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Tomorrow:

TeV scale SUSY with the recent LHC results



Outline of Today’s Lecture

QCD axion in string theory

* Axion solution to the strong CP problem and its realization
in string theory

* Cosmological constraints on GUT scale QCD axion

* Intermediate scale QCD axion with anomalous U(1) gauge
symmetry

Moduli stabilization and SUSY breaking with intermediate scale
QCD axion

* Effective theory for SUSY breaking by anti-brane in KKLT
moduli stabilization

* KKLT axiverse



Strong CP problem:

Low energy QCD involves a CP-violating interaction

1
32π2 θ̄GaµνG̃a

µν

which gives rise to the neutron EDM

dn ∼ 10−16 θ̄ e · cm

and therefore is constrained as

|θ̄| . 10−9 (
|dn| . 10−25 e · cm

)
.

On the other hand,

SM : θ̄ = θQCD + ArgDet(yuyd),

MSSM : θ̄ = θQCD + ArgDet(yuyd) + 3Arg(Mg̃) + 3Arg(Bµ),

so it is quite unnatural that |θ̄| . 10−9 within the CKM paradigm which
explains CP violations in the weak interactions through the complex Yukawa
couplings yu,d.



Axion solution: Peccei and Quinn

At scales below an appropriate energy scale fa, the theory is assumed to
possess a non-linearly realized global U(1) symmetry:

Axionic shift symmetry U(1)PQ : a→ a + constant,

which is explicitly broken dominantly by the QCD anomaly.

⇒ Laxion =
1
2

(∂µa)2 +
1
fa
∂µa Jµ +

1
32π2

(
a
fa

+ θ̄

)
GG̃ + ∆L(

∆L = nonderivative couplings of a other than aGG̃
)

∂µJµPQ =
1

32π2 GG̃ + fa
∂

∂a
∆L

(
JµPQ = fa∂µa + Jµ

)
= QCD anomaly + other explicit U(1)PQ breakings

V(a) = VQCD(a) + VUV(a)

= −f 2
πm2

π

√
m2

u + m2
d + 2mumd cos

(
a/fa + θ̄

)
(mu + md)2

+ εM4
UV cos

(
a/fa + α

) (
α 6= θ̄

)



If explicit U(1)PQ breakings other than the QCD anomaly are highly
suppressed, so that

VUV(a) . 10−9f 2
πm2

π ∼ 10−78M4
GUT,

then VQCD drives the axion VEV to cancel θ̄ with an accuracy of O(10−9),
regardless of the values of the low energy parameter θ̄ and the UV parameter
α : ∣∣∣∣ 〈 a

fa

〉
+ θ̄

∣∣∣∣ . 10−9.

This is an elegant mechanism, but raises a question:

Q1: What is the origin of such global symmetry which is explicitly
broken in a quite peculiar way?

Simply assuming such a global symmetry is not likely to be sensible as
quantum gravity effects generically break global symmetries, so can
generate VUV(a)� f 2

πm2
π.



Astrophysical and cosmological considerations lead to various constraints on
the axion scale fa.

* Axion emission from red giants, neutron stars, SN1987A:

⇒ fa & 109 GeV.

* Relic axions produced by an initial misalignment δa ≡ faθi:

Ωah2 ' 2× 104
(

fa
1016 GeV

)7/6

〈θ2
i 〉 . 0.12

(assuming no entropy production after the QCD phase transition)

⇒ fa . 3× 1011 〈θ2
i 〉−6/7 GeV.

So, if the misalignment angle takes a value in the natural range, i.e. θi ∼ 1,
the axion scale is required to be

109 GeV . fa . 3× 1011 GeV.



This raises another question:

Q2: What is the dynamics to generate such an intermediate axion scale?

In SUSY models, the axion scale fa is in fact a dynamical field, the saxion or
modulus partner of axion, and then the axion scale is determined by the
mechanism to stabilize saxion or moduli.



