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Abstract. We study the possibility of testing local realistic theory (LRT), en-

visioned implicitly by Einstein, Podolsky and Rosen in 1935, based on the Bell

inequality for the correlations in the decay modes of entangled K or B-mesons.

It is shown that such a test is possible for a restricted class of LRT, despite the

passive nature of decay events and/or the non-unitary treatment of the correlations

which invalidate the test for general LRT. Unfortunately, the present setup of the

KEKB (Belle) experiment, where the coherence of entangled B-mesons has been

confirmed recently, does not admit such a test due to the inability of determining

the decay times of the entangled pairs separately. The indeterminacy also poses a

problem for ensuring the locality of the test, indicating that improvement to resolve

the indeterminacy is crucial for the test of LRT.
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1. Introduction

Entanglement lies at the heart of the recent development of quantum information

theory, and yet it remains the most significant physical property in quantum mechanics

(QM) that defies our intuitive understanding. As Einstein, Podolsky and Rosen argued

in their seminal paper [1], entanglement admits outcomes of observations made at two

locations separated remotely to be correlated, casting an ontological question on the phys-

ical quantities observed. Since the discovery of the Bell inequaility [2] in 1964, together

with the subsequent work of Clauser, Horne, Shimony and Holt [3], it has been recognized

that the local realistic theory (LRT) supposedly envisioned in [1] can be put to test in

laboratory, and a variety of attempts for the test have been made with different entangled

sources, such as photons [4, 5], ions [6] and protons [7]. Almost all of the tests conducted

so far indicate that non-local correlations do exist precisely as QM predicts, and we are

naturally led to deny the LRT as an underlying fundamental theory, despite that these

tests are still not absolutely conclusive due to their possible loopholes in the locality and

detection efficiency.

The original idea of using entangled K-mesons for the test of LRT, generated as a pair

K0 and K̄0 via a decay in high energy experiments, can be traced back to Bell [8] (and

also [9]), and it has later been elaborated by, e.g., Ghirardi et al.[10]. Part of the interest

in the test with mesons derives perhaps from the curiosity as to whether the nonlocal

nature of the entangled states, confirmed earlier by photons, can be extended to massive

particles (for instance, the mass of a B-meson is more than 5 GeV/c2). In the last ten

years, experiments involving entangled pair of neutral mesons have been performed: first at

CERN (CPLEAR) [11] and then Frascati (KLOE) [12] with K-mesons, and more recently

at KEK (Belle) [13] with B-mesons. These experiments have confirmed that the coherent

superposition of the pair of two meson states in QM is actually appropriate to describe

the correlations measured for the decay modes. However, these are not the test of LRT,

since testing LRT requires outcomes that cannot be explained by LRT, and usually this is

examined by the violation of the Bell (or CHSH) inequality [2, 3] obeyed by correlations of

measurement outcomes based on LRT. An argument for the possibility of such a test at the

B-factories has been presented in [14] based on the normalized correlations of decay modes,

but it has been pointed out by Bertlmann et al. [15] that this is untenable due to the passive

nature of the decays and/or the non-unitary treatment of the correlations. In fact, it has

been recognized earlier in [10] (and also in [8]) that mesons have the particular problems

associated with the decays which are absent in the conventional tests using photons.
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In this paper we show that, although the statements of [15] are valid, it is still possible

to carry out a test with entangled mesons, if it is designed for excluding a restricted class

of LRT. The restriction concerns with the homogeneity of decay outcomes in time and

the independence of decay times from the partners in the pair decays. We shall see that,

unfortunately, with the present setup of the Belle experiment such a test is not viable with

B-mesons as the individual decay times are not measured; this also poses a problem for

the locality loophole. Our result suggests that for the meaningful test of LRT at Belle, it

is crucial to improve on the setup to ensure the determinacy of decay times.

