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The nature of primordial fluctuations

1

First of all, slow roll condition implies Gaussian statistics 1 2 1 2( ) ( ) ( , )P  k k k k

Moreover, initial homogeneity implies to statistical homogeneity 1 2 1 2 1( ) ( ) ( ) ( )P   k k k k k

And, cosmic no-hair suggests statistical isotropy 1 2 1 2 1 1( ) ( ) ( ) ( | |)P k    k k k k k

Finally, deSitter invariance yields scale free spectrum ( ) .P k const

Thus we have the following predictions:

It is believed that the origin of the large scale structure of the universe
is in remaining quantum fluctuations during de Sitter inflation.

Once the inflation occurs, the cosmic no-hair conjecture suggests that
the exponential expansion erases any classical anisotropy.

As you know the horizon problem can be resolved by slow roll inflation.

We need to assume the initial homogeneity in order to have inflation.

The above predictions are robust at the zeroth order.



Precision tests of inflation 
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There is small non-gaussianity of the order of the slow roll parameter.

There should be a slight tilt because the expansion is not exactly deSitter.
The deviation from deSitter can be characterized by the slow roll parameter.
Hence, the tilt should be of the order of the slow roll parameter.

Statistical isotropy?

Scale free spectrum?

Gaussian ?

However, precision cosmology forces us to look at fine structures of fluctuations!

Thus, it is legitimate to seek a slight deviation from the statistical isotropy.

In this talk, we argue that the statistical anisotropy is ubiquitous
1 2 1 2 1( ) ( ) ( ) ( )P   k k k k k

In fact, we have the following theoretically well motivated models for that.



Gauge kinetic function in the sky
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Superstring theory

Kahler potential    K 

Superpotential W

Gauge kinetic function f

Supergravity
low energy

However, the roll of vector fields in inflationary scenario has been overlooked.
The cosmological roll of K and W in inflation has been discussed so far.

The purpose of this talk is to give a light on the roll of gauge kinetic function in inflation
and show that

Anisotropic inflation is naturally realized due to gauge kinetic function. 
As a consequence, statistical anisotropy is produced in supergravity.
There arises cross correlation between scalar and tensor perturbations. 
Thus, cosmological observations can constrain gauge kinetic functions! 
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Inflation with a gauge kinetic function



A simple model
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For homogeneous background, the time component can be eliminated by gauge 
transformation.
Let the direction of the vector be x - axis

(0,  ( ),          ,          )A v t  ( )t 

Action

Scalar Vector

F A A       

gauge kinetic function
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Then, the metric should be Bianchi Type-I

Scale Factor

Anisotropy

Plane Symmetry
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The action reduces to 

const. of integration
2 4 ( ) Ev f e    



Basic equations
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Hamiltonian Constraint
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Scalar field
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Isotropic Power-law Inflation
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 22 2 4/ 2 2 2ds dt t dx dy dz    

1

Exponential functional

Power-law ansatz

This solution represents an isotropic power-law inflation

In order to have a sufficient inflation, we need 

Is this a unique exact solution?

Let us start with a natural choice for potential and gauge kinetic functions.

In this case, we know there exists power-law inflation



Anisotropic Power-law inflation
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Apparently, the expansion is anisotropic and its degree of anisotropy is given by

Anisotropic inflation

consistency check

slow roll parameter

With the same ansatz, we obtained the following new solution



Phase space analysis
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Isotropic fixed point    , , 0, ,0X Y Z  
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Anisotropic fixed point

2 2 4 0   This exists only for

Autonomous system

To see which one is dynamically selected, we move on to



Linear stability analysis
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2 2 4 0   
Isotropic power-law inflation is an attractor.

2 2 4 0   

Isotropic power-law inflation is a saddle point.

Anisotropic power-law inflation is an attractor.

Anisotropic fixed point does not exist.







