IR issues in the inflationary universe

Takahiro Tanaka

in collaboration with Yuko Urakawa (Waseda univ.) arXiv:1009.2947, arXiv:1007.0468 PTP122: 779 arXiv:0902.3209 PTP122:1207 arXiv:0904.4415 and with Jaume Garriga (Barcelona univ.) Phys.Rev.D77:024021 arXiv:0706.0295

Non-Gaussianity

CMB non-Gaussianity might be measurable!

 $f_{NL}^{local} = 32 \pm 21$ (Komatsu et al, ApJ supple (2010) $f_{NL}^{equil} = 26 \pm 140$ $f_{NL}^{orthogonal} = -202 \pm 104$

→ Non-linear dynamics

Free field approximation is not sufficient. But once we take into account interaction, we may feel uneasy to continue to neglect loop corrections,

although it is a completely separate issue whether loop corrections during inflation are under our control or not.

Various IR issues

- IR divergence coming from k-integral Secular growth in time $\propto (Ht)^n$
- Adiabatic perturbation,
 - which can be locally absorbed by the choice of time slicing.

adiabatic

perturbation

- Isocurvature perturbation
 - \approx field theory on a fixed curved background
- Tensor perturbation
 - isocurvature perturbation

Background trajectory in field space

§ Isocurvature perturbation

≈ field theory on a fixed curved background ≈ field theory in de Sitter space

 $m^2 > 0$: de Sitter invariant vacuum state with interaction exists. (Marolf and Morrison (1010.5327)

If we choose de Sitter invariant vacuum at the beginning, the state remains unchanged.

So, there is no secular time evolution in this case!

However, if the initial state is different, secular time evolution will happen. (Polyakov)

Question is whether this is just a relaxation process to a true vacuum state or a kind of instability?

For small mass limit, another issue arises. ϕ : a minimally coupled scalar field with a small mass ($m^2 \ll H^2$) in dS $2m^{2}$ $\left\langle \phi^2 \right\rangle^{reg} \approx \int_0^{aH} d^3k \, \frac{H^2}{k^3} \left(\frac{k}{aH}\right)^{\overline{3H^2}} \approx \frac{H^4}{m^2}$ summing up only long wavelength modes beyond the Horizon sc De Sitter inv. vac. state does not exist in the massless limit. Allen & Folacci(1987) Kirsten & Garriga(1993) distribution $m^2 \Rightarrow$ Large vacuum fluctuation potential If the field fluctuation is too large, it is easy to imagine that a naïve perturbative analysis will break down once interaction is introduced.

Stochastic interpretation

CLet's consider local average of ϕ : (Starobinsky & Yokoyama (1994)

 $\overline{\phi} = \int_0^{aH} d^3k \,\phi_k e^{ikx}$

More and more short wavelength modes participate in $\overline{\phi}$ as time goes on.

Equation of motion for ϕ :

 $\frac{d\overline{\phi}}{dN} = -\frac{V'(\overline{\phi})}{3H^2} + \frac{f}{H}$

in slow roll approximation

Newly participating modes act as random fluctuation $\langle \phi_k \phi_{-k} \rangle \approx H^2/k^3$

 $= \langle f(N)f(N')\rangle \approx H^4 \delta(N-N')$

In the case of massless $\lambda \phi^4 : \langle \overline{\phi}^2 \rangle \rightarrow \frac{H^2}{\sqrt{\lambda}}$

Namely, in the end, thermal equilibrium is realized : $V \approx T^4$

Wave function of the universe ~parallel universes

Distant universe is quite different from ours.

Our observable universe

- Each small region in the above picture
 - gives one representation of many parallel universes.
- However: wave function of the universe
 - = "a superposition of all the possible parallel universes"
 to be so to keep translational invariance of the wave fn. of the universe
- Now, "simple expectation values are really observables for us?"

"Are simple expectation values really observables for us?"

No!

Identifying the dominant component of IR fluctuation

Dominant IR fluctuation is concentrated on ϕ

Substitute of picking up one decohered history

- Discussing quantum decoherence is annoying.
 - Which d.o.f. to coarse-grain?

 $\Psi(\phi)$

- What is the criterion of classicality?
- To avoid subtle issues about decoherence,

we propose to introduce a "projection operator".