Higher-dim gauge symmetry as the origin of U(1)PQ

Higher-dim theory with a p-form gauge field (p = 1, 2, ...), compactified on
internal space involving a p-cycle Sp:

* Higher-dim gauge symmetry:

GC : Cp → Cp + dΛp−1
(
Λp−1 = globally well-defined (p− 1)-form

)
* Axion fluctuation:

C[m1m2..mp](x, y) = a(x)ω[m1m2..mp](y) = a(x)∂[m1Λ̃m2..mp](
xµ, ym

)
=
(
4d Minkowski coordinates, internal coordinates

)
Here ωp is a harmonic p-form with

∫
Sp
ωp = 1, so Λ̃p−1 is only locally

well-defined.

Then the axionic shift symmetry U(1)PQ : a→ a+ constant is locally
equivalent to the higher-dim gauge symmetry GC, but not globally:

GC : Cp → Cp + dΛp−1 for
∫

Sp

dΛp−1 = 0,

U(1)PQ : Cp → Cp + constant× ωp for
∫

Sp

ωp 6= 0



U(1)PQ can be explicitly broken, but only through the effects associated with
non-trivial global topology of the p-cycle Sp, in particular associated with∫

Sp

ωp 6= 0

* QCD anomaly:

GC-invariant
∫

Cp ∧ G ∧ G → U(1)PQ-breaking
∫

4D
aGG̃

∫
Sp

ωp

* UV instantons wrapping Sp:

VUV(a) = ε0 e−Sins M4
UV cos (a/fa + α)

(
MUV ∼ MGUT or Mstring

)
(
ε0 = model-dependent zero-mode factors possibly involving

(
m3/2

MPl

)n )
This suggests that if Sp has a relatively large volume to have the instanton
action Sins & O(100), a good U(1)PQ can appear as a low energy remnant
of higher-dim gauge symmetry.

Obviously string theory is the best place to realize this scenario.



Axion scale (= axion decay constant):

Canonically normalized stringy axion typically has Planck-scale suppressed
interactions, so a decay constant fa ∼ MGUT:

â
MPl

GG̃ ≡ 1
32π2

â
fa

GG̃ → fa ∼
MPl

32π2 ∼ MGUT

This can be easily seen in supersymmetric compactification:

Axion Superfield: T = t + ia +
√

2θã + θ2FT(
t ∝ Vol(Sp), normalized as 〈t〉 ∼ 1

g2
GUT

)
Laxion = M2

Pl
∂2K
∂t2 ∂µa∂µa +

1
4

aGG̃ + ...

⇒ fa =

√
∂2K
∂t2

MPl

8π2 ∼ 3

√
∂2K
∂t2 × 1016 GeV,

For

K ' −n ln(T + T∗) → ∂2K
∂t2 '

n
t2 ∼ g4

GUT,

so the axion scale is indeed around 1016 GeV. KC,Kim(1985); Svrcek,Witten(2006)



It is in principle possible to have
√

∂2K
∂t2 � 1, and therefore fa � MGUT.

For instance, Sp might be a relatively small cycle embedded in a much larger
bulk volume (Large Volume Scenario), or it might be located at a highly
warped region in the internal space (Warped Compactification):

∂2K
∂t2 ∼ 1

large bulk volume
or small warp factor ∼ 10−10,

which would give
fa ∼ 3× 1011 GeV

and

Ωah2 ∼ 0.1
(

fa
3× 1011 GeV

)7/6

θ2
i ∼ 0.1 for θi ∼ 1.

However in such scheme, the cutoff scale of 4D visible sector physics is
red-shifted also, making it difficult to accommodate the unification scale
MGUT ∼ 2× 1016 GeV within the scheme.



