8/11/2012

A Stringy Mechanism
 for A Small
 Cosmological Constant

- X. Chen, Shiu, Sumitomo, Tye, arxiv:1112.3338, JHEP 1204 (2012) 026
- Sumitomo, Tye. arXiv:1204.5177
- Sumitomo, Tye, in preparation

Yoske Sumitomo
IAS, The Hong Kong University of Science and Technology

Contents

- Motivation
- Moduli stabilization ~random approach~
- Moduli stabilization ~concrete models~
- Statistical approach
- More on product distribution
- Multi-moduli analyses
- Summary \& Discussion

Motivation

Dark Energy

Late time expansion

Acceleration

$$
\frac{3 \ddot{a}}{a}=-4 \pi G(3 p+\rho)
$$

The universe is accelerating if $\rho<-3 p$
or pressure-density ratio: $w \equiv \frac{p}{\rho}<-\frac{1}{3}$
Cosmological scale
EOM (Friedmann eq.)

$$
H=\frac{\dot{a}}{a}=\sqrt{\frac{8 \pi G \rho}{3}} \text { for flat background }
$$

Observationally $\Omega_{\wedge} \sim 0.7$ \square DE domination

$$
\rho_{0}=\frac{3 H_{0}^{2}}{8 \pi G} \Omega_{\Lambda} \sim 10^{-122} M_{P}^{4}
$$

- For cosmological constant

WMAP+BAO+SN suggests

$$
w=-1.10 \pm 0.14(64 \% \mathrm{CL})
$$

for a flat universe $\quad \Omega_{k}=-\frac{k}{a_{0}^{2} H_{0}^{2}}=0$

- For time-varying DE

WMAP $+\mathrm{BAO}+\mathrm{HO}+\mathrm{D} \Delta t+\mathrm{SN}$ suggests

$$
\begin{aligned}
& w=w_{0}+w_{a}(1-a(t)) \\
& w_{0}=-0.93 \pm 0.13 \\
& w_{a}=-0.41_{-0.71}^{+0.72}(68 \% \text { CL })
\end{aligned}
$$

e.g. Stringy Quintessence models [Kiwoon, 99], [Svrcek, 06], [Kaloper, Sorbo, 08], [Panda, YS, Trivedi, 10], [Cicoli, Pedro, Tasinato, 12].

\square But how likely with tiny CC?

Stringy Landscape

There are many types of vacua in string theory, as a result of a variety of (Calabi-Yau) compactification.

$$
d s_{10}^{2}=d s_{4}^{2}+d s_{6}^{2}
$$

A class of Calabi-Yau gives Swiss-cheese type of volume.

$$
\mathcal{V}_{6}=\gamma_{1}\left(T_{1}+\bar{T}_{1}\right)-\sum_{i=2} \gamma_{i}\left(T_{i}+\bar{T}_{i}\right),
$$

E.g. workable models: [Denef, Douglas, Florea, 04]

- $\mathbb{P}_{[1,1,1,6,9]}^{4}: h^{1,1}=2, h^{2,1}=272$
- $\mathcal{F}_{11}: h^{1,1}=3, h^{2,1}=111$
- $\mathcal{F}_{18}: h^{1,1}=5, h^{2,1}=89$

All can be stabilized (a la KKLT),
but in various way.

More recently, for $2 \leq h^{1,1} \leq 4,418$ manifolds !
[Gray, He, Jejjala, Jurke, Nelson, Simon, 12]
Any implication of multiple vacua?

Keys in this talk

Product distribution

Assuming products of random variables: $z=y_{1} y_{2} y_{3} \cdots$
$\mathrm{P}(z)$, Uniform

Many terms? \square Correlation through stabilization

$$
z=y_{1} y_{2} y_{3} \cdots f\left(y_{1}, y_{2}, y_{3}, \cdots\right) \quad \text { still peaked }
$$

We apply this mechanism for cosmological constant (CC)

Before proceeding...

I have to say
we don"t solve cosmological constant problem completely.