Picking up one history is difficult. Instead, we throw away the other histories presumably uncorrelated with ours.

over-estimate of fluctuations

We compute $\langle PO \rangle / \langle P \rangle$ with $P = \exp\left(-\frac{\overline{\phi}^2}{2\sigma^2}\right)$

IR finiteness

Projection acts only on the external lines. How the contribution from the IP modes at $k \sim k$

How the contribution from the IR modes at $k \approx k_{\min}$ is suppressed?

Integration over the vertex y is restricted to the region within the past light-con

For each η_y , IR fluctuation of $\phi_{int}(y)$ is suppressed since $\overline{\phi}$ is restricted.

OK to any order of loop expansion!

 $\langle \phi_{int}(x')\phi_{int}(y) \rangle$

IR finiteness

~ secular growth in time

Past light cone during inflation shrinks down to horizon size.

$$ds_{de\ Sitter}^2 \approx \frac{1}{\left(-H\eta\right)^2} \left(-d\eta^2 + dr^2 + \cdots\right)$$

$$-\eta \approx \Delta \eta = \Delta r$$
 :past light cone
 $R_{light cone} = \frac{\Delta r}{-H\eta} \rightarrow \frac{1}{H}$

However, for $\eta_y \to -\infty$, the suppression due to constraint on $\overline{\phi}$ gets weaker. Then, $G(y, y) \approx \langle \phi_{int}(y) \phi_{int}(y) \rangle$ becomes large.

$$\phi = \int_{y} \phi \approx \int d^{4}x G_{R}(x, y) G(x', y) G(y, y)$$

$$G_{R}(x, y) \rightarrow \text{constant for } \eta_{y} \rightarrow -\infty$$

 η_{v} -integral looks divergent, but

Window fn.

ime

homogeneous part of ϕ is constrained by the projection.

 $\partial_x G_R(x, y) \to 0$ faster than $G_R(x, y)$ for $\eta_y \to -\infty$

looks OK, at least, at one-loop level !

§ About Graviton loop

2-loop order computation of $\langle h_{\mu\nu} \rangle$ in pure gravity with cosmological constant. $H_{eff}(t) = H \left\{ 1 - \kappa^4 H^4 (Ht)^2 \right\}$ (Tsamis & Woodard (1996,1997)

Screening of *A*?

There are several issues:

-) Initial vacuum is dS inv. *free* vacuum, so it might be just a relaxation process toward the true interacting dS inv. vac. Graviton is frequently analogous to a massless minimally coupled scalar field, but dS inv. vacuum exists for gravition. (Alen & Turyn (1987))
- 2) The expansion rate of the universe is not gauge invariant when there is no marker to specify the hypersurface. (Unruh (1998))
- 3) If we evaluate the scalar curvature *R* instead of *H*, *R* is really (Garriga & Tanaka (2008))

Graviton in the long wavelength limit is locally gauge, isn't it? But, proving that there is no IR effect from graviton is not trivial.

Basic idea of the proof of IR finiteness in single field inflation

- The local spatial average of ζ can be set to 0 identically by an appropriate gauge choice.
- Even if we choose such a local gauge, the evolution equation for *ζ* formally does not change and, it is hyperbolic. So the interaction vertices are localized inside the past light cone.
- Therefore, IR effect is completely suppressed as long as we compute ζ in this local gauge.

Summary of what we found

1) To avoid IR divergence, the initial quantum state must be "scale invariant/Bunch Davies" in the slow roll limit.

'Wave function must be homogeneous in the residual gauge direction"

2) To the second order of slow roll, <u>a generalized condition of "scale</u> <u>invariance"</u> to avoid IR divergence was obtained, and found to be consistent with the EOM and normalization.

3) Giddings and Sloth's computation assumed adiabatic vacuum and they found no IR divergence. This means that our generalized condition of scale invariance should be compatible with the adiabatic vacuum choice.

Summary

Isocurvature mode

- Potentially large IR fluctuation of isocurvature mode is physical.
 Stochastic inflation -
- But what we really measure is not a simple expectation value.
- We need to develop an efficient method to compute "conditional probability" in field theory.

Tensor perturbation

- There seem to be no IR cumulative effect of tensor modes.
- But rigorous proof is lacking.

Adiabatic mode

- Adiabatic perturbation in the long wavelength limit is locally gauge.
- In the local gauge, in which the local average of perturbation is set to 0, there is no large IR effect.
- But, computation in the local gauge is not easy to perform.
- Even if we compute in global gauge, true gauge-invariant observables should be free from large IR effects.
- However, possible quantum state is restricted since the residual gauge is not completely fixed.