More on cosmology of GUT scale QCD axion:
Fox,Pierce,Thomas(2004); Mack(2009)

Even for GUT scale QCD axion, the relic axion mass density can have an
acceptable value if
(i) the misalignment angle θi is small enough and/or
(ii) there is a dilution of axions by late entropy production after the QCD
phase transition:

Ωah2 ' 2× 104
(

fa
1016 GeV

)7/6

〈θ2
i 〉

(
No dilution

)
Ωah2 ' 40

(
TRH

6 MeV

)(
fa

1016 GeV

)2

〈θ2
i 〉(

Entropy production by late decaying massive particles with 6 MeV . TRH . ΛQCD
)

In order for a GUT scale QCD axion to have Ωah2 . 0.1,

〈θ2
i 〉 . 5× 10−6 or 2.5× 10−3

(
6 MeV

TRH

)



It is often argued that in inflationary cosmology with U(1)PQ non-linearly
realized during inflation, such small 〈θ2

i 〉 can be explained by anthropic
selection rule since galaxies in a Universe with Ωah2 > O(1) will have too
large mass densities to accommodate life. Linde(1986);Tegmark,Rees,Wilczek(2009)

On the other hand, in such scenario, the axion misalignment square receives
an irreducible contribution from the axion fluctuation produced during
inflation:

〈θ2
i 〉 = 〈θi〉2 + 〈(θi − 〈θi〉)2〉 = 〈θi〉2 + σ2

θ,

faσθ ∼ HI

2π
(

= RMS axion fluctuation during inflation
)
,

There is no dynamical mechanism to determine 〈θi〉, so in principle it can
have an arbitrarily small value, while for given inflation model, σθ is
predicted to be of the order of HI/2π.

If anthropic selection is the correct explanation for small 〈θ2
i 〉 of GUT scale

QCD axion, it implies that the actual value of Ωah2 should not be far below
the anthropic upper bound ∼ O(1), so it has a high probability to be around
0.1.



Axion fluctuation produced during inflation is of isocurvature type, so leads
to an isocurvature CMB fluctuation: Fox,Pierce,Thomas(2004)

α ≡ 〈(δT/T)2
iso〉

〈(δT/T)2
tot〉
' 8

25
(Ωa/ΩM)2

〈(δT/T)2
tot〉

σ2
θ(2〈θi〉2 + σ2

θ)

(〈θ2
i 〉)2

= 1.5× 1011
(

Ωah2

〈θ2
i 〉

)2

σ2
θ

(
2〈θi〉2 + σ2

θ

)
.

Imposing the observational bound on this isocurvature CMB fluctuation

α ∼ 1.5× 1011
(

Ωah2

〈θ2
i 〉

)2( HI

2πfa

)2
(

2〈θi〉2 +

(
HI

2πfa

)2
)

. 0.072,

one finds a rather strong constraint on the inflation scale:

For fa ∼ 1016 GeV and Ωah2 ∼ 0.1:

HI . 6× 108 GeV (no dilution)

. 1.6× 1010 GeV/
√

TRH/6 MeV (late entropy production)



In slow roll inflation scenario,

ε ≡ 1
2

M2
Pl

(
V ′

V

)2

∼ 1
8π2(δT/T)2

(
HI

MPl

)2

∼ 108
(

HI

MPl

)2

ns − 1 = −6ε+ 2η
(
η ≡ M2

Pl
V ′′

V

)
,

so the above upper bound on HI from the isocurvature fluctuation of GUT
scale QCD axion implies

ε . 10−11 (no dilution)(
.

7× 10−9

(TRH/6 MeV)
(late entropy production)

)
η = −O(10−2).

This implies that the tensor mode in CMB is too small to be observed (but
note Gary’s talk), and may require a fine tuning of either the initial condition
or the model parameters in the underlying inflation model.



This motivates us to explore an alternative possibility for

i) Natural U(1)PQ being a low energy remnant of higher-dim gauge
symmetries,

ii) Intermediate axion scale fa ∼ 109−11 GeV, while MGUT ∼ 1016 GeV.



Lowering the axion scale with anomalous U(1) gauge symmetry
KC,Jeong,Okumura,Yamaguchi(2011)

Symmetries:
* Global axionic shift symmetry from higher-dim gauge symmetry:

aC → aC + constant
(

Cp(x, y) = aC(x)ωp(y)
)

* Anomalous U(1)A gauge symmetry:

Aµ → Aµ + ∂µα(x), aC → aC + δGSα(x)

Xi → eiqiα(x)Xi

(
δGS =

1
8π2

∑
i

qiTr(T2
a (Xi)

)
Leff = M2

Pl
∂2K
∂t2 (∂µaC − δGSAµ)

2
+

1
4

aCGG̃

+ DµX∗i DµXi −
g2

A

2

(
δGSM2

Pl
∂K
∂t
−
∑

i

qi|Xi|2
)2

+ ...(
t = modulus partner of aC

)
If U(1)A has a mixed anomaly with the SM gauge group, which is cancelled
by the GS mechanism, some U(1)A charged scalar field X should have a
VEV & 109 GeV in order for the model to be phenomenologically viable.