But here,
we introduce a tool to make cosmological constant smaller, maybe up to a certain value.
"A Stringy Mechanism for A Small Cosmological Constant"

Moduli stabilization ~random approach~

Gaussian suppression on stability

Various vacua in string landscape
\longrightarrow Mass matrix given randomly at extrema
\square How likely stable minima exist?
Positivity of mass matrix \Longleftrightarrow Positivity of Hessian $\left.\partial_{\phi_{i}} \partial_{\phi_{j}} V\right|_{\text {min }}$
\square Real/complex symmetric matrix

- Gaussian Orthogonal Emsemble
[Aazami, Easther, 05], [Dean, Majumdar, 08], [Borot, Eynard, Majumdar, Nadal, 10]
$Z=\int d M_{i j} e^{-\frac{1}{2} \operatorname{tr} M^{2}}, M=M^{T}$
$\mathcal{P}=\exp \left[-\frac{\ln 3}{4} N^{2}+\frac{\ln (2 \sqrt{3}-3)}{2} N-\frac{1}{24} \ln N-0.0172\right]^{2000} 5$
Gaussian term dominates even at lower N.

Hierarchical setup

- Assuming hierarchy between diag. and off-diag. comp.

Actual models are likely to have minima at AdS.

+ uplifting term toward dS vacua.
Hessian $=A+B$ where A : diagonal positive definite with σ_{A} B : GOE with σ_{B}
Still Gaussianly suppressed, but a chance for dS

$$
\mathcal{P}=a e^{-b N^{2}-c N}
$$

[X. Chen, Shiu, YS, Tye, 11]
When applying a model in type IIA, quite tiny chance remains.

- Assuming more randomness in SUGRA at SUSY AdS

$$
\mathcal{P}=e^{-b N^{2}}
$$

Moduli stabilization ~concrete models~

Type IIB

Sources: $H_{3}, F_{1}, F_{3}, \tilde{F}_{5}$, dilaton, localized sources
Metric: $d s_{10}^{2}=e^{2 A} d s_{4}^{2}+e^{-2 A} d \tilde{s}_{6}^{2}$
Calabi-Yau
Then EOM becomes [Giddings, Kachru, Polchinski, 02]

$$
\begin{aligned}
& \tilde{\nabla}^{2}\left(\mathrm{e}^{4 A}-\alpha\right)=\frac{\mathrm{e}^{2 \mathrm{~A}}}{6 \operatorname{Im} \tau}\left|i G_{3}-*_{6} G_{3}\right|^{2}+e^{-6 A}\left|\partial\left(e^{4 A}-\alpha\right)\right|^{2}+\text { (local sources) } \\
& \text { LHS }=0 \text { when integrating out }
\end{aligned}
$$

positive contributions

$e^{4 A}=\alpha, i G_{3}=*_{6} G_{3}$: imaginary self-dual condition
where α is a function in $\tilde{F}_{5}, G_{3}=F_{3}-\tau H_{3}, \tau=C_{0}+i e^{-\phi}$

No-scale structure

Take a scaling: $\tilde{g}_{m n} \rightarrow \lambda \tilde{g}_{m n}$
$\left\{e^{4 A}=\alpha, i G_{3}=*_{6} G_{3}:\right.$ invariant
The other equations are also unchanged.
No-scale structure
superpotential $W_{0}=\int G_{3} \wedge \Omega$ is independent of Kahler
4D effective potential with $K=-3 \ln (T+\bar{T}), W_{0}=$ const

$$
V=e^{K / M_{P}^{2}}\left(K^{I J} D_{I} W_{0} \overline{D_{J} W_{0}}-\frac{3}{M_{P}^{2}}|W|^{2}\right)=0
$$

Kahler directions remain flat.

A bonus in type IIB

Hierarchical structure of mass matrix/potential helps to stabilize moduli at positive cosmological constant.
[X. Chen, Shiu, YS, Tye, 12]
Moduli stabilization with positive cosmological constant

- Fluxes \Rightarrow Complex structure \& dilaton
- Non-perturbative effect, α^{\prime}-correction, localized branes
\longrightarrow Kahler $\begin{aligned} & {\left[\begin{array}{l}\text { [KKLT, 03], [Balasubramanian, Berglund, Conlon, Quevedo, 05], } \\ \text { [Balasubramanian, Berglund, 04]... }\end{array}\right.}\end{aligned}$

$$
\begin{aligned}
V= & V_{\text {Flux }}+\frac{V_{\mathrm{NP}}+V_{\alpha \prime}+\cdots}{\longrightarrow \text { Komplex }} \longleftrightarrow_{\text {Kahler }}
\end{aligned}
$$

KKLT

Non-trivial potential for Kahler is generated by NP-corrections.

