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Abstract. We investigate the system of a particle moving on a half line x ≥ 0

under the general walls at x = 0 that are permitted quantum mechanically. These

quantum walls, characterized by a parameter L, are shown to be realized as a limit

of regularized potentials. We then study the classical aspects of the quantum walls,

by seeking a classical counterpart which admits the same time delay in scattering

with the quantum wall, and also by examining the WKB-exactness of the transition

kernel based on the regularized potentials. It is shown that no classical counterpart

exists for walls with L < 0, and that the WKB-exactness can hold only for L = 0

and L =∞.
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1. Introduction

Quantum systems with contact interactions (i.e., point interactions or reflecting

boundaries) enjoy an increasing interest recently. On the theoretical side, they have been

found to exhibit a number of intriguing features, many of which have been seen before

only in connection with quantum field theories. Examples include renormalization [1, 2,

3, 4, 5], Landau poles [6], anomalous symmetry breaking [5], duality [7, 8, 9], super-

symmetry [9] and spectral anholonomy [9, 10, 11]. On the experimental side, the rapid

developments of nanotechnology forecast that nano-scale quantum devices can be designed

and manufactured into desired specifications. The description of some of these systems

will involve the theory of contact interactions. As a simple example, a piece of a single

nanowire would act as a one dimensional line with two reflecting endpoints between which

a conduction particle moves almost freely, allowing for a quantum mechanical description

with boundaries. Other applications arise, for instance, in systems with impurities which

act as point scatterers. All these areas of interest lend impetus to investigate quantum

systems with contact interactions further to uncover their full potential both theoretically

and experimentally.

The topic of this paper is the quantum half line system, which is perhaps the simplest

among those with contact interactions. This system also appears frequently as the radial

part of higher dimensional systems [12]. (For the recent experimental studies, see [13]

and references therein.) We consider a quantum particle that moves freely on a half line

x ≥ 0 with the endpoint x = 0 acting as a reflecting boundary, or an impenetrable wall.

This system is known (see section 2) to admit a one-parameter family of distinct walls

characterized by the boundary conditions,

ψ(0) + Lψ′(0) = 0 , (1.1)

where L is a parameter which takes all real numbers including L = ∞. Clearly, the

standard wall in which we impose ψ(0) = 0 is obtained for L = 0 but it is just one of

the various walls allowed, and therefore the first question one may ask is whether those

nonstandard walls with L 6= 0 can arise in actual physical settings.

To answer this, we study how those nonstandard walls can be realized as a limit of

finite (regularizing) potentials. The potentials we consider are step-like and may readily

be manufactured using, e.g., thin layers of different types of semiconductors. We shall

show that it is indeed possible to realize such nonstandard walls out of the step-like po-

tentials if we fine-tune the limiting procedure. We then turn to the question whether such

nonstandard walls are available only quantum mechanically or not. This will be examined

by looking at the time delay of the particle in scattering, which is the time difference be-

tween the moments of incidence and reflection at the wall. It will be shown that quantum
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nonstandard walls with L < 0, which are characterized by positive time delay, have no

classical counterpart possessing the same time delay, which implies that these walls are

purely quantum. We also consider the validity of the semiclassical WKB approximation

for the transition kernel under nonstandard walls, where now one takes into account the

possible two classical paths, the direct path and the bounce path, in the path integral [14].

This is of interest because it has been known that, for the standard wall as well as that

of L = ∞, the WKB approximation becomes exact if a sign factor is properly attached

to the contribution of the bounce path. We shall see that for these two values of L the

required sign factor can be accounted for by the bounce effect, showing that the WKB

approximation is in fact exact, whereas for other L the WKB-exactness cannot hold. Be-

fore presenting these results, we provide the basics of the quantum system on the half line

below.