Then there are two axion-like fields, aC and Arg(X), and the physical axion
is given by the U(1)A invariant combination:

a ∝ aC +
qX

δGS
Arg(X),

while the other combination becomes the longitudinal component of Aµ.

There are two key mass scales in this type of model:

FI-term : ξFI = δGSM2
Pl
∂K
∂t
,

Stückelberg mass : M2
ST = δ2

GSM2
Pl
∂2K
∂t2 ,

∗D-flat condition : DA = ξFI − qX|X|2 = 0,
∗U(1)A gauge boson mass : M2

A = M2
ST + q2

X|X|2

∗Decay constant of aC originating from p-form gauge field :

faC ∼ MST ∼ 1016 GeV

∗Decay constant of physical axion : fa ∼
|X|MST√

M2
ST + |X|2



We can now consider two possibilities:

A. Anomalous U(1) gauge symmetry not affecting the moduli sector:

For a (metastable) vacuum configuration with

ξFI = δGSM2
Pl
∂K
∂t

= qX|X|2 � M2
ST = δ2

GSM2
Pl
∂2K
∂t2 ,

the anomalous U(1)A gauge boson gets a mass MA ∼
√
ξFI by the VEV of

U(1)A-charged matter field X, and is decoupled without affecting the moduli
sector.

Then the low energy theory has a physical axion which is mostly aC and has
a decay constant

fa ∼ MST ∼ 1016 GeV.

Example:
aC = model-independent axion in heterotic string

t = heterotic string dilaton

⇒ K = − ln t, 〈t〉 =
1

g2
GUT

⇒ ξFI ∼
8π2

g2
GUT

M2
ST



B. Anomalous U(1) gauge symmetry eliminating a stringy axion aC and its
modulus partner t from low energy spectrum, while leaving a field
theoretic axion with intermediate scale decay constant:

For another type of vacuum configuration with

ξFI � M2
ST ,

U(1)A gauge boson absorbs mostly aC to get a mass MA ∼ MST through the
Stückelberg mechanism, leaving an anomalous global U(1)PQ in low energy
theory, which is essentially the global part of U(1)A and spontaneously
broken by

〈X〉 ∼
√
ξFI � MST

.
In this case, the physical axion is mostly Arg(X), and therefore the axion
scale fa is determined by the dynamics to fix the vacuum value of X.

A simple and attractive possibility is that X is stabilized by an interplay
between SUSY breaking effects and Planck-scale-suppressed effects,
naturally giving an intermediate QCD axion scale:

Kim,Nilles(1984); KC,Chun,Kim(1997)

fa ∼ 〈X〉 ∼
√

msoftMPl ∼ 1010−11 GeV.



In fact, vacuum configuration with ξFI � M2
ST is quite common in D-brane

models realized in type IIB or IIA string theory (and some heterotic string
compactification also), which allows a supersymmetric solution with
vanishing ξFI in the limit that all U(1)A-charged matter fields have vanishing
VEVs.



Moduli stabilization and SUSY breaking with intermediate scale
QCD axion

Thanks to the progress in moduli stabilization during the last decade, we
now have several interesting scenarios of moduli stabilization, which have
a good potential to stabilize all moduli at phenomenologically viable
vacuum with nearly vanishing cosmological constant.

