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Non-Gaussianity as a probe of the early Universe

The early Universe can be probed with primordial 
density fluctuations.

CMB

Large scale structure

Primordial 
fluctuations



Non-Gaussianity as a probe of the early Universe

Observables I: Power spectrum

Pζ = As

(
k

kref

)ns−1

Observables II: Gravitational waves

r =
PT

Pζ
(Tensor-to-scalar ratio)



Non-Gaussianity as a probe of the early Universe

Observables III: Bispectrum (non-Gaussianity)

Usually parametrized with the parameter  fNL

Standard inflation models

Curvaton, inhomogeneous reheating,  
multi-brid inflation, modulated 
trapping, .......

possiblefNL = O(10) ∼ O(100)

f local
NL = 32± 21 (68% CL) f equil

NL = 26± 140 (68% CL)
[WMAP7, Komatsu et al, 2010 ]

(we consider “local-type” in this talk.)

fNL < O(1)



Non-Gaussianity as a probe of the early Universe

There are many models giving large fNL

fNL is NOT enough to differentiate models

We need something beyond  fNL:

Using information of trispectrum (4-pt. function)

Looking at scale-dependence of fNL

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].

This talk



Scale-dependence of fNL

fNL(k) = fNL(kref)
(

k

kref

)nfNL

k ≡ (k1k2k3)1/3

where

Definition: nfNL ≡
d ln |fNL|

d ln k
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In the following, we consider “local type”: ζ = ζG +
3
5
fNLζ2

G

〈
ζ("k1)ζ("k2)ζ("k3)

〉
= (2π)3B(k1, k2, k3)δ("k1 + "k2 + "k3)



Scale-dependence of fNL
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Worked example for nfNL

Curvaton model
[Enqvist & Sloth; Lyth & Wands;  Moroi & TT, 2001]



Curvaton model
[Enqvist & Sloth; Lyth & Wands;  Moroi & TT, 2001]

Curvaton + Inflaton mixed scenario
[Langlois, Vernizzi, 2004; Moroi, TT, Toyoda, 2005; 
Ichikawa, Suyama, TT,  Yamaguchi, arXiv:0802.4138 ]

Curvaton with self-interaction
[Enqvist, Nurmi astro-ph/0508573;  
Enqvist, TT,  arXiv:0807.3069;
Enqvist, Nurmi, Taanila, TT, arXiv:0912:4657]

Worked example for nfNL



Inflaton

curvaton

ρφ

ρσ

ρ

time (scale factor)

Inflation

A brief thermal history of the curvaton scenario

U(σ)

σ

Inflation is driven by the inflaton.

Assumptions:

U(σ) =
1
2
m2

σσ2

Potential for the curvaton is

mσ ! Hinf

(the curvaton almost stays at the 
initial position during inflation.)

Eq. of motion for a scalar field: σ̈ + 3Hσ̇ +
dU

dσ
= 0



Inflaton

curvaton

ρφ

ρσ

ρ

time (scale factor)

Inflaton decays into radiation

Inflation

(a : scale factor)

H ∝ a−2

A brief thermal history of the curvaton scenario

ρr ∝ a−4



Inflaton

curvaton

ρφ

ρσ

ρ

time (scale factor)

Curvaton begins to oscillate

H > mφ

H ∼ mφ

Inflation

Curvaton behaves 
like matter ρσ ∝ a−3

U(σ)

σ

U(σ)

σ

U(σ) =
1
2
m2

σσ2

Here we assume:

A brief thermal history of the curvaton scenario

(When H ∼ mσ)



Inflaton

curvaton

ρφ

ρσ

ρ

time (scale factor)

Curvaton decays into radiation

Inflation

(When H ∼ Γσ)

A brief thermal history of the curvaton scenario

Curvaton could decay before/after it dominates the Universe



Mixed curvaton-inflaton model



Mixed curvaton-inflaton model

the curvature perturbation:

ζ = Nφδφ∗ +
1
2
Nφφδφ2

∗ + Nσδσ∗ +
1
2
Nσσδσ2

∗

Inflaton Curvatonζinf ζcur

Even in the curvaton model, fluctuations of the inflaton can 
exist and contribute to the curvature fluc.

fdec =
3ρσ

4ρr + 3ρσ

∣∣∣∣
dec

∼ ρσ

ρtotal

∣∣∣∣
dec

where:

ε =
1
2
M2

pl

(
Vφ

V

)2

relative size

ζcur

ζinf
∼ fdec

√
ε
Mpl

σ∗



Spectral index, tensor mode and nonG scale-dep.