The whole picture
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Isotropic inflation

Anisotropic inflation

2 2 4 0   

After  a transient isotropic inflationary phase, 
the universe enter into an anisotropic inflationary phase.
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In order for the vector contribution to increase, we need the condition

opposite to the potential force 
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Inflation continues if 

The vector energy density saturates at

2 2 4 4( ) 1 1
2 2

VE f e f
V V f

 




  

 

General Potential

Once the vector contributes the dynamics of the inflaton field,  
the  ratio does not increase any more

22 2 4 4

2

1V VE f e f
H V V f V

 
 






    
    

 

Consider the slow roll phase

at this saturating point

Because of this vector contribution, we have anisotropy of the order of

1



Example : chaotic inflation  
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grows fast

becomes constant
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We find that the degree of anisotropy is written by the slow-roll parameter.

: A universal relation 1cI
c




A simple choice is 1c 



COSMOLOGICAL PERTURBATION THEORY
IN A SIMPLE BIANCHI UNIVERSE
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Flat slicing gauge in anisotropic universe
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vector perturbations

scalar perturbations
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In our case, we have only 2-dimensional rotational symmetry

Vector type perturbations can be characterized in a special frame as follows

There is no tensor type perturbations in 2-d.
2V

The blue variables are physical.

Scalar type perturbations are 



Structure of couplings
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Key term

Background quantity
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The main features of the action can be understood by looking at the following term

Now, we take variations

Notice the following relations
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Reduced Quadratic Action: Slow roll Approximation
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The nature of primordial fluctuations 
in anisotropic inflation



2ˆ1 ( )g   k n

Statistical anisotropy for a test field
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 2 2 2 4 2 2 2 2Ht t tds dt e e dx e dy dz         

0(   ) ( )P P k 

In slow-roll phase    , we have the metric:

the power spectrum:

k

may be detectable if

Groeneboomn & Eriksen (2008)

( ,  .)H      are almost const

Deviation from isotropic part depends on k̂
Isotropic part

Ackerman et al.  (2007) analyzed a test field on this background and found

1.27

max

4000.025g
 

  
 

max0.3%   with 2000  (Planck)

Since the expansion is anisotropic, we expect statistically anisotropic fluctuations.

Since we have a concrete anisotropic inflation model,
we can go beyond the test field analysis.



Perturbative estimates of statistical anisotropy
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Mode functions

Interaction Hamiltonian

Assuming that I is small, we can calculate corrections to the power spectrum

In the isotropic limit, we have
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Predictions of anisotropic inflation 

statistical anisotropy in curvature perturbations 

cross correlation between curvature perturbations and primordial GWs

small linear polarization in primordial GWs

statistical anisotropy in primordial GWs

TB correlation in CMB
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Thus, we found the following nature of primodordial fluctuations in anisotropic inflation.



CMB spectrum
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     * ˆ ˆXY
k XY s m s mC d P Y Y      k k k  

   P P kk XYC   

The off-diagonal part of the angular power spectrum tells us
if the gauge kinetic function plays a role in inflation.

For isotropic spectrum, , we have

Angular power spectrum  of  X and Y reads

For anisotropic spectrum, there are off-diagonal components.

For example, 
     *

2
ˆ ˆTB

k TB m mC d P Y Y    k k k  

, 1   
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WMAP constraint Pullen & Kamionkowski (2007)

Now, suppose we detected

Then we could expect

0.01H 

• statistical anisotropy in GWs

• cross correlation between curvature perturbations and GWs

2/ 10TB TE Cf . current constraint
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224 ( ) 0.2sg I N k 

310tg 
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If these predictions are proved, it must be an evidence of anisotropic inflation!

Observational implication 

The current observational constraint is given by



Summary 
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We have shown that anisotropic inflation can be realized
once we take into account a gauge kinetic function.

Off-diagonal angular power spectrum can be used to prove or disprove our scenario.

As a future issue, it is interesting to construct a model from string theory.

We have given the predictions:

As a by-product, we found a counter example to the cosmic no-hair conjecture.

Our analysis gives a first cosmological constraint on gauge kinetic functions.

the statistical anisotropy in scalar and tensor fluctuations
the cross correlation between scalar and tensor
the linear polarization of tensor fluctuations