E.g. Gluino condensation on D7-branes

D7-branes wrapping the four cycle: $W_{N P}=A e^{-a \tilde{a} 8 \pi^{2} / g_{D 7}}=A e^{-a T}$
Together with the superpotential from fluxes: $W=W_{0}+W_{N P}$
Supersymmetric vacuum
$D_{T} W=0$ existes.

But exponentially small W_{0} is required.

Large Volume Scenario

[Balasubramanian, Beglund, Conlon, Quevedo, 05]
α^{\prime}-corrections can break no-scale structure too.
$\mathcal{O}\left(\alpha^{\prime 3}\right)$-correction in type II action [Becker, Becker, Haack, Louis, 02]
E.g. $\mathbb{P}_{[1,1,1,6,9]}^{4}$ model (assuming complex sector is stabilized)

$$
\mathcal{V}=\frac{1}{9 \sqrt{2}}\left(t_{1}^{3 / 2}-t_{2}^{3 / 2}\right), \quad W=W_{0}+A_{1} e^{-a_{1} T_{1}}+A_{2} e^{-a_{2} T_{2}}
$$

Solution: $W_{0} \sim-20, A_{1} \sim 1, t_{1} \sim 10^{6}, t_{2} \sim 3$

$$
V_{\min } \sim-10^{-25}: \text { AdS vacua }
$$

$\square\left|W_{0}\right| \gg\left|W_{N P}\right|, v \gg \xi$: naturally realized

Kahler uplifting

[Balasubramanian, Berglund, 04], [Westphal, 06], [Rummel, Westphal, 11], [de Alwis, Givens, 11]
Same setup as that of LVS

$$
\begin{aligned}
& K=-2 \ln \left(\mathcal{V}+\frac{\xi}{2}\right)+\cdots, \quad \mathcal{V}=\gamma_{1}\left(T_{1}+\bar{T}_{1}\right)-\sum_{i=2} \gamma_{i}\left(T_{i}+\bar{T}_{i}\right), \\
& W=W_{0}+\underbrace{A_{1} e^{-a_{1} T_{1}}}+\sum_{i=2} A_{i} e^{-a_{i} T_{i}} \begin{array}{l}
\text { Interested in a region } \\
\text { where this term plays a roll. }
\end{array}
\end{aligned}
$$

E.g. single modulus [Rummel, Westphal, 11]

$$
V \sim-\frac{W_{0} a_{1}^{3} A_{1}}{2 \gamma_{1}^{2}}\left(\frac{2 C}{9 x_{1}^{9 / 2}}-\frac{e^{-x_{1}}}{x_{1}^{2}}\right), \quad C=\frac{-27 W_{0} \xi a_{1}^{3 / 2}}{64 \sqrt{2} \gamma_{1} A_{1}}, x_{1}=a_{1} t_{1}
$$

When $W_{0} A_{1}<0$, the $C \propto \xi$ term contributes the uplifting.

KKLT vs Kahler uplifting

- KKLT

Add an uplifting potential by hand

$$
\begin{aligned}
& V=V_{S U G R A}+V_{D 3-\overline{D 3}} \\
& V_{D 3-\overline{D 3}}=2 T_{3} \int d^{4} x \sqrt{-g_{4}}
\end{aligned}
$$

Backreaction of $\overline{D 3}$? \longrightarrow A singularity exists, but finite action Safe or not? [DeWolfe, Kachru, Mulligan, 08], [McGuirk, Shiu, YS, 09], [Bena, Giecold, Grana, Halmagyi, Massai, 09-12], [Dymarsky, 11]....