2. Basics of the quantum system on the half line

The system of a (nonrelativistic) free particle on a half line x ∈ [0,∞) is governed

by the Hamiltonian H = −h̄2/(2m) d2/dx2 , supplemented by some boundary condition

imposed at the wall x = 0. The boundary condition is determined by the requirement

that H be self-adjoint on the positive half line x ≥ 0 and, mathematically, this is done by

finding proper domains of the operator H on which it is self-adjoint. The result is that

there exists a U(1) family of domains of states specified by (1.1) (see, e.g., [12], Appendix

D), which can be readily understood by a direct inspection as well. Indeed, one sees by

partial integration that for H to be self-adjoint one must have ψ∗ψ′ = ψ′∗ψ at x = 0 for

any state ψ on which H acts. If ψ′(0) 6= 0, this implies ψ(0)/ψ′(0) = [ψ(0)/ψ′(0)]∗ = −L
with L being some real constant, which is just the condition (1.1).1 The case ψ′(0) = 0

which also fulfills the requirement can be included by allowing L =∞ in (1.1). The whole

family is U(1) because of the range of the parameter: L ∈ (−∞,∞) ∪ {∞} ∼= U(1).

Under the boundary condition (1.1) the positive energy states are

ϕk(x) =
1√
2π

(
e−ikx + eiϑkeikx

)
(2.1)

with ϑk = 2 arccot kL . In addition, for L > 0, we also have one negative energy state,

ϕbound(x) =
√

2
L
e−

x
L (L > 0) , (2.2)

1 The fact that the constant L is universal for any state ψ can be seen by considering (1.1) for all linear

combinations of two states ψ1 and ψ2 with L1 and L2, from which one deduces L1 = L2 immediately.
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which is a bound state localized at the wall with its characteristic size L. The existence of

the bound state (2.2) can also be ensured from the minimum energy condition. Namely,

for any normalized state ψ the expectation value of the energy reads

〈ψ,Hψ〉 =
h̄2

2m

1

L2

∫ ∞

0

dx |ψ(x) +Lψ′(x)|2 − h̄2

2m

1

L2
, (2.3)

where L is the parameter in (1.1). The lower bound − h̄2

2m
1
L2 is attained if there exists a

state satisfying ψ(x) + Lψ′(x) = 0 for all x ≥ 0, which is just the bound state (2.2).

As seen in the bound state, the parameter L furnishes a physical scale in many of the

properties of the system. An example for this is provided by the time delay that occurs

when an incoming particle is reflected from the wall. The time delay in quantum scattering

processes has been studied earlier (see, e.g., [18, 19] and references therein) on a general

basis, but here we do not need this general framework and are content with the following

simple approach.

Let us consider a wave packet formed out of the positive energy states (2.1),

ψ(x, t) =

∫ ∞

0

dk f(k) e−
ih̄k2

2m teikx0ϕk(x)

=
1√
2π

∫ ∞

0

dk f(k) e−
ih̄k2

2m teikx0e−ikx +
1√
2π

∫ ∞

0

dk f(k) e−
ih̄k2

2m teikx0eiϑkeikx

(2.4)

where f(k) is a real function peaked at k0 > 0. The first term describes the incident packet

whose maximum starts from x0 at t = 0 and moves to the left with velocity magnitude

v0 = h̄k0/m , as can be seen from a stationary phase argument,

d/dk
(
−h̄k2/(2m) t+ kx0 − kx

)∣∣
k=k0

= 0 =⇒ x(1)
max(t) = x0 − (h̄k0/m) t . (2.5)

Similarly, the reflected packet given by the second term moves as

x(2)
max(t) = −x0 + (h̄k0/m) t + 2L/[1 + (k0L)2] . (2.6)

As t increases, the first packet moves towards the wall at x = 0, and its maximum reaches

it at t1 = x0/v0 . Meanwhile, the second packet comes from the left (if we assume x < 0

as well) moving to the right and arrives at the wall at t2 = (x0 − 2L
1+(k0L)2 )/v0. The

difference between the two instants gives the time delay,

τ = t2 − t1 = − 2mL

h̄k0[1 + (k0L)2]
. (2.7)

For L = 0 and L = ∞, this time delay is zero, as one would expect on the ground that

for such cases there is no parameter in the system possessing the dimension of time. Note

that for negative L the time delay is positive, whereas for positive L it is negative.
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From the eigenfunctions (2.1) and (2.2) the Feynman kernel describing the transition

of the particle from x = a at t = 0 to x = b at t = T can be calculated (see [15, 16, 17]).

