk)Sk
]

T̃ ′
k|Ψ(Σ′

k−1; Λk−1)〉

= W̃kW̃
′
k

[

P (Xk, f ′kξk, sk)Sk
]

|Ψ(Σ′
k−1; Λk−1)〉

= W̃kW̃
′
kR̃kR̃

′
k

[

P (Xk, f ′kξk, sk)Sk
]

|Ψ(Σ′
k−1; Λk−1)〉

= W̃kR̃kW̃
′
kR̃

′
k|Ψ(Σ′

k; Λk)〉

= T̃k+1T̃
′
k+1|Ψ(Σ′

k; Λk)〉, (A.14)

up to a global phase. This is exactly (A.13) for α = k,
and therefore we reach (24) by mathematical induction.
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