- Kahler uplifting

$$
\frac{20}{9 x^{292}} \frac{e}{x^{-2}} \frac{-x}{x^{2}}
$$

$V=V_{S U G R A} \quad$ SUGRA $+\alpha^{\prime}$-correction
Owing to $\left|W_{0}\right| \gg\left|W_{N P}\right|$
\Longrightarrow No fine-tuning for W_{0}

Statistical approach

$$
\begin{aligned}
& \text { Further approximation } \\
& \frac{V}{M_{P}^{4}}=-\frac{W_{0} a_{1}^{3} A_{1}}{2 \gamma_{1}}\left(\frac{c}{9 x_{1}^{9 / 2}}-\frac{e^{-x_{1}}}{x_{1}^{2}}\right), \quad \mathrm{c}=\frac{-27 W_{0} \xi a_{1}^{\frac{3}{2}}}{64 \sqrt{2} \gamma_{1}^{2} A_{1}}, \quad x_{1}=a_{1} t_{1}
\end{aligned}
$$

The stability constraint with positive CC at stationery points:

$$
V \geq 0 \quad \longleftrightarrow \quad 3.65 \leq C<3.89 \quad \longleftarrow \quad \partial_{x}^{2} V>0
$$

$$
\frac{20}{9 x^{992}} \cdot \frac{e x}{x^{-x}}
$$

Further focusing on smaller CC region: $C \sim 3.65$

$$
\frac{V}{M_{P}^{4}} \sim \frac{1}{9}\left(\frac{2}{5}\right)^{\frac{9}{2}} \frac{-W_{0} a_{1}^{3} A_{1}}{\gamma_{1}^{2}}(C-3.65)
$$

Neglecting the parameters a_{1}, γ_{1}, ξ, the model is simplified to be

$$
\Lambda=w_{1} w_{2}\left(c-c_{0}\right), \quad c_{0} \leq c=\frac{w_{1}}{w_{2}}<c_{1} \quad\left(w_{1}=-W_{0}, w_{2}=A_{1}, c \propto C\right)
$$

Stringy Random Landscape

Starting with the simplified potential:
[YS, Tye, 12]

$$
\Lambda=w_{1} w_{2}\left(c-c_{0}\right), \quad c_{0} \leq c=\frac{w_{1}}{w_{2}}<c_{1}
$$

Since W_{0}, A_{1} are given model by model (various ways of stabilizing complex moduli), here we impose reasonable randomness on parameters.
$w_{1}, w_{2} \in[0,1]$, uniform distribution (for simplicity)

Probability distribution function

$$
P(\Lambda)=N_{0} \int d c \int d w_{1} d w_{2} \delta\left(w_{1} w_{2}\left(c-c_{0}\right)-\Lambda\right) \delta\left(\frac{w_{1}}{w_{2}}-c\right)
$$

N_{0} : normalization constant

Divergence in product distribution

When $z=w_{1} w_{2}$,

$$
P(z)=\int d w_{1} d w_{2} \delta\left(w_{1} w_{2}-z\right)=\frac{1}{2} \ln \frac{1}{z} \quad \text { log divergence at } z=0
$$

With constraint?

$$
\begin{aligned}
& \Lambda=w_{1} w_{2}\left(c-c_{0}\right), \quad \underset{\text { positivity }}{c_{0} \leq c}=\frac{w_{1}}{w_{2}} \frac{<c_{1}}{\text { stability }}
\end{aligned}
$$

$$
P(\Lambda)=\frac{c_{1}}{c_{1}-c_{0}} \ln \frac{c_{1}-c_{0}}{c_{1} \Lambda} \quad \text { still diverging!! }
$$

Comparison to the full-potential (randomizing W_{0}, A_{1} without approx.)

Zero-ness of parameters

We assumed the parameters W_{0}, A_{1} passing through zero value, but is it true?

- E.g. T^{6} model: $W_{0}=\left(c_{1}+\sum d_{i} U_{i}\right)-\left(c_{2}+\sum e_{i} U_{i}\right) S$

SUSY condition

$$
\Longrightarrow W_{0}=2\left(c_{1}+c_{2} s\right) \frac{\prod_{k}\left(d_{k}-e_{k} s\right)}{\sum_{i}\left(d_{i}+e_{i} s\right) \prod_{j \neq i}\left(d_{j}-e_{j} s\right)} \quad s=\operatorname{Re}(S)
$$

easy to be zero

- Brane position dependence of $A_{1} \quad$ MBaumann, Dymarsky, Klebanov, Maldacena, McAllister, Murugan, 06]

$$
\begin{array}{r}
A_{1}=\hat{A}_{1}\left(U_{i}\right)\left(f\left(X_{i}\right)\right)^{1 / n}, \quad f\left(X_{i}\right)=\prod X_{i}^{p_{i}}-\mu^{q} \\
f\left(X_{i}\right)=0 \text { when D3-brane hits D7-brane (divisor, at } \mu \text {) } \\
\text { known as Ganor zero }
\end{array}
$$

More on product distribution

Mellin transform

Product distribution is understood in terms of Mellin integral transformation.

