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Power counting 

• Scaling dim of f  
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• Renormalizability 

 

• Gravity is highly non-

linear and thus non-

renormalizable 



Abandon Lorentz symmetry? 
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• Anisotropic scaling 

 t   bz t  (Eb-zE) 
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• For z = 3, any 

nonlinear 

interactions are 

renormalizable! 

• Gravity becomes 

renormalizable!? 



Scale-invariant cosmological 

perturbations from Horava-

Lifshitz gravity without inflation 

arXiv:0904.2190 [hep-th] 
 

c.f. Basic mechanism is common for “Primordial magnetic field from non-

inflationary cosmic expansion in Horava-Lifshitz gravity”, arXiv:0909.2149 

[astro-th.CO] with S.Maeda and T.Shiromizu. 



Usual story with z=1 

•  w2 >> H2 : oscillate 

     w2 << H2 : freeze 
 oscillation  freeze-out  iff d(H2/ w2)/t > 0 
 w2 =k2/a2 leads to d2a/dt2 > 0 
Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation. 

• Scaling law  
 t   b t  (E  b-1E) 
 x  b x 
 f  b-1 f 
Scale-invariance requires almost const. H, i.e. 
inflation. 

~E Hf 



UV fixed point with z=3 

• oscillation  freeze-out  iff d(H2/ w2)/t > 0 

w2 =M-4k6/a6 leads to d2(a3)/dt2 > 0 

OK for a~tp with p > 1/3 

• Scaling law  

 t   b3 t  (E  b-3E) 

 x  b x 

 f  b0 f 

 Scale-invariant fluctuations! 

0 0~E Hf 



 ln L 

 ln a 

H >> M H << M 

Horizon exit and re-entry 

pa t
1/3 < p < 1 



Dark matter as integration constant 

in Horava-Lifshitz gravity 

arXiv:0905.3563 [hep-th] 

See also arXiv:0906.5069 [hep-th] 

Caustic avoidance in Horava-Lifshitz gravity 



Structure of HL gravity 

• Foliation-preserving diffeomorphism 

= 3D spatial diffeomorphism 

+ space-independent time reparametrization 

• 3 local constraints + 1 global constraint 

 = 3 momentum  @ each time @ each point 

 + 1 Hamiltonian @ each time      integrated 

• Constraints are preserved by dynamical 

equations. 

• We can solve dynamical equations, provided 

that constraints are satisfied at initial time. 



FRW spacetime in HL gravity 
• Approximates overall behavior of our patch 

of the universe inside the Hubble horizon. 

• No “local” Hamiltonian constraint 

E.o.m. of matter 

    conservation eq. 

• Dynamical eq 

can be integrated to give 

Friedmann eq with 

“dark matter as 

integration constant” 



IR limit of HL gravity 

• Looks like GR iff l = 1. So, we assume that 

l = 1 is an IR fixed point of RG flow. 

• Global Hamiltonian constraint 

 

 

 

• Momentum constraint & dynamical eq  
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Dark matter as integration constant 

• Def. THL
mn 

• General solution to the momentum 

constraint and dynamical eq.  

 

• Global Hamiltonian constraint 

 

   rHL can be positive everywhere in our 

patch of the universe inside the horizon. 

• Bianchi identity  (non-)conservation eq 



Micro to Macro 
• Overall behavior of smooth THL

mn = rHLnmnn is like 

pressureless dust. 

• Microscopic lumps (sequences of caustics & 

bounces) of rHL can collide and bounce. (cf. early 

universe bounce [Calcagni 2009, Brandenberger 

2009]) If asymptotically free, would-be caustics 

does not gravitate too much. 

• Group of microscopic lumps with collisions and 

bounces  When coarse-grained, can it mimic a 

cluster of particles with velocity dispersion? 

• Dispersion relation of matter fields defined in the 

rest frame of “dark matter”  

 Any astrophysical implications? 



Summary so far 

• Horava-Lifshitz gravity is power-counting renormalizable 
and can be a candidate theory of quantum gravity. 

• While there are many fundamental issues to be addressed, 
it is interesting to investigate cosmological implications.  