Here I will discuss a KKLT Axiverse Scenario which can easily
accommodate an intermediate scale QCD axion as well as other (ultralight)
axion-like fields with decay constants ∼ MGUT.(
It should be noticed that Large Volume Scenario (LVS) can also

accommodate an intermediate scale QCD axion in a similar manner.
KC,Nilles,Shin,Trapletti(2010)

)



KKLT moduli stabilization

Flux stabilization of all moduli except for the Kähler moduli {TI}
Non-perturbative stabilization of (some of) {TI} by instanton-induced
(or gaugino-condensation-induced) superpotential

Sequestered SUSY-breaking by anti-brane at the tip of throat



Pattern of moduli masses:

* Dilaton or complex structure moduli stabilized by flux in bulk CY:

mS,U ∼
1

MstringR3 ∼ 1015 GeV (R = bulk CY radius)

* Complex structure modulus describing the throat:

mU′ ∼ eAMstring ∼ 1010 GeV(
e2A = warp factor at the end of throat ∼ 10−14)

* (Some of) Kähler moduli stabilized by instantons or gaugino condensation:

mT ∼ m3/2 ln(MPl/m3/2) ∼ 106 GeV

Before introducing anti-D3 brane, these moduli were stabilized at SUSY
AdS solution, which is lifted to a dS vacuum with nearly vanishing
cosmological constant after anti-D3 brane is introduced:

V ' −3m2
3/2M2

Pl + Vlift ' 0
(

Vlift ∼ M3
D̄3
∼ e4AM4

Pl

)
⇒ m3/2 ∼ e2AMPl ∼ 104 GeV

msoft ∼
m3/2

ln(MPlanck/m3/2)
∼ 103 GeV



If all Kähler moduli are stabilized by nonperturbative superpotential as was
proposed in the original KKLT, there would not be any axionic shift
symmetry which is required for U(1)PQ in low energy theory.

So, to implement the axion solution to the strong CP problem, we need some
Kähler moduli not stabilized by non-perturbative superpotential, but by other
effects (uplifting potential or D-term potential) preserving the axionic shift
symmetries.

In fact, this can be considered to be more likely and more desirable than the
original KKLT scenario, since
i) it is somewhat difficult that the Kähler modulus of a cycle supporting
charged chiral fermions, e.g. the visible sector Kähler modulus, gets a
sizable instanton-induced superpotential due to the suppression by charged
chiral zero modes,
ii) an axionic shift symmetry unbroken by the moduli potential is required
for the axion solution to the strong CP problem.



4D effective theory for SUSY breaking by anti-D3 brane
KC,Nilles,Falkowski,Olechowski(2005)

To proceed, let us discuss the 4D effective action describing SUSY breaking
by anti-brane stabilized at the end of warped throat.

For simplicity, we consider first the case of single Kähler modulus, and
integrate out the heavy moduli S,U and U′ to write down the effective action
of the Kähler modulus and visible gauge and matter fields:

Leff =

∫
d4θΩ +

[∫
d2θ

(
1
4

faWaαWa
α + C3W

)
+ c.c

]

Ω = Ωbulk + ΩD̄3

Ωbulk = −3CC∗e−Kbulk/3 =
[
−3e−K0(T,T∗)/3 + YI(T,T∗)Φ∗I ΦI + ...

]
(
C = C0 + FCθ2 = SUGRA chiral compensator

)
fa = T

W = W0 + Ae−aT +
λIJK

6
ΦIΦJΦK + ...



In ΩD̄3
, SUSY is non-linearly realized with the Goldstino superfield

Λα = θα +
1

M2
D̄3

ξα + ...
(
MD̄3
∼ eAMstring

)
.

⇒ ΩD̄3
= −C2C2∗e4AΛ2Λ̄2P +

(
e3AC3Λ̄2Γ + c.c

)
= −C2C2∗e4Aθ2θ̄2P +

(
e3AC3θ̄2Γ + c.c

)
+ Goldstino-dependent terms

(SUSY appear to be explicitly broken.)

The compensator dependence in ΩD̄3
can be fixed by the Weyl-invariance

under

ηµν → e2(τ0+τ
∗
0 )ηµν , C→ e−2τ0 C, θα → e−τ0+2τ∗0 θα,

and the simple dimensional analysis determines the dependence on the warp
factor eA.



From the above superspace action, the equations of motion for the auxiliary
F-components of the chiral superfields C and T can be derived, which would
determine the on-shell expressions of FC,T .