For $z=x_{1} x_{2}$, with distributions $P_{1}\left(x_{1}\right), P_{2}\left(x_{2}\right)$,

$$
P(z)=\iint d x_{1} d x_{2} P_{1}\left(x_{1}\right) P_{2}\left(x_{2}\right) \delta\left(x_{1} x_{2}-z\right)
$$

When multiplying z^{s-1} and integrating over z,

$$
\begin{aligned}
& M\{P(z) \mid s\}=M\left\{P_{1}\left(x_{1}\right) \mid s\right\} \cdot M\left\{P_{2}\left(x_{2}\right) \mid s\right\} \\
& M\{f(w) \mid s\} \equiv \int d w w^{s-1} f(w): \text { Mellin integral transform }
\end{aligned}
$$

E.g. Normal (Gaussian) distribution: $P(x)=\sqrt{\frac{2}{\pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$
$P(z)$ is written as Meijer G-function.
Again, log-diverging behavior toward $z=0$

Expectation value

How we can check the likelihood of small CC?
\longrightarrow Expectation value is a good measure to see tendency.

$$
\langle z\rangle=\int d z z P(z)=M\{P(z) \mid 2\}
$$

For $z=x_{1} \cdots x_{n}$, all uniform

$$
\begin{aligned}
\langle z\rangle & =M\{P(z) \mid 2\}=M\left\{P_{1}\left(x_{1}\right) \mid 2\right\} \cdots M\left\{P_{n}\left(x_{n}\right) \mid 2\right\}=\prod\left\langle x_{i}\right\rangle \\
& =e^{-n \ln 2}: \text { exponentially suppressed }
\end{aligned}
$$

What happens in case of $z=x_{1}^{p}$?
The factorization of Mellin transform doesn't apply.

$$
P(z)=\frac{z^{-1+\frac{1}{n}}}{n} P_{1}\left(z^{1 / n}\right) \stackrel{\text { uniform }}{\square}\langle z\rangle=\frac{1}{n+1} \begin{aligned}
& \text { More divergent, } \\
& \text { but not suppressed } \\
& \text { so much. }
\end{aligned}
$$

Independent random variables are important.

Ratio distribution

What happens when random variables show up in denominator?

- For $z=\frac{x_{1} \cdots x_{m}}{y_{1} \cdots y_{n}}$, all obey uniform distribution

$$
\begin{aligned}
P(z) & =\int d x_{1} \cdots d x_{m} d y_{1} \cdots d y_{n} \delta\left(\frac{x_{1} \cdots x_{m}}{y_{1} \cdots y_{n}}-z\right) \\
& \xrightarrow{z=0} \frac{(-1)^{m-1}}{(m-1)!(n-1)!2^{n}}(\ln z)^{m-1}
\end{aligned}
$$

- For $z=\frac{x_{1}^{m}}{y_{1}^{n}}$, all uniform

$$
P(z)=\left\{\begin{array}{c}
\frac{1}{m+n} z^{-1+1 / m} \text { for } 0 \leq z \leq 1 \\
\frac{1}{m+n} z^{-1-1 / n} \text { for } 1 \leq z
\end{array}\right.
$$

Therefore divergence is same as that in the numerator.

Sum distribution

Sum distribution smooths out the divergence and moves the peak.
E.g. $z=x_{1}^{n_{1}}+x_{2}^{n_{2}}+\cdots+x_{p}^{n_{p}}$

- Each has divergent peak: $P\left(w_{i}=x_{i}^{n_{i}}\right) \propto w_{i}^{-1+\frac{1}{n_{i}}}$
- Independent of each other, no correlations.
\Longrightarrow But uncorrelated summation gives $P(z) \propto z^{-1+\sum \frac{1}{n_{i}}}$.
When all $n_{i}=2$, and $x_{i} \in$ normal distribution,

$$
P(z)=\frac{e^{-p / 2} z^{-1+p / 2}}{2^{p / 2} \Gamma(p / 2)}
$$

known as Chi-squared distribution

Bousso-Polchinski

4-form quantization

$$
\begin{aligned}
S= & \int d^{4} x \sqrt{-g}\left(\frac{1}{M_{P}^{2}} R-\Lambda_{\mathrm{bare}}-\frac{Z}{2 \times 4!} F_{4}^{2}\right) \\
& \Longleftrightarrow \Lambda=\Lambda_{\mathrm{bare}}+\frac{1}{2} \sum n_{i}^{2} q_{i}^{2}
\end{aligned}
$$