• The z=3 scaling solves horizon problem and leads to scale-
invariant cosmological perturbations for a~tp with p>1/3. 

• HL gravity does NOT recover GR at low-E but can instead 
mimic GR+CDM: “dark matter as an integral constant”. 
Constraint algebra is smaller than GR since the time slicing 
and the “dark matter” rest frame are synchronized.  



Analogue of Vainshtein effect 
• Breakdown of perturbation in the limit l  1 

 

 

 

 

 

 

 

• No negative power of (l-1) in potential part 

 looks like weak coupling 

• Decoupling expected but non-perturbative 

analysis needed for scalar graviton! 

 momentum constraint 



Analogue of Vainshtein effect 
• Spherically symmetric, static ansatz 

 

 

 

 

 

 

• Two branches 

 

 

 

• “-” branch recovers GR in the l  1 limit 

 without HD terms 



• (3l-1)b2 << (l-1) 

perturbative regime, 1/r expansion 

• (3l-1)b2 >> (l-1) 

non-perturvative regime, recovery of GR 

• (3l-1)b2 ~ (l-1) with b2~rg/r  r~rg/(l-1) 

analogue of Vainshtein radius??? 

 

 

r~
r
g /(l

-1
) 

GR  non-GR 

 dynamical 

Izumi & Mukohyama 2009 

“Steller center is dynamical” 

Analogue of Vainshtein effect 
 choose the “-” branch 



• Numerical integration in the “-” branch 

with b(x=0)=1, r(x=0)=1, r’(x=0) given 

 

 

 

 

• Misner-Sharp energy 

Analogue of Vainshtein effect 

x x 

R b  for 

 l-1=10-6  

 r’(x=0)=2 
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GR is recovered! 



Caustic avoidance 

• In GR, congruence of geodesics forms 

caustics because gravity is attractive. 

• HL gravity is repulsive at short distances, 

due to higher curvature terms.  

(c.f. bouncing FRW universe) 

• With codimension 2 and 3, higher curvature 

terms can bounce would-be caustics. 

• With codimension 1, deviation of l from 1 is 

also needed to bounce would-be caustics. 

JCAP 0909:005,2009 



Caustic avoidance 
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HD terms and deviation of l from 

1 can bounce would-be caustics! 

Perhaps, next step is to see “shell 

crossing” without shell crossing 



Summary 
• Horava-Lifshitz gravity is power-counting renormalizable 

and can be a candidate theory of quantum gravity. 

• While there are many fundamental issues to be addressed, 
it is interesting to investigate cosmological implications.  

• The z=3 scaling solves horizon problem and leads to scale-
invariant cosmological perturbations for a~tp with p>1/3. 

• HL gravity does NOT recover GR at low-E but can instead 
mimic GR+CDM: “dark matter as an integral constant”. 
Constraint algebra is smaller than GR since the time slicing 
and the “dark matter” rest frame are synchronized.  

• For spherically-symmetric, static, vacuum configurations, 
GR is recovered in the limit l  1 non-perturbatively.  

• Caustics avoidance requires higher curvature terms and 
deviation of l from 1 in the UV. Next step is to see if 
bounce of shells can mimic shell crossing. 

 



Future works 
• Renormalizability beyond power-counting 

• RG flow: is l = 1 an IR fixed point ? Does it satisfy 
the stability condition for the scalar graviton? 
( |cs| < Max [|F|1/2,HL] for Max[M-1,0.01mm]<L<H-1) 

• Is there Vainshtein effect in general? 
e.g. superhorizon nonlinear cosmological perturbations (to 
appear soon, with K.Izumi) 

• Can we get a common “limit of speed” ? 
(i) Mz=3<<Mpl, (ii) supersymmetry, (iii) other ideas? 

