
Takahiro Tanaka

in collaboration with Yuko Urakawa （Waseda univ.)
arXiv:1009.2947, arXiv:1007.0468 
PTP122:  779 arXiv:0902.3209
PTP122:1207 arXiv:0904.4415

and with Jaume Garriga (Barcelona univ.)
Phys.Rev.D77:024021 arXiv:0706.0295



Non-Gaussianity  

 Free field approximation is not sufficient. But once we 
take into account interaction, we may feel uneasy to continue 
to neglect loop corrections,

 CMB non-Gaussianity might be measurable!

Non-linear dynamics 

(Komatsu et al, ApJ supple (2010))
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although it is a completely separate issue whether loop corrections 
during inflation are under our control or not. 



Various IR issues
IR divergence coming from k-integral 
Secular growth in time ∝(Ht)n

Adiabatic perturbation,
which can be locally absorbed by the choice of time slicing. 

Isocurvature perturbation
≈ field theory on a fixed curved background

Tensor perturbation
Background trajectory

in field space
isocurvature
perturbation

adiabatic 
perturbation



§ Isocurvature perturbation  
≈ field theory on a fixed curved background

m2 > 0 : de Sitter invariant vacuum state with interaction 
exists.
If we choose de Sitter invariant vacuum at the beginning, 
the state remains unchanged. 
So, there is no secular time evolution in this case!
However, if the initial state is different, secular time 
evolution will happen.
Question is whether this is just a relaxation process to a 
true vacuum state or a kind of instability? 

≈ field theory in de Sitter space

(Marolf and Morrison (1010.5327 ))

(Polyakov)



: a minimally coupled scalar field with a small mass (m2≪H2) in dS.

potential

summing up only long wavelength modes beyond the Horizon scale

distribution
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m2⇒0
Large vacuum fluctuation

For small mass limit, another issue arises.

If the field fluctuation is too large, it is 
easy to imagine that a naïve 
perturbative analysis will break down 
once interaction is introduced. 

De Sitter inv. vac. state does not exist in the massless limit.
Allen & Folacci(1987)
Kirsten & Garriga(1993)
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Let’s consider local average of  :

Equation of motion for :
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More and more short wavelength modes 
participate in  as time goes on.

in slow roll approximation

Newly participating modes 
act as random fluctuation

32 kHkk 
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In the case of massless 4 :  2 → 


2H

Namely, in the end, thermal 
equilibrium is realized : V ≈ T 4

(Starobinsky & Yokoyama (1994))



 Distant universe is quite different from ours.

 Each small region in the above picture 
gives one representation of many parallel universes. 

 However: wave function of the universe
= “a superposition of all the possible parallel universes”

 Now, “simple expectation values are really observables for us?” 

Our observable 
universe

to be so to keep translational invariance of the wave fn. of the universe



No!

“Are simple expectation values  
really observables for us?”



If we subtract the local average

Identifying the dominant 
component of IR fluctuation

O(k) unless |x|≫L

   kk
kx  ~3 Wekd i

    xx  Wxd 3

   :   x

size of our 
observable
universe.

Window function
W(|x|)

|x|

L

Dominant IR fluctuation is concentrated on 

then,
with





Decoherence

Cosmic expansion

Statistical ensemble 

Various interactions

Superposition of wave packets  

Correlated 



Before After

  Un-correlated 

    

    cbacba
 ccbbaa

Coarse graining
Unseen d.o.f.

Our classical observation 
picks up one of the 

decohered wave packets. 
Sorry, but this 
process is too 
complicated.



 

|a＞ |b＞|c＞



 Discussing quantum decoherence is annoying.
 Which d.o.f. to coarse-grain?
 What is the criterion of classicality?

 To avoid subtle issues about decoherence, 
we propose to introduce a “projection operator”.

Picking up one history is difficult. 
Instead, we throw away the other histories 
presumably uncorrelated with ours.  









 2

2

2
exp


PPPO

We compute

with

over-estimate of fluctuations 



 

(Urakawa & Tanaka PTP122:1207)



∵ Expansion in terms of interaction-picture fields:

Integration over the vertex y is restricted to the region within the past light-cone. 

      yyGyxGyxGyd ,,',4

One of Green fns. is retarded, GR.

            
3

intint4
4

int , yyxGyydxx Rpo 

RG
x y 

<int(x’)int(y)>

Window fn. For each y, IR fluctuation of int (y) is 
suppressed since  is restricted.

OK to any order of loop expansion!

<int(y)int(y)>y x x'
tim

e

x’ 
<int(y)int(y)>

Projection acts only on the external lines.
How the contribution from the IR modes at k ≈ kmin is suppressed?