2. Possibility of LRT tests using meson pairs

We begin by recalling the experiment to measure the flavor of two mesons generated

as an entangled pair. In the case of B-meson, for example, this can be realized by the

process Υ(4S) → B0B̄0 which is produced by the collisions of e− and e+. (The case of

K-meson can be argued analogously, and we shall mention it when the difference becomes

significant.) The actual measurement of flavor is carried out by looking at a particular

series of decay modes of the mesons (B0 → D∗−l+ν, D∗− → D̄0π−
s and so on, with charge

conjugate modes for B̄0), one on the left and the other on the right in the center-of-mass

frame. Due to the flavor oscillation, the outcome of the measurement depends on the

decay times of the two mesons. Let tl and tr be the decay times of the left and right

mesons, respectively. The total ensemble of decay events of meson pairs for which the

measurement is performed can be decomposed into subensembles E(tl, tr) consisting of

decay events occurring in the time cells determined by {tl, tr} and {tl + δt, tr + δt} with

some time length δt. To each subensemble E(tl, tr) we may consider the correlation of the

measurement outcomes of flavor for the two mesons.

In concrete terms, one associates the value +1 to B0 and −1 to B̄0 in the outcome

of the measurements, and when one finds ni,j(tl, tr) decays for the four possible outcomes

i, j = ±1, one evaluates the correlation in the subensemble E(tl, tr) by

C(tl, tr) =

∑

i,j ij · ni,j(tl, tr)
∑

i,j ni,j(tl, tr)

=
n1,1(tl, tr) − n1,−1(tl, tr) − n−1,1(tl, tr) + n−1,−1(tl, tr)

n1,1(tl, tr) + n1,−1(tl, tr) + n−1,1(tl, tr) + n−1,−1(tl, tr)
.

(2.1)

Let Γ, Γ̄ be the decay rate of B0, B̄0 to the particular modes, related by CP conjugation,

which we look at in order to identify the types of mesons in our measurement. Ignoring

the small CP-violation of the weak interaction (which is O(10−4) or less), we have Γ = Γ̄.
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If the total number N of pairs produced in the experiment is sufficiently large, the number

of decays belonging to the subensemble E(tl, tr) is given by

ni,j(tl, tr) = N (δt)2 Γi,j(tl, tr), (2.2)

where Γi,j(tl, tr) is the joint decay rate

Γi,j(tl, tr) = Pi,j(tl, tr) Γ2 (2.3)

expressed in terms of the joint probability Pi,j(tl, tr) of mesons possessing the flavor i and

j at tl and tr, respectively [16]. Combining (2.2) and (2.3) with (2.1), we find

C(tl, tr) =

∑

i,j ij · Pi,j(tl, tr)
∑

i,j Pi,j(tl, tr)
. (2.4)

Now that the the correlation is given by the joint probability Pi,j(tl, tr), one may

evaluate it in QM as

CQ(tl, tr) = − cos(∆m(tl − tr)), (2.5)

where ∆m is the mass difference between the weak eigenstates |BL〉 = (|B0〉 + |B̄0〉)/
√

2

and |BH〉 = (|B0〉 − |B̄0〉)/
√

2 (see, e.g., [17]). The correlation (2.5) in QM violates the

Bell inequality, provided that there exists an LRT describing the meson system in which

the decay times (tl, tr) play a similar role as the angle parameters in the usual photon

polarization experiment. Since the angle parameters can be adjusted freely by the observer

while decay times cannot, we need to examine the feasibility of such a test closely.

An LRT for the system of meson pairs may generally be formulated based on the

following premises. First, the theory has a set of hidden parameters, collectively denoted

by Λ, which determines the physical states of the system completely (here we consider

only deterministic LRT, but stochastic LRT can be dealt with analogously). Second, it

is equipped with a probability distribution ξ(Λ) which is a non-negative function of Λ

normalized as
∫

dΛ ξ(Λ) = 1.

