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The nature of primordial fluctuations
T

As you know the horizon problem can be resolved by slow roll inflation.

We need to assume the initial homogeneity in order to have inflation.

Once the inflation occurs, the cosmic no-hair conjecture suggests that
the exponential expansion erases any classical anisotropy.

It is believed that the origin of the large scale structure of the universe
Is in remaining quantum fluctuations during de Sitter inflation.

Thus we have the following predictions:
First of all, slow roll condition implies Gaussian statistics <é’(k1)§(k2)> = P(kl, kz)
Moreover, initial homogeneity implies to statistical homogeneity <§(k1) é’(kz)> =0(k, +k,)P(k,)

And, cosmic no-hair suggests statistical isotropy <4’(k1) g(k2)> =o(k, +k,)P(k, 9k, |)

Finally, deSitter invariance yields scale free spectrum P(k) ~ const.

The above predictions are robust at the zeroth order.



Precision tests of inflation
S

However, precision cosmology forces us to look at fine structures of fluctuations!
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--------------------------------------------------

There should be a slight tilt because the expansion is not exactly deSitter.
The deviation from deSitter can be characterized by the slow roll parameter.
Hence, the tilt should be of the order of the slow roll parameter.

---------------------------

---------------------------

There is small non-gaussianity of the order of the slow roll parameter.

Statistical isotropy?

Thus, it is legitimate to seek a slight deviation from the statistical isotropy.
In this talk, we argue that the statistical anisotropy is ubiquitous

(k)< (k,)) =5k, +k,)P(k,)

In fact, we have the following theoretically well motivated models for that.



Gauge kinetic function in the sky
T

low energy
Superstring theory > Supergravity
_ 0K
[ Kahler potential K giT_a¢ia¢T
—  Superpotential W DW = aW 2 aKW
N T g
_ Gauge kinetic function f

S = Id X[FR+g”6/’¢a ¢J KK IJ(DWDW 3 Z‘W‘ )——R fab(¢)FaﬂV }

The cosmological roll of K and W in inflation has been discussed so far.

However, the roll of vector fields in inflationary scenario has been overlooked.

The purpose of this talk is to give a light on the roll of gauge kinetic function in inflation
and show that

»Anisotropic inflation is naturally realized due to gauge kinetic function.
»As a consequence, statistical anisotropy is produced in supergravity.
»There arises cross correlation between scalar and tensor perturbations.
»Thus, cosmological observations can constrain gauge kinetic functions!
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Inflation with a gauge kinetic function



A simple model

Action

S = Idx\/_[

gauge kinetic function

(a 4) —V(¢)——f(¢) FW} F,=0,A—0,A,

Scalar Vector

For homogeneous background, the time component can be eliminated by gauge
transformation.
Let the direction of the vector be x - axis

A, =0v(t), 0 ., 0) ¢ = ¢(t)

Then, the metric should be Bianchi Type-I

Anisotropy
ds? = —dt? +e*® [e““’“)dx2 + g% (dy2 + dz? )]
Scale Factor PIaneSymmetry

The action reduces to
S — J‘d4x e3a [%(_aZ +62)+1¢2 _V(¢)+£ f 2(¢)62a+40v2:|
K 2 2

v=f* (¢)e‘“‘4”E Qoo const. of integration



Basic equations
I

Hamiltonian Constraint ® =0,
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Isotropic Power-law Inflation
I

Let us start with a natural choice for potential and gauge kinetic functions.
P ¢
Exponential functional V=Ve f=fe""

In this case, we know there exists power-law inflation

Power-law ansatz a = xlogt o =ylogt Mi =zlogt + ¢,
p
2 2 VO ﬂ¢0 2(6_/12)
= — - —e =
X 12 y O z /1 MZ 14

This solution represents an isotropic power-law inflation
2
ds® = —dt® +t** (dx2 +dy® + dzz)

In order to have a sufficient inflation, we need A1



Anisotropic Power-law inflation
T

With the same ansatz, we obtained the following new solution

Anisotropic inflation ds? = —dt? +t* [t“‘ydx2 +t2Y (dy2 + dzz)]
_A*+8pA+12p° +8 y:/12+2p/1—4 Z__g
6A(A+2p) 3A(A+2p) 1

consistency check

E2f 2 - (A% +2p2-4) (=A% +4pA+12p" +8)