Mixed curvaton-inflaton model

Small-field inflation case 

nfNL ! −2(ns − 1) ∼ 0.08
(might be)

(ε! η)

r ! O(1)

---

---

detectable even with Planck!
[Byrnes et al. 2009]

r =
16ε

1 + R

R ≡ Pcur

Pinf
ns − 1 = −2ε + 2ησσ −

4ε− 2η

1 + R

ησσ = M2
pl

Uσσ

3H2
∗

where:

nfNL =
4

1 + R
(2ε + ησσ − η)

6
5
fNL =

N2
σNσσ + N2

φNφφ

(N2
σ + N2

φ)2

=
R2f (cur)

NL + f (inf)
NL

(R + 1)2



Spectral index, tensor mode and nonG scale-dep.

Mixed curvaton-inflaton model

r =
16ε

1 + R

R ≡ Pcur

Pinf

ns − 1 = −2ε + 2ησσ −
4ε− 2η

1 + R

ησσ = M2
pl

Uσσ

3H2
∗

where:

nfNL =
4

1 + R
(2ε + ησσ − η)

Large-field inflation case (e.g. chaotic inflation) (ε ∼ η)
sizable r (>O(0.01)) and large fNL (>O(10)) can both 
possible

(Most models with large fNL give very small r)



Self-interacting curvaton model



Self-interacting curvaton model

In some curvaton models, the curvaton potential can deviate 
from a (purely) quadratic form.

When an MSSM flat direction is the curvaton, its potential can be given as:
For example,

V (σ) =
1
2
m2

σσ2 +
λ2σ2(n−1)

2n−1M2(n−3)

The form of the potential can deviate from the quadratic one.

Interesting prediction for the scale-dependence of non-Gaussianity.



nfNL in the self-interacting curvaton

nfNL =
V

′′′
(σ∗)

3H2
∗

(
σoscσ′

osc

(σ′
osc)2 + σoscσ

′′
osc

)

When the potential is purely quadratic,  no scale-dependence 

Non-zero nfNL  may indicate a self-interacting curvaton.

In the following, we assume: V (σ) =
1
2
m2

σσ2 + λσn

Scale-dependence of fNL



nfNL in the self-interacting curvaton
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[Byrnes, Enqvist, TT 2010]

V (σ) =
1
2
m2

σσ2 + λσp

s ≡ 2λ

(
σ∗
mσ

)p−2



nfNL in the self-interacting curvaton
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[Byrnes, Enqvist, TT 2010]

(case with n=6)



Using both Bispectrum and trispectum 



Using bispectrum and trispectum

There are some relation between the non-linearity 
parameters in most models:

fNL

τNL gNL

By using “consistency relation” between these parameters, 
we can divide the models into some categories.

:Bispectrum

:Tripectrum
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τNL < (36/25) fNL
2

fNL - τNL diagram

Single-source model

Multi-source model

τNL >

(
6
5
fNL

)2

Constrained multi-source
 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].



-1
-10

-102

-103

-104

-105
5 10 100

fNL

g N
L

Multi-curvaton (case I)

Mixed curvaton (R=0.01)Multi-brid (quadratic)

Inhom. end of thermal inf.
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(pure) Curvaton 

(pure) Curvaton (w/ self-int. n=8) 

Multi-curvaton (case 2)

Inhom. end of hybrid inf.

(pure) Modulated reheating

Modulated trapping

Multi-brid (linear)

Mixed Modulated reh. (R=0.01)Modulated curvaton (Region 2)

fNL - gNL diagram

“Suppressed” gNL Type

gNL ∼ (suppression factor)× fNL

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].
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Multi-curvaton (case I)

Mixed curvaton (R=0.01)Multi-brid (quadratic)

Inhom. end of thermal inf.
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Multi-curvaton (case 2)

Inhom. end of hybrid inf.

(pure) Modulated reheating

Modulated trapping

Multi-brid (linear)

Mixed Modulated reh. (R=0.01)Modulated curvaton (Region 2)

fNL - gNL diagram

“Linear” gNL Type

gNL ∼ fNL

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].
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Multi-curvaton (case I)

Mixed curvaton (R=0.01)Multi-brid (quadratic)

Inhom. end of thermal inf.

 1
 10
102
103
104
105

(pure) Curvaton 

(pure) Curvaton (w/ self-int. n=8) 

Multi-curvaton (case 2)

Inhom. end of hybrid inf.

(pure) Modulated reheating

Modulated trapping

Multi-brid (linear)

Mixed Modulated reh. (R=0.01)Modulated curvaton (Region 2)

fNL - gNL diagram

“Enhanced” gNL Type

gNL ∼ fn
NL

 [Suyama, TT, Yamaguchi, Yokoyama, 1009.1979].



Summary

Information on fNL  is NOT enough to differentiate 
models of primordial fluctuations.

Scale-dependence of non-Gaussianity (nfNL) can be 
useful to discriminate models of large non-G.

Some models (e.g.. mixed, self-interacting curvaton) 

predict large nfNL which can be testable with future obs.

Scale-dependence of non-G. might be worth 
investigating more (e.g., in other models)