Let A(a) (and B(b)) be an observable of the left (and right) particle in the decayed

pair, with a (and b) being some external parameter specifying the measurement setup

of the observable. In LRT, the outcome of a measurement of A(a) is determined by Λ,

and by locality requirement it is independent of the external parameter b or the outcome

of measurement made on the right particle. This allows us to write the outcome of the

measurement of A(a) as A(Λ, a). Similarly, the outcomes of the measurement for the
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right particle is denoted by B(Λ, b). If these observables are dichotomic and yield only ±1

values, say, +1 for B0 and −1 for B̄0 to be consistent with the previous assignment of the

B-meson experiment, then the correlation of the outcomes of the joint measurement reads

CL(a, b) =

∫

dΛ ξ(Λ) A(Λ, a)B(Λ, b). (2.6)

In the experiments attempting to test the Bell inequality using photons, we measure

the spin (polarization) in arbitrary directions we choose, which act as external parameters

represented by vectors a and b. In the case of meson pairs, we measure the flavor of

the particles in a specific direction determined by B0 and B̄0 so that they can be clearly

distinguished from the decay modes. Here lies a salient feature of the LRT test based on

the Bell inequality using meson pairs: the direction of the flavor measurement is fixed in

the flavor space while the actual flavor of the particles changes in time due to the B0-B̄0

oscillation. This is to be contrasted to the case of photons where the spin is measured in

any directions while the spin of the photon is fixed in time.1 The analogy of the two cases

is nevertheless recognized if we notice that the decay times tl and tr of the left and right

particle can be regarded, at least formally, as parameters corresponding to a and b on

account of the oscillation in the flavor space. This suggests that the Bell inequality may

also hold for the correlation (2.6) of the meson decays with a and b replaced by tl and tr,

for which the test could be performed as in the photon case.

There is, however, a crucial difference between the two cases. That is, since the decay

times {tl, tr} cannot be adjusted freely in the actual measurement (carried out at KLOE

for K-mesons and at KEK for B-mesons), they are of passive character and, as such,

should be more properly regarded as part of the hidden parameters Λ rather than external

parameters. It follows that the correlation (2.6) has a parameter-dependent probability

distribution ρ(Λ), and the Bell inequality cannot be derived there.

To analyze this ‘passiveness problem’ further, let us put Λ = {λ, tl, tr} with λ repre-

senting the rest of the hidden parameters2 in the LRT. To each subensemble E(tl, tr) with

sufficiently small span δt of the time cell, the correlation deduced from (2.6) is given by

CL(tl, tr) =

∫

dλ ρ(λ | tl, tr) A(λ, tl, tr)B(λ, tl, tr), (2.7)

1 It is possible, however, to put the two cases in a unified framework in which, e.g., birefringence of
photons corresponds to the oscillation in mesons [18].

2 The space of the hidden parameters Λ, or the subspace of λ in it, could be topologically nontrivial,
but the following arguments are not affected by this as long as the independence of λ from tl, tr is ensured.
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where we have used the density for the subensemble,

ρ(λ | tl, tr) :=
ξ(Λ)

∫

dλ ξ(Λ)
, (2.8)

which is normalized as
∫

dλ ρ(λ|tl, tr) = 1. In (2.7) we have omitted the external param-

eters a and b which are absent in the experiment under consideration, and instead made

explicit the dependence on tl and tr. As mentioned above, the expression (2.7) shows

that, when {tl, tr} are interpreted as external parameters, the deduced LRT describing

the subensemble E(tl, tr) is highly nonlocal and hence cannot lead to the standard Bell

inequality.