The SUSY breaking term e3Aθ2Γ∗ in ΩD̄3
modifies the on-shell expressions

of FC,T (compared to the standard N = 1 SUGRA expression obtained in the
absence of anti-brane), however the modification is suppressed by e3A:

FC

C0
= m∗3/2 +

1
3

FT∂TK +O(e3AMPl)

FT = −eK/2KT∗T (DTW)
∗

+O(e3AMPl)

Also the on-shell expression of the moduli potential is modified by e3Aθ2Γ
and e4Aθ2θ̄2P as:

V = eK
(

KT∗T |DTW|2 − 3|W|2
)

+ e4Ae2K/3P +O(e3Am3/2M3
Pl)



To make the cosmological constant to be nearly vanishing, the warp factor
should have a size

eA ∼
√

m3/2/MPl.

Then the modification of on-shell expressions of FC,T can be safely ignored,
and one can use the standard N = 1 SUGRA expressions for the auxiliary
components:

FC

C0
= m∗3/2 +

1
3

FI∂IK,

FI = −eK/2KIJ̄ (DJK)
∗
,

while the scalar potential is well approximated by

V = eK
(

FIJ̄DIW(DJW)∗ − 3|W|2
)

+ e4Ae2K/3P.



It turns out that SUSY breaking by anti-D3 at the tip of KS throat is
sequestered well from the light degrees of freedom in bulk CY.

KC,Jeong; Kachru,McAllister,Sundrum

As a consequence, e4AP is (nearly) independent of the Kähler modulus T as
well as of the visible matter and gauge fields which are presumed to be
localized at D-branes in bulk CY:

e4AP = e4A0 P0 = Constant of O(m2
3/2M2

Pl)

⇒ Vlift = e4A0 P0e2K(T,T∗,Φ,Φ∗)/3



Now the moduli VEV can be determined by minimizing

V = VSUGRA + Vlift = VSUGRA + e4A0 P0e2K0(T+T∗)/3(
Vlift ∝

1
(T + T∗)2 for K0 = −3 ln(T + T∗)

)
under the condition of nearly vanishing cosmological constant.

Normally it is technically difficult to find a SUSY-breaking (local) minimum
of generic SUGRA potential.

However, in KKLT scenario, the (meta-stable) vacuum is near the
supersymmetric configuration, which makes it possible to compute the
moduli VEVs, F-components and masses in the perturbative expansion in

1
ln(MPlanck/m3/2)

∼ 1
4π2



In this simple example, regardless of the form of K0(T + T∗),

mT ∼ ∂2
TW

∂T∂T̄K
∼ m3/2 ln(MPl/m3/2)

〈T〉 = T0 + δT,
δT
T0

= O

(
m2

3/2

m2
T

) (
DTW|T=T0

= 0
)

FT

T + T∗
∼ mT

δT
T
∼

m2
3/2

mT
∼

m3/2

ln(MPl/m3/2)
∼ 1

4π2

FC

C0

FC

C0
= m∗3/2 +

1
3

FT∂TK0 ' m3/2

=⇒ modulus mediation of O
(

FT

T

)
∼ anomaly mediation of O

(m3/2

8π2

)
This pattern of SUSY breaking is quite robust and persists even when the
scheme is generalized in various different directions, including the KKLT
axiverse scenario incorporating an intermediate scale QCD axion.



KKLT Axiverse KC,Jeong

* Start with a generic compactification with multiple Kähler moduli {TI},
and also multiple anomalous U(1)A gauge symmetries under which some
Kähler moduli have non-linear transformation to implement the GS anomaly
cancellation mechanism:

U(1)A : VA → VA − Λ− Λ∗, TI → TI + δGS,IΛ, Xi → eqiΛXi

* At leading order, the Kähler potential of Kähler moduli takes the no-scale
form, obeying

KIJ̄KIKJ̄ = 3, (TI + T∗I )KI = −3, KIJ̄KJ̄ = −(TI + T∗I ).