Assume randomness in Bousso-Polchinski;
n_{i} : random integer, $0 \leq q_{i} \leq 1$: uniform,
$-100 \leq \Lambda_{\text {bare }} \leq 0$: uniform
But... Moduli fields couple each term
$\Lambda \sim-W_{0} A_{1}\left(\frac{C}{9 x_{1}{ }^{9 / 2}}-\frac{e^{-x_{1}}}{x_{1}^{2}}\right)$
correlation generated via stabilization

Multi-moduli analyses

Multi-moduli stabilization

[Sumitomo, Tye, in preparation]
Again, we work in the region: $\left|W_{0}\right| \gg\left|W_{N P}\right|, \mathcal{v} \gg \xi$.
Assuming stabilization of complex structure moduli and dilaton at higher energy scale,

$$
\begin{aligned}
\frac{V}{M_{P}^{4}} & =-\frac{A_{1} W_{0} a_{1}^{3}}{2 \gamma_{1}}\left(\frac{2 C}{9 \tilde{\mathcal{V}}^{3}}-\frac{x_{1} e^{-x_{1}}}{\tilde{\mathcal{V}}^{2}}-\sum_{i=2} \frac{B_{i} x_{i} e^{-x_{i}}}{\tilde{\mathcal{V}}^{2}}\right), \\
\tilde{\mathcal{V}} & =x_{1}^{3 / 2}-\sum_{i=2} \delta_{i} x_{i}^{3 / 2}, \quad x_{i}=a_{i} t_{i}, C=\frac{-27 W_{0} \xi a_{1}^{3 / 2}}{64 \sqrt{2} \gamma_{1} A_{1}}, \quad B_{i}=\frac{A_{i}}{A_{1}}, \delta_{i}=\frac{\gamma_{i} a_{i}^{3 / 2}}{\gamma_{1} a_{1}^{3 / 2}}
\end{aligned}
$$

- Now we have $N_{K} \times N_{K}$ mass matrix.

All upper-left sub-determinants are positive (Sylvester's criteria).
$\square N_{K}$ extremal equations $+N_{K}$ stability constraints

- Stability at positive CC requires $B_{i}>0$.
\square Uplifting is controlled by the first term.

Two moduli

Stability constraint at $N_{K}=1$

We can find stability points when parameters are in the region.

$$
\begin{aligned}
3.65 & \lesssim C \lesssim 4.50 \\
0 & \leq B_{2} \lesssim 0.177
\end{aligned}
$$

Let's compare with full-potential analysis. (therefore without $\left|W_{0}\right| \gg\left|W_{N P}\right|, \mathcal{V} \gg \xi$)

The parameter region is shifted slightly:

$$
3.95 \leqq C \leqq 4.87, \quad 0 \leq B_{2} \leqq 0.193
$$

But not changed so much.

Three moduli

Stable points exist if

$$
\begin{aligned}
& 3.65 \leqq C \lesssim 4.50 \\
& 0 \leq B_{2,3} \lesssim 0.177
\end{aligned}
$$

But parameter region is further constrained.

Stability constraint at $N_{K}=2$

Again, let's compare with full-potential analysis.

$$
\text { (without } \left.\left|W_{0}\right| \gg\left|W_{N P}\right|, v \gg \xi\right)
$$

$$
3.95 \leqq C \lesssim 4.87, \quad 0 \leq B_{2,3} \leqq 0.193
$$

Though the resultant parameters are slightly shifted, the essential feature wouldn't be changed.
(not easy to use full-potential beyond $N_{K}=3 \ldots$.)