Although we seem to be forced to give up testing the general LRT for the meson

system, we may still seek conditions under which the correlation (2.7) takes the standard

form (2.6). For this to be the case, an obvious condition is that the density (2.8) of the

subensemble be independent of tl and tr. This is ensured if the total density ξ(Λ) decouples

as

ξ(Λ) = ρ(λ) η(tl, tr), (2.9)

where both of the factors ρ(λ), η(tl, tr) are normalized with respect to the arguments

(which can always be done without loss of generality). Indeed, this ensures the density

(2.8) to be independent of the subensemble, ρ(λ | tl, tr) = ρ(λ). Thus, the condition (2.9)

states that, in effect, all the subensembles E(tl, tr) are identical as a probability set in that

they share the same normalized probability density ρ(λ). The only difference is found in

the scaling factor η(tl, tr) which describes the variation in the number of decay events in

each of the subensembles E(tl, tr), which decreases for larger tl and tr. One may argue that

the condition (2.9) is physically plausible from the viewpoint of homogeneity in time of the

decaying phenomena, and it can surely be examined by observing the time dependence of

the decay modes.

Another condition required is that the outcomes of the measurements performed on

one particle be independent of the decay time of the other particle which are spatially

separated from each other:

A(λ, tl, tr) = A(λ, tl), B(λ, tl, tr) = B(λ, tr). (2.10)

Note that this is not the conventional locality condition, because our LRT possesses {tl, tr}
as part of the hidden parameters Λ. In words, the second condition (2.10) states that the

outcome of measurement may depend on the decay time of the measured particle but it is

6



independent of the decay time of the other particle in a remote distance. Combining the

independence condition (2.10) for decay time with the homogeneity condition (2.9), one

finds that the correlation (2.7) reduces to

CL(tl, tr) =

∫

dλ ρ(λ) A(λ, tl) B(λ, tr). (2.11)

To see that the correlation (2.11) corresponds to the quantity evaluated experimen-

tally, we introduce the ‘step’ functions ΘA
i (λ, tl), i = ±1, which determine the flavor type

of the left meson such that ΘA
1 (λ, tl) = 1 if the type is B0 and ΘA

1 (λ, tl) = 0 if it is B̄0,

and conversely ΘA
−1(λ, tl) = 0 if it is B0 and Θ−1(λ, tl) = 1 if it is B̄0. With analogously

defined functions ΘB
i (λ, tr) for the right meson, we can write the values of the observables

as

A(λ, tl) = ΘA
1 (λ, tl) − ΘA

−1(λ, tl), B(λ, tr) = ΘB
1 (λ, tr) − ΘB

−1(λ, tr). (2.12)

Plugging (2.12) into (2.11), and using the identities
∑

i ΘA
i (λ, tl) =

∑

i ΘB
i (λ, tr) = 1, we

find

CL(tl, tr) =

∑

i,j ij · PL
i,j(tl, tr)

∑

i,j PL
i,j(tl, tr)

, (2.13)

where

PL
i,j(tl, tr) =

∫

dλ ρ(λ) η(tl, tr) ΘA
i (λ, tl) ΘB

j (λ, tr) (2.14)

is the joint probability of finding the mesons in flavors i and j at times tl and tr, respec-

tively, in the LRT. This establishes the link between our LRT and the actual experiments

in the correlations (2.13) and (2.4), or (2.11) and (2.1).

Now that the formal structure of the correlation (2.11) is exactly the same as the

standard one, we have

|CL(tl, tr) + CL(t′l, tr) + CL(t′l, t
′
r) − CL(tl, t

′
r)| ≤ 2, (2.15)

which is equivalent to the Bell inequality. It follows that, for the restricted class of LRT

which fulfill the above two conditions, the correlations defined for the subensumbles E(tl, tr)

satisfy the Bell inequality (2.15), despite that tl and tr are not external parameters. Conse-

quently, we see that as assumed in [14] the correlation (2.1) evaluated from the experiment

can indeed be used to test the restricted class of LRT based on the Bell inequality (2.15)

which is violated by the QM correlations (2.5) for B-mesons. This is also the case with

the K-mesons, although we have an extra damping factor for the quantum correlations
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(2.5) due to the large difference in the lifetimes of KL and KS rendering the violation less

evident [18]. For these cases, seeing violation of the inequality in meson pair decays allows

us to reject any LRT which fulfills the conditions (2.9) and (2.10).