The result is

K(b, T ; a, 0) =
√

m

2πih̄T

[
e
im
2h̄T (b−a)2 ∓ e im

2h̄T (b+a)2
]
, (2.8)

for L = 0 (‘−’-sign) and L =∞ (‘+’-sign). For L < 0 the kernel is given by

√
m

2πih̄T

[
e
im
2h̄T (b−a)2

+ e
im
2h̄T (b+a)2 − 2

|L|

∫ ∞

0

dz e−z/|L| e
im
2h̄T (b+a+z)2

]
, (2.9)

and for L > 0 by

√
m

2πih̄T

[
e
im
2h̄T (b−a)2

+ e
im
2h̄T (b+a)2− 2

L

∫ ∞

0

dz e−z/L e
im
2h̄T (b+a−z)2

]
+

2

L
e
ih̄2T
2mL2 e−

b+a
L . (2.10)

The salient feature of the result is that, for L = 0 and L = ∞, the kernel (2.8) almost

coincides with that obtained by WKB semiclassical approximation, because the two terms

in (2.8) correspond to the free kernels for the direct path from (a, 0) to (b, T ) and for

the bounce path which hits the wall once during the transition, respectively. The only

problem for the complete WKB-exactness is the appearance of the ∓ sign factor attached

to the contribution from the bounce path. We shall show later that this sign factor can be

attributed to the classical action ∆Sbounce = h̄π gained by the bounce effect at the wall

so that e
i
h̄∆Sbounce = ∓1 .

3. Realization of the wall

We now discuss how to realize the wall characterized by (1.1) in actual physical set-

tings. For this, we shall adopt a regularization method which is analogous to those used

earlier for point singularities [4, 12]. We extend the space to the entire line −∞ < x <∞
and seek a potential V (x) with finite support such that, in the limit of vanishing support,

the boundary condition (1.1) at x = 0 can be realized. Obviously, since no probability flow

is admitted through the wall at x = 0, such a regularized potential has to become infinitely

high for x < 0 in the limit. A simple choice for the potential fulfilling the demand is

V (x) =




V1 , x < −d (domain I)
V2 , −d < x < 0 (domain II)
0 , x > 0 (domain III)

(3.1)

with constants V1 > 0 and V2 < 0. Here, the scale of the support is given by the regulariza-

tion parameter d, and V1 and V2 are assumed to be functions of d such that V1, |V2| → ∞
as d→ 0.
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Figure 1. The regularized potential (3.1) and the eigenfunction (3.2).

To find the appropriate dependence of V1(d) and V2(d), let us consider an energy

eigenstate ϕ in the potential (3.1) with energy E < V1 (see Figure 1):

ϕ(x) =





ϕI(x) = Neκx, x < −d , κ =
√

2m
h̄2 (V1 −E) ,

ϕII(x) = Aeik̃x +Be−ik̃x, −d < x < 0 , k̃ =
√

2m
h̄2 (|V2|+E) ,

ϕIII(x) = Ceikx +De−ikx, x > 0 , k =
√

2mE
h̄2

(3.2)

(
for E < 0 , ϕIII(x) = Me−

√
2m|E|
h̄2 x ). Under such finite potentials (i.e., without infinity

or singularity), the wave function and its derivative are required to be continuous. The

condition which is dynamically important is provided by the continuity of the ratio ϕ′/ϕ

which is free from the ambiguity of overall normalization. From this continuity condition,

we obtain

κ =
ik̃(Ae−ik̃d −Beik̃d)
Ae−ik̃d +Beik̃d

,
ϕ′III
ϕIII

(0) =
ik̃(A −B)

A +B
(3.3)

at x = −d and x = 0. Note that both k̃ and κ are d-dependent k̃ = k̃(d), κ = κ(d) through

V1(d) and V2(d) and so are the two ratios in (3.3). If we introduce

R(d) =
ϕ′III
ϕIII

(0) , α = arctan
κ

k̃
, β = k̃d , (3.4)

then from (3.3) we find

R(d) = k̃
(Ae−iβ −Beiβ) cos β − i(Ae−iβ +Beiβ) sinβ

(Ae−iβ +Beiβ) cos β − i(Ae−iβ −Beiβ) sinβ
= k̃ tan(α− β) . (3.5)

The boundary condition (1.1) is realized if

R(d) → − 1

L
as d→ 0 , (3.6)
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independently of the energy E. In what follows we present a set of regularized potentials

fulfilling this requirement.