* VA for U(1)A with ξFI � M2
ST gets a mass MA ∼

√
ξFI � MST by the VEV

of some U(1)A charged matter fields, and can be integrated out without
affecting the moduli sector.

* For other type of U(1)A with ξFI � M2
ST , VA gets a mass MA ∼ MST by

absorbing a Kähler modulus superfield TA, and can be integrated out while
obeying

∂K
∂VA

= δGS,A
∂K
∂TA

= 0.



* In low energy effective theory, the global part of such U(1)A appears as an
anomalous global symmetry which is spontaneously broken by the VEV of
U(1)A charged matter field at scales far below MST :

U(1)PQ : Xi → eiqiαXi with 〈Xi〉 � MST ∼ MGUT

and the physical axion scale is determined by the dynamics to fix the matter
field VEVs 〈Xi〉.

* The Kähler potential of the remained light Kähler moduli {TM} still obeys
the no-scale condition: {TI} = {TA,TM}

KMN̄KMKN̄ = 4, (TM + T∗M)KM = −3, KMN̄KN̄ = −(TM + T∗M).

* Some Kähler moduli {Tm} among {TM} = {Tm,Tu} are stabilized by
non-perturbative superpotential:

WNP =
∑

m

Ame−amTm ,

while the other Kähler moduli {Tu} are stabilized by the uplifting potential
invariant under the axionic shift symmetries.



* As for axions, an intermediate scale QCD axion can be obtained from
Arg(Xi) if the biggest VEV of Xi is determined by an interplay between
SUSY breaking terms and Planck-scale-suppressed terms as

Max (〈Xi〉) ∼
√

msoftMPl.

There can be also ultralight axions Im(Tu) having a decay constant ∼ MGUT,
which would be harmless if they are light enough and may lead to the
axiverse phenomenology discussed in Arvanitaki et. al, arXiv:0905.4720.



Moduli stabilization and SUSY breaking in KKLT axiverse

After integrating out all massive U(1)A vector superfields as well as the
complex structure moduli and the dilaton stabilized by flux, the effective
theory contains three sectors:

i) Kähler moduli sector,
ii) PQ sector which would break spontaneously the anomalous global

U(1) symmetries which are the low energy remnant of U(1)A with
ξFI � M2

ST ,

iii) the MSSM sector.

Leff =

∫
d4θ

[
CC∗Ωbulk + C2C∗2e4A0 P0

]
+

∫
d2θC3W + ...,

Ωbulk = −3e−K0(TM+T∗M)/3 + Yi(TM + T∗M)X∗i Xi + Yα(TM + T∗M)Φ∗αΦα

W = W0 +
∑

m

Ame−amTm + WPQ(Xi) + WMSSM(Φα)

(
{TM} = {Tm,Tu}, {Xi} = PQ sector matter, {Φα} = MSSM matter

)



A particularly attractive feature of this setup is that much of low energy
physics is independent of the detailed form of K0 and YI (I = i, α) as long as

* K0 is of no-scale form:

KMN̄KMKN̄ = 4, (TM + T∗M)KM = −3, KMN̄KN̄ = −(TM + T∗M),

* YI(TM + T∗M) obey the simple scaling law:

YI(λ(TM + T∗M)) = λnI YI(TM + T∗M),

which are true at leading order in α′ and string-loop expansions.
Grimm,Louis(2004);Conlon,Cremades,Quevedo(2007)



Moduli stabilization

Tm are stabilized by the NP superpotential,

∆WNP =
∑

m

Ame−amTm ,

while tu = Tu + T∗u are stabilized by the uplifting potential

Vlift = e4A0 P0e2K0(TM+T∗M)/3.

* Moduli masses:

mTm ' 2m3/2 ln(MPl/m3/2, mtu '
√

2m3/2, mau = 0

* Modulino masses:

mT̃m
' 2m3/2 ln(MPl/m3/2), mT̃u

' m3/2

* Universal moduli F-terms
(
up to small corrections suppressed by

1/ ln(MPl/m3/2)
)
:

Fm

Tm + T∗m
=

Fα

Tα + T∗α
=

m3/2

ln(MPl/m3/2)



Of course, we also have the SUGRA compensator F-component

FC

C0
' m3/2

which is responsible for the anomaly mediated SUSY breaking, and also
plays a key role in generating intermediate axion scale in KKLT axiverse
scenario.