Before examining the feasibility of LRT test in experiments, it is worth considering a

special case of the class of LRT in which a rather simple picture of local realism can be

realized. The case arises when the density η(tl, tr) for the decay times decouples into two

densities,

η(tl, tr) = ηl(tl) ηr(tr), (2.16)

where ηl(tl) and ηr(tr) depend only on the decay times of the respective mesons. The

normalization
∫ ∞

0
dtlηl(tl) =

∫ ∞

0
dtrηr(tr) = 1 assured in (2.9) suggests that ηl(tl) and

ηr(tr) may be regarded as the decay probability densities of the individual mesons. From

these, one can form the products of the decay probability densities and the functions

specifying the flavor types to obtain the decay probability densities separately for the two

mesons,

PA
i (λ, tl) = ηl(tl) ΘA

i (λ, tl), PB
i (λ, tr) = ηr(tr) ΘB

i (λ, tr). (2.17)

The joint probability (2.14) can then be expressed in terms of the individual decay prob-

ability densities,

PL
i,j(tl, tr) =

∫

dλ ρ(λ) PA
i (λ, tl) PB

j (λ, tr), (2.18)

in which the independence in the decays, which is perhaps natural from the locality point

of view, is ensured. Note that in the present case the split form of the local probability

densities (2.17) implies

∑

i=±1

PA
i (λ, tl) = ηl(tl),

∑

i=±1

PB
i (λ, tr) = ηr(tr). (2.19)

We mention that the LRT model presented in [19] which yields the quantum correlation

(2.5) does not fulfill (2.19) nor even the the homogeneity condition (2.9), which is also the

case with the example of LRT mentioned in [16].

3. Possibility of LRT test at KEKB (Belle)

Now we turn to the question of the possibility of LRT test at KEKB (Belle experi-

ment), where entangled B-mesons are being produced and a large number of data (8565

events for the measured series of modes out of 152×106 events) have been used for examin-

ing the entanglement in the analysis of Ref.[13]. We first point out that the subensembles
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Figure 1. The subensemble E(∆t) consists of two strips in the plane of decay times

(tl, tr) specified by the time difference ∆t = |tl − tr|. The subensemble E(tl, tr) is

shown by the box on one of the strips.

introduced above are not appropriate for the present setup of the Belle experiment and

should be replaced by a modified set of subensembles for constructing LRT for which a

test may be conducted.

In the Belle experiment, one measures the distance ∆z of decay points for each pair

along the direction of the beam defined as anti-parellel to the positron beam line. Since

the velocities of the B-mesons are negligible compared to the velocity of the Υ(4S) which

has βγ = 0.425, the proper time difference ∆t = |tl − tr| can be estimated from ∆z by

∆t ≈ ∆z/βγc. An important point here is that, due to the large uncertainty on the

Υ(4S) decay points, we only have ∆t, not the separate values tl and tr, and hence we

cannot reconstruct the subensemble E(tl, tr) from the data. This forces us to consider a

different set of subensembles E(∆t) characterized by the time difference ∆t only. Namely,

we introduce subensembles E(∆t) consisting of decay events occurring in the two time

strips defined by the areas between the lines {tl, tr} = {t, t±∆t} and {t + δt, t±∆t + δt}
with some time length δt for all t ≥ 0 (see Fig. 1). The outcomes of observation for the

mesons in the pair then define the corresponding correlation C(∆t) specified by the decay

time difference ∆t.

To find a proper expression for the correlation in a LRT, we may again assume the

conditions (2.9) and (2.10) restricting the LRT. Then the correlation in the outcomes

associated with the subensemble E(∆t) is given by

CL(∆t) =
1

N(∆t)

∫

dλ ρ(λ)

∫ ∞

0

dt
{

η(t + ∆t, t)A(λ, t + ∆t)B(λ, t)

+ η(t, t + ∆t)A(λ, t)B(λ, t + ∆t)
}

,

(3.1)
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where N(∆t) is a normalization factor,

N(∆t) =

∫ ∞

0

dt
{

η(t + ∆t, t) + η(t, t + ∆t)
}

, (3.2)

which ensures that CL(∆t) = ±1 for perfect (anti-)correlations.