_ ' ) 1°+2p1-4>0

M, 242 (A+2p)

Apparently, the expansion is anisotropic and its degree of anisotropy is given by

Av2pi-4  ,_ H _ 64(2+2p)

221200 H?> A°+8pi+12p°+8

L @
H a

|l ¢ | =

w|

0<| <1 slow roll parameter



Phase space analysis
I

To see which one is dynamically selected, we move on to

1 ¢ f /
Autonomous system X =2 Y =—£ z=10) e2r L
a |\/|p0£ Mp a
OI—lezz(x +1)+ X {3(x2 —1)+3Y2}
da 3 2

d_Y_ 2 _ E 2 E 2 & 2
- da_(Ym){s(x 1)+2Y }+3YZ +(p+2jz

d—zzz[3(x2—1)+ivz+ivz—pv +1-2X +122}
da 2 2 3

—

Isotropic fixed point (X,Y,Z)=(0,-4,0)

Anisotropic fixed point

(X.Y,2) :%(/12 +2p/1—4,—6(/1+2p),¥\/(/12 +2pA—4)(A-22° —4p,1)j

This exists only for 1> +2p1-4>0 A= A" +8pA+12p° +8
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Linear stability analysis
I ———

yo,

200]
A +2pl-4<0

Isotropic power-law inflation is an attractor. 100 -

Anisotropic fixed point does not exist.

0.5 1

A +2pl—4>0

100 +

Isotropic power-law inflation is a saddle point.

Anisotropic power-law inflation is an attractor.

-200 - 1



The whole picture

A +2p1-4>0

012 -
0.1
0.08 -
0.06 -
0.04 -

0.02 |

0 0:0004 X 0.0008 00012 -0.1

After a transient isotropic inflationary phase,
the universe enter into an anisotropic inflationary phase.
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General Potential

Consider the slow roll phase el 1

K E? -2 —4a—-bo
Z?{V(@“‘?f (P)e }

In order for the vector contribution to increase, we need the condition Py

Once the vector contributes the dynamics of the inflaton field,
the ratio does not increase any more

$=-3ap-V,(#)+E*f () f,(g)e "™

opposite to the potential force

The vector energy density saturates at ~ E*f 7 (g)e™™*" =V, fi
¢

E2 f -2 e—4a—40' 1 V f
(2@ =5V f —<1 at this saturating point

Inflation continues if

Because of this vector contribution, we have anisotropy of the order of

2 EZ .I: —Ze—4a—40 ¢ f 1 V¢ 2
— = — < —| = | m&
H Vv V f K2 V
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.. : 1 5.
Example : chaotic inflation  V=;m"¢

I ———
Y
2ck I—d(;ﬁ
A simple choice is f()=e % c>1

We find that the degree of anisotropy is written by the slow-roll parameter.
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COSMOLOGICAL PERTURBATION THEORY
IN A SIMPLE BIANCHI UNIVERSE
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Flat slicing gauge in anisotropic universe
T

In our case, we have only 2-dimensional rotational symmetry

ds* =a* ()| —dn’® +dx* |+ b’ ()| dy* +dz’ |

Vector type perturbations can be characterized in a special frame as follows

Koo = (K,,0) Vi=0=V,=0

Scalar type perturbations are V,

There is no tensor type perturbations in 2-d.

vector perturbations

0 0 0 b’
* 0 0 bT
590 =u v 0 o 5A,=(0,0,0,D)
* % * 0
scalar perturbations @' ap ap, 0
S0 = * 2a°G 0 0
9 = * * 2b2G 0 5Aﬂ = (5%;01 J,O) 5¢
* * *  _2b°G

The blue variables are physical.
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Structure of couplings

The main features of the action can be understood by looking at the following term

Key term V999" T ()F,.F,

Notice the following relations

Background quantity

Now, we take variations

vector-tensor  /-gg“g” f*(#)F,, F,

%/_/
foy

vector-scalar  /-gg““g"” f*(¢) F. F.s
—

ff¢5¢ V'