RG



 ≈ r :past light cone
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Then, G( y , y) ≈ <int(y)int(y)> becomes large.

y-integral looks divergent, but
homogeneous part of is constrained by the projection.
xGR(x , y ) → 0 faster than GR(x , y ) for y→ ∞

looks OK, at least, at one-loop level !

Past light cone during inflation 
shrinks down to horizon size. 

y
      yyGyxGyxGxd R ,,',4

GR (x , y) →constant for y→ ∞

However, for y→  ∞, the suppression due to constraint on  gets weaker. 
�����

Window fn.
tim

e



~ secular growth in time



(Tsamis & Woodard (1996,1997))

2-loop order computation of <h> in pure gravity with cosmological 
constant.

There are several issues:
1) Initial vacuum is dS inv. free vacuum, so it might be just   

a relaxation process toward the true interacting dS inv. vac. 

2) The expansion rate of the universe is not gauge invariant when 
there is no marker to specify the hypersurface.

3) If we evaluate the scalar curvature R instead of H, R is really 
constant.  

    2441 HtHHtHeff 

Screening of ? 

Graviton is frequently analogous to a massless minimally coupled 
scalar field, but dS inv. vacuum exists for gravition. (Alen & Turyn (1987))

(Garriga & Tanaka (2008))

(Unruh (1998))

Graviton in the long wavelength limit is locally gauge, isn’t it? 
But, proving that there is no IR effect from graviton is not trivial.



         min
3 /log kaHkPkdyy 

Factor coming from this loop: 

scale invariant spectrum 

31 k
curvature perturbation in 

co-moving gauge. - no typical mass scale 

0 Transverse 
traceless

 ijij
N

ij heh   22

Details will be explained by Y.U. next.



 In conventional cosmological perturbation theory, 
gauge is not completely fixed.

Yuko Urakawa and T.T., PTP122: 779 arXiv:0902.3209

Time slicing can be uniquely specified:  =0    OK!

but spatial coordinates are not.
j

ji
j
j hh ,0 

ijjiijgh ,,  
Residual gauge d.o.f.

Elliptic-type differential     
equation for  i.

Not unique locally!

 To solve the equation for  i, by 
imposing boundary condition at 
infinity, we need information about 
un-observable region.

 i

observable 
region time

direction



 The local spatial average of  can be set to 0 identically  
by an appropriate gauge choice.

 Even if we choose such a local gauge, the evolution 
equation for  formally does not change and, it is 
hyperbolic. So the interaction vertices are localized 
inside the past light cone. 

 Therefore, IR effect is completely suppressed as long as 
we compute  in this local gauge. 



 Local gauge conditions. 
 i Imposing boundary 

conditions on the boundary 
of observable region

But unsatisfactory?
The results depend 

on the choice of 
boundary conditions

 Genuine gauge-invariant quantities. 

No influence from outside
Complete gauge fixing ☺

Correlation functions for 3-d scalar curvature on =constant slice. 
R(x1) R(x2) Coordinates do not have gauge invariant meaning.

x origin

x(XA=1) =XA + xA
x

Specify the position by solving geodesic eq 022 dxD i

ii XdDx 
0

with initial condition 

XA

gR(XA) := R(x(XA=1)) = R(XA) +xA R(XA) + …
gR(X1) gR(X2) should be genuine gauge invariant.

Translation invariance of the vacuum state takes 
care of the ambiguity in the choice of the origin.

(Giddings & Sloth 1005.1056)
(Byrnes et al. 1005.33307)



3) Giddings and Sloth’s computation assumed adiabatic vacuum and they 
found no IR divergence. This means that our generalized condition of 
scale invariance should be compatible with the adiabatic vacuum choice. 

1) To avoid IR divergence, the initial quantum state must be “scale 
invariant/Bunch Davies” in the slow roll limit. 

2) To the second order of slow roll, a generalized condition of “scale 
invariance” to avoid IR divergence was obtained, and found to be 
consistent with the EOM and normalization.

Âjtäx yâÇvà|ÉÇ Åâáà ux {ÉÅÉzxÇxÉâá |Ç à{x Üxá|wâtÄ ztâzx w|Üxvà|ÉÇÊ



Isocurvature mode 
Potentially large IR fluctuation of isocurvature mode is physical.

- Stochastic inflation -
But what we really measure is not a simple expectation value. 
We need to develop an efficient method to compute “conditional 

probability” in field theory. 
Tensor perturbation

There seem to be no IR cumulative effect of tensor modes. 
But rigorous proof is lacking.

Adiabatic mode
Adiabatic perturbation in the long wavelength limit is locally gauge.
In the local gauge, in which the local average of perturbation is set 

to 0, there is no large IR effect. 
But, computation in the local gauge is not easy to perform.
Even if we compute in global gauge, true gauge-invariant 

observables should be free from large IR effects. 
However, possible quantum state is restricted since the residual 

gauge is not completely fixed. 