Multi-Kahler statistics

Still complicated system

$$
\frac{V}{M_{P}^{4}}=-\frac{A_{1} W_{0} a_{1}^{3}}{2 \gamma_{1}}\left(\frac{2 C}{9 \tilde{\mathcal{V}}^{3}}-\frac{x_{1} e^{-x_{1}}}{\tilde{\mathcal{V}}^{2}}-\sum_{i=2}^{B_{i} x_{i} e^{-x_{i}}} \frac{\tilde{\mathcal{V}}^{2}}{)}\right.
$$

We just randomize W_{0}, A_{i} obeying uniform distribution, while keeping other parameters fixed.

Solve for t_{i} (or x_{i})

$$
-15 \leq W_{0} \leq 0,0 \leq A_{i} \leq 1
$$

More moduli bring shaper peak. (though mild suppression)

$$
\langle\Lambda\rangle \sim 1.1 \times 10^{-3} N_{K}^{0.23} e^{-0.027 N_{K}} M_{P}^{4}
$$

Cosmological moduli problem

Reheating for $\mathrm{BBN}: T_{r} \geq \mathcal{O}(10) \mathrm{MeV} \quad T_{r} \sim \sqrt{M_{P} \Gamma_{\phi}}, \Gamma_{\phi} \sim \frac{m_{\phi}^{3}}{M_{P}}$

$$
m_{\phi} \geq \mathcal{O}(10) \mathrm{TeV} \sim 10^{-15} M_{P}
$$

What happens in lightest (physical) moduli mass?

Suppression of mass is relatively faster than Λ.
$\longmapsto\left\langle m_{\min }^{2}\right\rangle \sim 10^{-30} M_{P}^{2}$ is likely met earlier than $\langle\Lambda\rangle \sim 10^{-122} M_{P}^{4}$

More peaked parameters

So far we assumed uniform distribution for W_{0}, A_{i}. But realistic models have a number of complex moduli and others.
\longrightarrow Different distributions for W_{0}, A_{i}
Consider the effect of multiple independent parameters.

$$
\begin{aligned}
& W_{0}=-w_{1} w_{2} \cdots w_{n}, \quad A_{i}=y_{1}^{(i)} y_{2}^{(i)} \cdots y_{n}^{(i)} \\
& 0 \leq w_{i} \leq 15^{\frac{1}{n}}, 0 \leq y_{j}^{(i)} \leq 1, \text { all obey uniform distribution. }
\end{aligned}
$$

Now,

$$
\begin{gathered}
P\left(W_{0}\right)=\frac{1}{15(n-1)!}\left(\ln \frac{15}{\left|W_{0}\right|}\right)^{n-1}, \\
P\left(A_{i}\right)=\frac{1}{(n-1)!}\left(\ln \frac{1}{A_{i}}\right)^{n-1}
\end{gathered}
$$

See how CC is affected by " n "

Cosmological constant

We cannot simply consider effect of the coefficient.

$$
\frac{V}{M_{P}^{4}}=-\frac{A_{1} W_{0} a_{1}^{3}}{2 \gamma_{1}}\left(\frac{2 C}{9 \tilde{v}^{3}}-\frac{x_{1} e^{-x_{1}}}{\tilde{v}^{2}}-\sum_{i=2} \frac{B_{i} x_{i} e^{-x_{i}}}{\tilde{v}^{2}}\right)
$$

Dynamics also affects.
The result:

$$
\langle\Lambda\rangle_{N_{K}=1}=4.7 \times 10^{-3} n^{0.080} e^{-1.40 n}
$$

$$
\langle\Lambda\rangle_{N_{K}=2}=3.7 \times 10^{-3} n^{0.97} e^{-1.49 n}
$$

$$
\langle\Lambda\rangle_{N_{K}=3}=3.4 \times 10^{-3} n^{1.5} e^{-1.55 n}
$$

More than the effect of the coefficient!

$$
\left\langle A_{1} W_{0}\right\rangle \sim 15 e^{-1.39 n}
$$

Moduli mass

We worry about the cosmological moduli problem.

$$
\begin{aligned}
& \left\langle\mathrm{m}_{\min }^{2}\right\rangle_{N_{K}=1}=0.18 n^{0.14} e^{-1.40 n} \\
& \left\langle\mathrm{~m}_{\min }^{2}\right\rangle_{N_{K}=2}=0.061 n^{0.73} e^{-1.56 n} \\
& \left\langle\mathrm{~m}_{\min }^{2}\right\rangle_{N_{K}=3}=0.039 n^{1.2} e^{-1.66 n}
\end{aligned}
$$

Compare with CC
$\langle\Lambda\rangle \propto e^{-1.40 n}, e^{-1.49 n}, e^{-1.55 n}$

Suppression in mass is getting larger as increasing N_{K}.