With this correlation, one may seek an inequality similar to the Bell inequality by

considering the combination,

R :=
∣

∣CL(∆t11′) + CL(∆t12′) + CL(∆t21′) − CL(∆t22′)
∣

∣, (3.3)

for four different time differences ∆tij′ , i, j = 1, 2. The analogy with the Bell inequality is

realized by associating a set of times {t1, t1′, t2, t2′} such that ∆tij′ = |ti−tj′ |. To proceed,

we assume for simplicity that the temporal density is symmetric η(t+∆t, t) = η(t, t+∆t).

We also introduce

η̃(t; ∆t) :=
1

N(∆t)
Θ(t) η(t, t + ∆t), (3.4)

with the step function Θ(t), which is defined for all −∞ < t < ∞ and normalized as
∫ ∞

−∞
dt η̃(t; ∆t) = 1/2. The factor R in (3.3) then becomes

R =

∣

∣

∣

∣

∫

dλ ρ(λ)
∑

i,j

sij′

∫ ∞

−∞

dt η̃(t+τij′ ; ∆tij′)
{

A(λ, t+ti)B(λ, t+tj′)+(i ↔ j′)
}

∣

∣

∣

∣

, (3.5)

where we have used sij′ defined by s11′ = −1 and sij′ = +1 otherwise, and τij′ =

min{ti, tj′}.

To evaluate an upper bound of R, we choose an arbitrary function f(t) ≥ 0 and

employ the shorthand Xij′ := A(λ, t + ti)B(λ, t + tj′) to obtain

R ≤
∣

∣

∣

∣

∫

dλ ρ(λ)
∑

i,j

sij′

∫ ∞

−∞

dt
{

η̃(t + τij′ ; ∆tij′)Xij′ − f(t)Xij′

}

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

dλ ρ(λ)
∑

i,j

sij′

∫ ∞

−∞

dt f(t)Xij′

∣

∣

∣

∣

+ (i ↔ j′).

(3.6)

Now, if we recall the property |
∑

i,j sij′Xij′ | ≤ 2 which is the key element of the Bell

inequality valid for dichotomic variables Xij′ = ±1, we find that the second term in the

r.h.s. of (3.6) is bounded by 2
∫ ∞

−∞
dt f(t). In order to find a better (stringent) upper bound,

we may choose f(t) such that f(t) ≤ η̃(t + τij′ ; ∆tij′) for all i, j. Using |sij′Xij′ | = 1 in

the first term in the r.h.s. of (3.6), we obtain

R ≤ 4 − 4

∫ ∞

−∞

dt f(t). (3.7)
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Figure 2. The factor R as a function of θ under the combination (t1, t1′ , t2, t2′) =

(θ, 2θ, 3θ, 0)/∆m. The solid curve shows the upper bound (3.8) for R for the LRT

with η(tl, tr) ∝ e−Γ(tl+tr) in which τmax − τmin = 2θ/∆m. The upper bound is

lifted from the standard value 2 and is well above the value of QM shown by the

dotted curve. The wide gap between the two curves indicates that the LRT test is

not feasible with the data obtained under the present setup of the experiment.

If the density η̃(t; ∆t) is a monotonically decreasing function of both t and ∆t (which is

the case in the natural decaying phenomena), then the best choice for f(t) is obviously

f(t) = Θ(t+τmin) η̃(t+τmax; ∆t̄), where τmin and τmax are, respectively, the minimal value

and the maximal value among {τ11′, τ12′ , τ21′, τ22′}, and ∆t̄ is the larger one in the two

time differences ∆tij′ for which τmax = τij′ holds. Plugging this into (3.7), we arrive at

R ≤ 2 + 4

∫ τmax−τmin

0

dt η̃(t; ∆t̄). (3.8)

The second term in the r.h.s. of (3.8) represents an increase in the upper bound for the

combination of the correlations (3.1) which is larger than the value 2 of the standard Bell

inequality.