To this end, we first define

α0 = lim
d→0

α , β0 = lim
d→0

β , (3.7)

and note that, since V1(d) → ∞ as d → 0, we always have κ → ∞ , whereas since

0 < α < π/2 by definition, we have 0 ≤ α0 ≤ π/2. Note also that, if V2(d) used in

our regularization is such that β → ∞ , then tan(α − β) will oscillate between −∞
and ∞ so R(d) will not have a limit. We therefore confine ourselves to cases in which

β has a finite (zero or nonzero) limit β0. Now, let us suppose β0 6= α0 (mod π), that

is, tan(α − β) → tan(α0 − β0) 6= 0. Then, if |V2| → ∞ we have k̃ → ∞ and hence

R(d)→ ±∞ . If |V2| remains finite, on the other hand, we find α0 = π/2 and β0 = 0 and

hence R(d) → ∞ . We thus see that these regularizations yield necessarily the standard

wall L = 0 .

The foregoing argument shows that nonstandard walls with L 6= 0 can be realized

only by such realizations in which V1 and V2 are fine-tuned as

β0 = α0 (mod π) . (3.8)

We shall suppose (3.8) from now on, and consider the limit of R(d) for the cases α0 = 0 ,

0 < α0 < π/2 and α0 = π/2 , separately.

(i) case α0 = 0 :

We then have, as d → 0, α ≈ tanα = κ/k̃ → 0 and β − β0 → 0 and hence

tan(α− β) = tan(α − β + β0) ≈ κ/k̃ − β + β0. Thus the ratio is approximated as

R(d) ≈ κ− k̃(β − β0) . (3.9)

Now, if β0 = 0 then the r.h.s. reads κ − k̃2d . Hence, to get a finite R(d) , k̃2d has to

compensate the divergence of κ . This can be done if κ and k̃ behave as

κ ∼ cdν − 1

L
, k̃ ∼ c

1
2 d

ν−1
2 (−1 < ν < 0) , (3.10)

which is realized if, for instance, we put

V1(d) =
h̄2

2m

(
c2d2ν − 2c

L
dν
)
, V2(d) = − h̄2

2m
c dν−1 , (3.11)

with a constant c > 0. It is then readily confirmed that this regularized potential (3.11)

does lead to R(d) fulfilling (3.6) for all E > 0. If β0 > 0 , on the other hand, then
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β0d
−1(β − β0) on the r.h.s. of (3.9) has to cancel the divergence of κ . This means k̃ ∼

β0d
−1+(1/β0)κ . The needed finite term − 1

L
can be provided again by κ if κ ∼ c1d

ν− 1

L
.

This is achieved, for example, by

V1(d) =
h̄2

2m

(
c2d2ν − 2c

L
dν
)
, V2(d) = − h̄2

2m

(
β2

0 d
−2 + 2cdν−1

)
. (3.12)

It is again easy to confirm that (3.12) yields R(d) fulfilling (3.6) for ν > −1/2 .

(ii) case 0 < α0 < π/2 :

In this case, we have k̃ ∼ β0d
−1 and κ ∼ (β0 tanβ0)d−1 . Using the Taylor expansion,

α = arctan(κ/k̃) ≈ α0 + cos2α0 ((((κ/k̃ − tanα0)))) , (3.13)

we find

R(d) ≈ k̃ tan [[[[α0 − β0 + cos2α0 (κ/k̃ − tanα0)]]]] ≈ cos2α0 (κ− k̃ tanα0 ) . (3.14)

Hence the choice,

κ ∼ (β0 tanβ0)d−1 − (1/cos2β0)
1

L
(3.15)

may lead to (3.6). A possible regularized potential realizing (3.15) is

V1(d) =
h̄2

2m

[
(β2

0 tan2β0) d−2 − 2

L
(β0 tan β0/cos2β0) d−1

]
, V2(d) = − h̄2

2m
β2

0 d
−2 ,

(3.16)

which can be shown to give R(d) satisfying (3.6).