V-99“9"” 1°(4) F,.F,
o 2

ﬂz 1 I_c—l
Vol T
fv'=|leg,
] f¢ ]
f,v szV =~
2
f¢v AN
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Reduced Quadratic Action: Slow roll Approximation
T

H Y k a c-1
——5=¢ === sing=—— | =——
Hz H H &y kb c

Wk

g vecter :Sfree(F,D)+_’.df7d3k{V6lgH (-n) 'sin@(I'D"+I""D) - \'6'2‘9” (-n)"sing(rD" +1"D)

2

vector-tensor

Sscalaor _ S (G,J,5¢)

— “free

+jdnd3k[—3| £ (-17)"sin? 6(Goy" +G 5p)

+JB1 (=17) "sin0(5p" 3 + 54”3 )—/6I (—n7) " sinO(5¢") +5pJ”)

vector-scalar

0 () sin (6" +607)+ Y25 () “sin (6 +6')

2
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The nature of primordial fluctuations
In anisotropic inflation



Statistical anisotropy for a test field

In slow-roll phase (H =a,X =6 are almost const.) , we have the metric:

ds® = —dt® +e*™ [e“mdx2 +e77% (dy? +dz? )]
Since the expansion is anisotropic, we expect statistically anisotropic fluctuations.

Ackerman et al. (2007) analyzed a test field on this background and found
the power spectrum:

Isotropic part
may be detectable if

1.27
g> o.ozsx(?ﬂ] ~0.3% with £, =2000 (Planck)

o~ Groeneboomn & Eriksen (2008)
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Perturbative estimates of statistical anisotropy

In the isotropic limit, we have

. 1 i
Mode functions op =u(m)a, +u(n) alj u(n):ﬁe kn (1_;_77]

Interaction Hamiltonian H, _jd3k{_ /16_'|(_77)1sing(5¢'u+5¢y)+...}

Assuming that Iis small, we can calculate corrections to the power spectrum

5(0]5,(1)59, ()| 0) 5 -
X GEXEACIE L d, L dp, (O] H, G).[ H, (,). 5 (1) 3, () ] ]| 0)

zlzi'lsinZQNZ(k)
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Predictions of anisotropic inflation
T

Thus, we found the following nature of primodordial fluctuations in anisotropic inflation.

statistical anisotropy in curvature perturbations

P (k) =P, (k)| 1+g,sin’ 0 | g, =241 N?(k)
statistical anisotropy in primordial GWs

R.(K) = R(K)[L+g,sin? 6] g, =614, N°(k)

cross correlation between curvature perturbations and primordial GWs

2L =241 ,N?(k) TB correlation in CMB

small linear polarization in primordial GWs
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CMB spectrum

Angular power spectrum of X and Y reads

-s " /m

CX' o [dQPey (K) Yo (K) oYy (K)

For isotropic spectrum, P (k) =P (k) , we have E)EY oC 5%'

For anisotropic spectrum, there are off-diagonal components.

For example,

CT? oc [dQ Py (k)Y (K) Yo (K)
o 5€,€'i1

The off-diagonal part of the angular power spectrum tells us
if the gauge kinetic function plays arole in inflation.
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Observational implication
T

The current observational constraint is given by

WMAP constraint Pullen & Kamionkowski (2007) 9, =241 N?(k) <0.3

Now, suppose we detected g, =241 N*(k)=0.2 &, =0.1

Then we could expect

« statistical anisotropy in GWs ¢, =107°

e cross correlation between curvature perturbations and GWs @=—2xl0_3

Cf . current constraint TB/TE <107

If these predictions are proved, it must be an evidence of anisotropic inflation!
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Summarx

We have shown that anisotropic inflation can be realized
once we take into account a gauge kinetic function.

We have given the predictions:

v'the statistical anisotropy in scalar and tensor fluctuations
v'the cross correlation between scalar and tensor
v'the linear polarization of tensor fluctuations

Off-diagonal angular power spectrum can be used to prove or disprove our scenario.

Our analysis gives a first cosmological constraint on gauge kinetic functions.
a counter example

As a future issue, it is interesting to construct a model from string theory.
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