Generation of an intermediate QCD axion scale

For the PQ sector, we consider a simple example to generate an intermediate
axion scale:

U(1)PQ : X1 → eiαX1, X2 → e−3iαX2

WPQ =
λ

MPl
X3

1X2

Xi get model-dependent moduli and anomaly mediated soft masses of
O(m3/2/8π2), however Xi are stabilized mostly by an interplay between the
model-independent compensator-mediated A term with A ' m3/2 and the
Planck-scale suppressed F-term potentials:

VPQ '
∑

i

∣∣∣∣∂WPQ

∂Xi

∣∣∣∣2 +

(
λm3/2

MPl
X3

1X2 + c.c
)

⇒ |X1|2 ' 3|X2|2 '
1

3
√

3λ
m3/2MPl,

FX1

X1
' FX2

X2
' −2

3
m3/2.

⇒ Intermediate scale QCD axion with faQCD ∼
√

m3/2MPl ∼ 1011 GeV.



MSSM soft terms:

* Anomaly mediation:

manomaly
soft ∼ 1

8π2

FC

C0
∼

m3/2

8π2

* Moduli mediation:

mmoduli
soft ∼ FTM

TM
∼

m3/2

ln(MPl/m3/2)

* Gauge mediation if some of the PQ breaking fields Xi couple to the gauge
charged messengers Φ + Φc:

∆W = κXiΦΦc → mgauge
soft ∼

1
8π2

FXi

Xi
∼

m3/2

8π2

These three mediations give comparable contribution to soft masses, so the
KKLT axiverse scenario gives rise to mixed-moduli-anomaly-gauge
mediation (= deflected mirage mediation) yielding a quite distinctive pattern
of sparticle masses. KC,Jeong,Okumura,Nakamura,Yamaguchi(2009)



As the moduli F-components are universal,

FTM

TM + T∗M
=

m3/2

ln(MPl/m3/2)
≡ M0,

we don’t need to know the explicit moduli-dependence of fa and Yα to
determined the moduli-mediated soft masses, but the information on the
scaling weights is enough:

Mmoduli
a = FTM∂TM ln Re(fa) = M0

Amoduli
αβγ = −FTM∂TM ln

(
λαβγ

YαYβYγ

)
= (nα + nβ + nβ)M0

m2moduli
α = −FTM FT∗N ∂TM∂T∗N ln Yα = nαM2

0

K = K0(TM + T∗M) + Zα(TM + T∗M)Φ∗αΦα + ...

Ω = −3e−K/3 = −3e−K0/3 + YαΦ∗αΦα + ...

W = W0(Tm) +
1
6
λαβγΦαΦβΦγ + ...

λαβγ = moduli-independent holomorphic Yukawa couplings

Yα(TM + T∗M) = e−K0(TM+T∗M)/3Zα(TM + T∗M)



Since the scaling weights nα are typically flavor-blind, we can assure that
soft masses are flavor-universal, even without knowing the explicit form of
the matter Kähler metric Zα(TM + T∗M)



Conclusions

* String theory provides the best theoretical framework to realize the axion
solution to the strong CP problem.

* Typical string theory axion has a decay constant ∼ GUT scale, so we may
need a mechanism to lower the QCD axion scale down to the intermediate
scale ∼ 109−11 GeV, while keeping MGUT ' 2× 1016 GeV.

* Compactification with anomalous U(1) gauge symmetry can provide such
a mechanism, generating an intermediate QCD axion scale fa ∼

√
m3/2MPl

by an interplay between SUSY breaking effects and Planck-scale-suppressed
effects.

* A simple and plausible generalization of KKLT setup is proposed to
accommodate an intermediate scale QCD axion as well as ultralight GUT
scale axions for axiverse.

* Such KKLT axiverse scenario gives rise to the deflected mirage mediation
of SUSY breaking, yielding a quite distinctive pattern of soft masses.