(iii) case α0 = π/2 :

We still have k̃ ∼ β0d
−1 but now κ/k̃ →∞ so α ≈ π/2− k̃/κ , and therefore

R(d) ≈ k̃ tan

[
π

2
− k̃

κ
− (β − β0)− β0

]
≈ k̃

[
− k̃

κ
− (β − β0)

]
. (3.17)

The realization (3.6) will be attained if, for example, we have κ/k̃2 →∞ and provide − 1
L

through k̃ by assuming k̃ ∼ β0d
−1 + 1

L
1
β0

. This is the case with the regularization,

V1(d) =
h̄2

2m
c21 d

2ν (ν < −2) , V2(d) = − h̄2

2m

(
β2

0 d
−2 +

2

L
d−1

)
. (3.18)

To summarize, the regularization by means of the step-like potential (3.1) leads gener-

ically to the standard wall L = 0 . It can also lead to nonstandard walls L 6= 0 but only

as exceptional cases under the fine-tuning (3.8). It is worth emphasizing that the crucial
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factor in determining the limit of R(d), i.e., the boundary condition at x = 0, is not

the leading asymptotic behavior of V1 and V2 in d → 0 but always a subleading term.

A similar phenomenon has been observed for the regularization of the Dirac delta point

interactions in three space dimensions [12].

The regularizations we used are based on a step-like potential. Needless to say, other

types of potentials can also be used for realizing the walls. One can, for instance, look for

a potential which leads to the realization for any L without involving the mass parameter

m. Such a regularization may be more desirable than that we constructed — where

the potentials turned out to be m-dependent — for the reason that potentials should be

independent of the particle. Nonetheless, our simple regularization may well exhibit a

universal feature of the realization of the (standard and nonstandard) walls, as we can

see, for example, the bound state being accommodated in the negative middle part of the

step-like potential we used.

4. Classical counterparts

Having seen that the quantum walls characterized by L can be realized by means

of regularized potentials, we now turn to the question whether those walls have classical

counterparts or not. We investigate this in the phenomena of time delay discussed in

section 2, by asking if there is a classical system with some appropriate potential V (x)

which can account for the same amounts of time delay as those observed under the walls.

Note that systems with the regularized potentials discussed above are not appropriate for

this purpose, because in those systems the time a classical particle spends in a potential

(3.1) tends necessarily to zero as d→ 0 (since as V2 →−∞ the distance run by the particle

becomes zero while its velocity becomes infinity).

To find a potential of classical systems that reproduces the identical time delay, we

shall first consider the walls with L > 0. In this case the time delay (2.7) is negative, and

if the classical picture is available, the incident particle with velocity magnitude v = h̄k
m

must return earlier by

|τ | = 2L

v

1

1 +
(
mL
h̄ v

)2 (4.1)

than we would expect when it collided with the wall at x = 0. Observe that, for small

v the (minus) delay |τ | approaches 2L
v . This indicates that a slow particle sees the wall

at (around) x = L, not x = 0. Consequently, the reflecting potential V (x) must begin to

grow at x = L. For definiteness, let us search for the potential in the qualitative form as

shown in Figure 2. (This fixes an arbitrariness in the choice of the potential. As we will

9



Figure 2. The realizing potential (4.7) is shown by the solid line for L > 0. For

L < 0 the obtained potential becomes the dotted line and is unphysical.

see, demanding a positive, monotonically decreasing potential determines the potential

uniquely.) Now, let us introduce

τ̃ =
2L

v
+ τ =

√
2mL2E

/(
h̄2

2mL2
+E

)
, (4.2)

(where E = 1
2mv

2 is the incoming energy) which is the time spent by the particle in the

region left to the point x = L . Our problem is then an inverse problem: determine a

potential V (x) from a given τ̃(E) as a function of E. This can be answered if we follow

the well-known argument [20] used for the problem of determining a well-shaped potential

from the period time with which a particle moves.