Unfortunately, the increased upper bound in (3.8) is likely to invalidate our test of

LRT. To see this, recall that the QM correlation (2.5) depends only on the time difference

and hence remains valid for the correlation we are considering in the subensemble E(∆t),

i.e., CQ(∆t) = CQ(tl, tr) for ∆t = |tl − tr|. Thus the largest value attained by QM

for the factor R is 2
√

2 ≃ 2.83, which is realized, e.g., by the choice (t1, t1′, t2, t2′) =

(π/4, π/2, 3π/4, 0)/∆m. For numerical comparison, we may adopt the density η(tl, tr) ∝
e−Γ(tl+tr) (which may be confirmed from the observed decay law) and the values ∆m ≃
5.02 × 1011s−1 and Γ ≃ 6.49 × 1011s−1 for the B-mesons, under which the upper bound
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for in the LRT in (3.8) is 2 + 2(1 − e−πΓ/∆m) ≃ 3.97. This suggests that the LRT

can account for the correlations for all values of R obtained in quantum mechanics and,

therefore, testing the LRT with the inequality (3.8) is not possible. This is illustrated in

Fig. 2, where the factor R is evaluated as a function of θ when we choose the combination

(t1, t1′ , t2, t2′) = (θ, 2θ, 3θ, 0)/∆m. From Fig. 2 we find that for the upper bound for R for

LRT to be smaller than the maximal value of QM at θ = π/4, we need3 x := ∆m/Γ ≥ 5.9,

which can be fulfilled neither by the B-meson (x ≃ 0.77) nor the K-meson (x ≃ 0.95).

More generally, one can also seek other combinations for the time differences ∆tij′ in order

to examine if there are cases where the test becomes meaningful. Our results by Monte

Carlo simulation shows that there are no such cases, either.

Next we turn to the question of the locality loophole, which should be addressed for

all experiments designed to test the LRT. The locality loophole refers to the possibility

of communication between the local measurements such that the external cause (tuned

by the observer) or the outcome of one of the measurements – in the present case one

of the observed decay mode – may influence the outcome of the other measurement. In

the restricted class of LRT we are considering where the decay times are not regarded

as external parameters, the locality is ensured if the two measurement outcomes do not

depend on each other (‘outcome independence’). In the actual observation, the locality

requires basically that pairs of the decay events be space-like separated. Here the problem

with the Belle experiment is that the spatial distance ∆z measured for the decay events

is insufficient to tell whether the events are separated space-like or not. Thus, all we

can do is to estimate how much the events counted in the experiment are space-like and

pass the locality requirement. We do this by adopting again the assumption that the

temporal density be of the form η(tl, tr) ∝ e−Γ(tl+tr) and further that the decays occur

isotropically in the center-of-mass frame of the mesons. Then the result of our computer

simulation shown in Fig. 3 indicates that only a small fraction of events fulfill the locality

requirement, and that the situation will not improve even if we alter the energy assymetry

of the e+e−-collider, e.g., from the present value 0.375 GeV + 74.6 GeV.