Estimation

Using the estimated functions, we get

$N_{K}\left(=h^{1,1}\right)$	1	2	3	
$\langle\Lambda\rangle \sim 10^{-122} M_{P}^{4}$	$n \sim 197$	$n \sim 188$	$n \sim 182$	n : number of
product in W_{0}, A_{i}				

Rather considerable number, e.g.

- $\mathbb{P}_{[1,1,1,6,9]}^{4}: h^{1,1}=2, h^{2,1}=272 \quad$ - $\mathcal{F}_{11}: h^{1,1}=3, h^{2,1}=111$
and the other moduli (e.g. brane position, open string) come in a complicated way, like
- $A_{1}=\hat{A}_{1}\left(U_{i}\right)\left(f\left(X_{i}\right)\right)^{1 / n}, f\left(X_{i}\right)=\Pi X_{i}{ }^{p_{i}}-\mu^{q}$

While, without help of product distribution in W_{0}, A_{i}

$$
N_{K} \sim 10100 \text { for }\langle\Lambda\rangle \sim 10^{-122} M_{P}^{4}, \quad N_{K} \sim 1350 \text { for }\left\langle m^{2}\right\rangle \sim 10^{-30} M_{P}^{2}
$$

Distribution in W_{0}

Consider the simplest model:

$$
W_{0}=-\left(c_{1}+\sum_{i=1}^{h^{2,1}} e_{i} U_{i}\right)-\left(c_{2}+\sum_{i=1}^{h^{2,1}} f_{i} U_{i}\right) S
$$

SUSY stabilization
$D_{U_{i}} W_{0}=0, \quad D_{S} W_{0}=0$
with $\operatorname{Re} U_{i}>0, \operatorname{Re} S=g_{s}^{-1}>1$

When $N_{C} \uparrow$, the dist. gets more sharply peaked!

Mass matrix

Physical mass matrix is a linear combination of $\left.\partial_{x_{i}} \partial_{x_{j}} V\right|_{\min }$.
Assuming uniformly distributed $-15 \leq W_{0} \leq 0,0 \leq A_{i} \leq 1$,

$$
\left.\langle | \partial_{x_{i}} \partial_{x_{j}} V\right|_{\min }| \rangle \sim 10^{-3} \times\left(\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & & x_{N_{K}} \\
7 & 4 & \cdots & \cdots & 4 \\
4 & 60 & 1 & \cdots & 1 \\
\vdots & 1 & \ddots & \cdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & 1 \\
4 & 1 & \cdots & 1 & 60
\end{array}\right) \quad \begin{aligned}
& \\
& \text { some } \\
& \text { hierarchical } \\
& \text { structures }
\end{aligned}
$$

Though off-diagonal comp. are relatively suppressed, eigenvalue repulsion gets more serious when increasing N_{K}.
e.g. 2×2 matrix: $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right) \Longrightarrow \lambda_{ \pm}=\frac{1}{2}\left(a+c \pm \sqrt{(a-c)^{2}+\underline{4 b^{2}}}\right)$

The lowest mass eigenvalue is generically suppressed more than CC.

Summary \& Discussion

Summary \& Discussion

- Stringy Random Landscape

We may expect that stringy motivated models have the following properties:

- Product of parameters
- Correlation of each term by dynamics
\longrightarrow Both works for smaller CC.
- A number of Kahler moduli

Correlation makes CC smaller. But the effect is modest.

- A number of complex moduli and other moduli

Those are likely to produce more peakiness in parameters \longrightarrow Interesting to see detailed effect in concrete models

Summary \& Discussion

- A potential problem

Lightest moduli mass is suppressed simultaneously.
\longrightarrow cosmological moduli problem before reaching $\Lambda \sim 10^{-122} M_{P}^{4}$.

Other than "product" and "correlation" effect, "eigenvalue repulsion" also makes the value smaller.

This is presumably a generic problem when taking statistical approach without fine-tuning.
\Rightarrow Once finding a way out, the stringy mechanism naturally explain why CC is so small.

Thermal inflation, coupling suppression to SM, or some other corrections may help?