We start by writing the relationship between the potential and τ̃ as

τ̃ (E) =
√

2m

∫ L

x(E)

dx√
E − V (x)

=
√

2m

∫ E

0

(
−dx(V )

dV

)
dV√
E − V . (4.3)

Dividing by
√
W −E with W being an auxiliary parameter, and integrating with respect

to E from 0 to W , we find

∫ W

0

τ̃(E) dE√
W −E =

√
2m

∫ W

0

dV

(
− dx

dV

)∫ W

V

dE√
(W −E)(E − V )

. (4.4)

The inner integral (the one with respect to E) gives π, and hence we have

∫ W

0

τ̃(E) dE√
W −E = π

√
2m [L− x(W )] . (4.5)

On the other hand, from (4.2) we can evaluate the integral on the l.h.s. explicitly as

∫ W

0

τ̃(E) dE√
W −E = π

√
2mL

(
1− 1

/√
1 + 2mL2

h̄2 W

)
. (4.6)
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Combining this with (4.5), we obtain x(W ) = L
[
1 + 2mL2

h̄2 W
]− 1

2, and inverting it we get2

V (x) =
h̄2

2mL2

(
L2

x2
− 1
)
. (4.7)

For L < 0, the time delay is positive and the quantum wave packet returns later

than expected. In this case the time delay that the corresponding classical particle must

reproduce reads

τ =
2|L|
v

1

1 +
(m|L|

h̄ v
)2 . (4.8)

For small v, this becomes 2|L|
v

, which shows that a slow particle enters the x < 0 region

and sees the wall near x = −|L|. For this, the realizing potential V (x) has to start to

increase at x = −|L|, and for smaller x, the potential is expected to increase. However,

if one repeats the same argument used for the L > 0 case, one ends up with (4.7) again,

with now the left branch of this function (see Figure 2). The problem with this branch is

obvious: it increases for x to the right of −|L| rather than to the opposite and is unphysical.

It is not hard to check that no potential in −|L| < x < 0 or in 0 < x can help the situation,

because for large v the leading order term of the time delay is at least 2|L|
v

, while (4.8)

would require only a 1
v3 asymptotic behavior. Hence, interestingly enough, the walls with

negative L do not admit a classical counterpart, i.e., they are genuinely quantum.

5. WKB-exactness

The fact that for walls with L = 0 and L = ∞ the transition kernel is almost WKB-

exact alludes us to examine whether this implies a complete exactness or not, and if so,

whether such a feature persists to nonstandard walls as well. More precisely, we wish

to see if the sum of amplitudes along the classical two paths, the direct world line from

(x, t) = (a, 0) to (b, T ) and the bouncing path which hits the wall x = 0 before arriving at

(b, T ), give the exact result (see Figure 3). The question, therefore, is if the kernels (2.8),

(2.9) and (2.10) can be rewritten as a sum of the corresponding two terms as

K(b, T ; a, 0) =
√

m

2πih̄T

[
e
im
2h̄T (b−a)2

+AL(a, b, T )
]
, (5.1)

with

AL(a, b, T ) = e
i
h̄Sbounce(b,T ;a,0) , (5.2)

2 We remark that, while this potential reproduces the time delay classically, it does not reproduce the

boundary condition (1.1) and hence cannot serve as a potential to realize the walls.
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a) b)

Figure 3. a) The direct and the bounce paths. b) The bounce path under the

regularized potential (3.1).

where Sbounce(b, T ; a, 0) is the classical action for the bounce path.

Let us begin by examining the complete WKB-exactness for the L = 0 and L = ∞
cases. For definiteness let us use the regularized potentials (3.1) for evaluating the classical

action for the bouncing path. Then we get

Sbounce(b, T ; a, 0) =

∫ T

0

dt (E − 2V ) = ET − 2V2

(
2d

ṽ

)
, (5.3)

for V1 > E, where ṽ =
√

2(E + |V2|)/m is the velocity of the particle in domain II. Since

the time 2d/ṽ spent by the particle in the domain vanishes as d→ 0, we find

a

v
+
b

v
→ T =⇒ v → a+ b

T
, E → m(a + b)2

2T 2
, (5.4)

which shows that the first ET term on the r.h.s. of (5.3) tends to S
(0)
bounce =

m(a+b)2

2T ,

which is the action corresponding to the bounce path without taking account of the bounce

effect at x = 0. The second term in (5.3) represents, therefore, the extra contribution by

the bounce effect,

∆Sbounce = lim
d→0

[√
8md2 |V2(d)|2

/√
E + |V2(d)|

]
. (5.5)