To furnish a simple bound for the ratio of space-like events, suppose that our decays

consist of a mixture of space-like and non space-like events with the ratio p to 1 − p. For

space-like events, the correlation in our restricted LRT is given by (2.11) for which the

upper bound of the combination (2.15) is 2. On the other hand, for non space-like events

3 Other values for the ratio x have been mentioned in [15] as a feasibility measure of general LRT test
when the passive nature of decay is neglected. Note that the meaning of the measure is different in our

discussion, and the required value of x is found to be somewhat larger than the values mentioned there.
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Figure 3. Probability Ps of space-like decay events as a function of ∆t. The solid

line is for the case β = 0.39 which is the present value of the Belle experiment. The

lower limit Ps = 0.59 is barely cleared by β = 0.59 at ∆t = 0, but even the choice

β = 0.99 leaves only a tiny range of ∆t which is insufficient for the LRT test.

the outcome of the measurement A can take the form A(λ, tl, B) where B represents the

outcome of the measurement of B, and similarly we have B = B(λ, tr, A). The correlation

of the outcomes then admits values up to 4 for the combination (2.15). Denoting the former

(normalized) correlation by Cs
L and the latter by Cns

L , we see that the actual correlation

that can be evaluated from experimental data is the mixture CL = p Cs
L + (1 − p) Cns

L .

With the mixed correlation, the upper bound for the factor R in (3.3) is then

R ≤ 2p + 4(1 − p). (3.9)

The upper bound is less than the quantum upper bound 2
√

2 if

p >
√

2(
√

2 − 1) ≃ 0.59, (3.10)

which gives a lower bound for the ratio of space-like events in the decay events. As we can

see in Fig. 3, the ratio cannot be attained for the range of time differences required to test

the LRT.

4. Conclusion and discussions

In this paper we argued that entangled mesons can be used for the test of LRT, if it

is restricted to a class in which the decay times {tl, tr} of the meson pairs can be treated

13



formally as if they are external parameters. The possibility of the test has been discussed

previously for K-mesons [18] and also for B-mesons [14], both based on the normalized

correlations adopting the fair sampling assumption. The drawbacks associated with the

meson experiments are known to be two-fold [15]: one is the passiveness of the decays

which invalidates the treatment of the times {tl, tr} as external parameters, and the other

is the dubious use of the normalized correlations for the test of the Bell inequality. These

drawbacks render the test of LRT untenable for the most general class, but they can be

avoided for the restricted class of LRT, in which the standard Bell inequality holds formally

with the normalized correlations which are well-defined in the subensembles E(tl, tr), even

though the parameters {tl, tr} are not external intrinsically.

Unfortunately, the present setup of the Belle experiment at KEK concentrates only

on the specification of the time difference ∆t = |tl − tr| and not on the decay times tl

and tr separately, and accordingly we are led to considering a larger set of subensembles

E(∆t) consisting of E(tl, tr) with the same ∆t. The correlations in the new subensembles

still obey an inequality analogous to the Bell inequality but with a loose upper bound

compatible with the quantum value, implying that the test of LRT, even in the restricted

class, cannot be done conclusively. The separate specification of decay times, to a certain

degree of resolution, is also required to close the locality loophole, since knowing the decay

times enables us to choose space-like decay events only. Unless the specification is made

possible, we find statistically that the inevitable inclusion of time-like events lifts the upper

bound of the inequality and, consequently, the test of the LRT becomes unviable.

Finally, we briefly mention the question of the efficiency loophole for the Belle ex-

periment. It is known [20, 21] that in general a test of LRT becomes inconclusive unless

the detector efficiency exceeds 82.8% for dichotomic variables. In the case of the Belle

experiment, even though the detection rate is reasonably high for individual decays in the

particular series of modes measured, the overall efficiency is possibly reduced to 10% after

completing the multiple decay processes involved. Since the inefficiency in the detection is

largely due to the angle deficit of detectors, we need to invoke a fair sampling assumption

to enhance the overall detection efficiency, or otherwise we seek some other type of decay

modes (which might actually require mesons other than B or K) in which a fewer number

of processes are involved. This is certainly an issue to be studied further, but once it is

cleared and the specification of decay times is made possible along the line discussed above,

the test of LRT with mesons based on the Bell inequality will become an interesting pos-

sibility for probing the basic nature of quantum mechanics with massive and presumably

more localized objects than other particles used so far.
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