Now, for the standard L = 0 system, if we choose

V1(d) = const. d−1 , V2(d) = − h̄2

2m

(
π

2

)2

d−2 , (5.6)
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for which α0 = 0 and β0 = π/2 , then from (5.5) we obtain ∆Sbounce = h̄π in the limit

d→ 0, thus providing the correct sign factor ei∆Sbounce = −1 as required. For the L =∞
system, we choose (3.11) and set ν = −1/2, say, to get

V1(d) =
h̄2

2m
c2 d−1 , V2(d) = − h̄2

2m
c d−

1
2 , (5.7)

which immediately leads to ∆Sbounce = 0.

It should be pointed out, however, that the action ∆Sbounce associated to the bounce

effect is highly ambiguous, as one can see that it depends only on the behavior of V (d) in

the d→ 0 limit and hence may be changed while maintaining the value of L. The crucial

property for the WKB-exactness is, therefore, found not in the actual value of ∆Sbounce

but in the fact that the factor AL(a, b, T ) is of modulus one, |AL(a, b, T )| = 1. In fact, this

is no longer true for L other than these two values of L, which we shall prove now.

For this, we first consider the case L < 0 and observe that the term AL(a, b, T ) in

(2.9) depends on its four variables a, b, T and L only through the two combinations,

p = (a+ b)/|L| , q = m|L|2/(2h̄T ) , (5.8)

and hence can be written as

AL(a, b, T ) ≡ A(p, q) = eip
2q − 2

∫ ∞

0

ds e−s ei(p+s)2q , (5.9)

using s = z/|L| . If A(p, q) is on the unit circle for all p and q, then both ∂pA(p, q) and

∂qA(p, q) have to be orthogonal to A(p, q) in the complex plane. This implies

A(p, q)∗ ∂pA(p, q) + c. c. = 0 , A(p, q)∗ ∂qA(p, q) + c. c. = 0 , (5.10)

for all p and q. From (5.9) one finds that ∂pA(p, q) and ∂qA(p, q) can be expressed as

∂pA(p, q) = 2(1 + ipq) eip
2q − 2

∫ ∞

0

ds e−s ei(p+s)2q ,

∂qA(p, q) =

(
p

q
+ ip2 − i

2q2

)
eip

2q +

(
1

q
+

i

2q2

)∫ ∞

0

ds e−s ei(p+s)2q .

(5.11)

Using (5.9) and (5.11) together with new variables u, v defined by

1

u+ iv
= e−ip

2qA(p, q) , (5.12)

we find that the two orthogonality conditions (5.10) become

u− 2pqv = −1 , (1 + 2p)u+
(
1/2q − 2p2q

)
v = 1 . (5.13)
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This set of linear equations has a unique solution

u =
4pq2(1 + p)− 1

4pq2(1 + p) + 1
, v =

4q(1 + p)

4pq2(1 + p) + 1
. (5.14)

Note that (5.12) implies that, if A(p, q) is on the unit circle in the complex plane, so is

u+iv . However, this is not fulfilled by the solution (5.14) which never satisfies u2+v2 = 1

for positive values of p and q. We therefore find that A(p, q) fails to be on the unit circle

and, consequently, the WKB-exactness cannot hold for L < 0. The proof for L > 0 can

also be done analogously.

We thus learn that quantum walls with L = 0 and L = ∞, which correspond to

the Dirichlet ψ(0) = 0 and the Neumann ψ′(0) = 0 boundary condition, respectively, are

distinguished in the U(1) family of walls, at least with respect to the WKB-exactness.

These two cases are distinguished also by their scale invariance which arises due to the

absence of the scale parameter. The relationship between the two, the WKB-exactness

and scale invariance, is however still unclear.
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