• Micro & macro behavior of “CDM” 

• Adiabatic initial condition for “CDM” from the z=3 
scaling 

• Spectral tilt from anomalous dimension 

• Extensions of the original theory: Blas, et.al; Horava 
& Melby-Thompson … 



 



Backup slides 



GOING BACK TO  

HORAVA„S IDEA 



Horava-Lifshitz gravity 

• Basic quantities: 
 lapse N(t), shift Ni(t,x), 3d spatial metric gij(t,x)  

• ADM metric (emergent in the IR) 
ds2 = -N2dt2 + gij (dxi + Nidt)(dxj + Njdt) 

• Foliation-preserving deffeomorphism 
t  t’(t),   xi  x’i(t,xj) 

• Anisotropic scaling with z=3 in UV 
t  bz t,   xi  b xi 

• Ingredients in the action 

Horava (2009) 
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UV action with z=3 

• Kinetic terms (2nd time derivative) 

 

 

                                c.f.  l = 1 for GR 

•  z=3 potential terms (6th spatial derivative) 

 

 

 

 

c.f. DiRjkD
jRki is written in terms of other terms 
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Relevant deformations (with parity) 

• z=2 potential terms (4th spatial derivative) 

 

 

• z=1 potential term (2nd spatial derivative) 

 

 

• z=0 potential term (no derivative) 

3Ndt gd x
2R

j i

i jR R

3Ndt gd x



R

3Ndt gd x 1



• UV: z=3 , power-counting renormalizability 

            RG flow 

•  IR: z=1 , seems to recover GR iff l  1 

 

 

 

 

note:  

Renormalizability has not been proved. 

RG flow has not yet been investigated. 

 IR potential 
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IR action with z=1 

 kinetic term 



Projectability condition 
• Infinitesimal tr.  t = f(t), xi = zi(t,xj) 

  

 

 

 

• Space-independent N cannot be transformed to 

space-dependent N. 

• N is gauge d.o.f. associated with the space-

independent time reparametrization. 

• It is natural to restrict N to be space-independent. 

• Consequently, Hamiltonian constraint is an 

equation integrated over a whole space. 
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Non-Gaussianity 

 w/ K.Izumi and T.Kobayashi 

to appear 



Bispectrum of z=3 scalar 
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Order estimate 
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Power spectrum 

Bispectrum 
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After conversion to curvature perturbation 

Strong constraint on , perhaps 

requiring asymptotic freedom of the theory. 

Totally independent of 

 background  evolution! 



Black holes with N=N(t)? 
• Schwarzschild BH in PG coordinate 

 

 

• Gaussian normal coordinate 

 

 

Lemaitre reference frame 

Doran coordinate 

2
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   for l = 1 
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A free scalar field (I) 

UV: z=3 IR: z=1 

FRW background with H >> M 

3 2
2

4 2
m

M M
f
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A free scalar field (II) 

Normalized mode function 

 converges 

 for 

 initially oscillates and freezes @ w2~H2 

 independent of H and scale-invariant! 

Power spectrum 

k
f



General case 
• General solution to the momentum 

constraint and dynamical eq.  

 

 

 

• Global Hamiltonian constraint 

 

• Bianchi identity  (non-)conservation eq 

 initial condition of “dark matter” 



Four versions of HL gravity 

• There are at least four versions of the theory: w/wo 

detailed balance & w/wo projectability. 

• Only the version without the detailed balance 

condition with the projectability condition has a 

potential to be theoretically consistent and 

cosmologically viable.  

• Horava’s original proposal was with the 

projectability condition and with/without the detailed 

balance condition. 

• There is an attempt to extend the non-projectable 

theory by introducing ai = (ln N),i  [Blas, Pujolas and 

Sibiryakov 2009]. 



“On the extra mode and inconsistency of Horava 

gravity”, by Blas, Pujolas and Sibiryakov, 

arXiv:0906.3046 

• This paper has three statements about the projectable 
version: (i) Formation of caustics without taking into 
account backreaction of higher curvature terms to 
geometry; (ii) Relation to ghost condensate without 
taking into account difference in symmetries; (iii) Low 
strong-coupling scale of their low-E EFT away from 
l=1. This does not imply breakdown of the underlining 
UV theory. (See “note added” in arXiv:0906.5069.) 

• Contrary to (iii), we know that the scalar graviton gets 
strongly coupled only at l=1. This is not a problem if 
there is “Vainstein effect” and if the theory is 
renormalizable. 



Stellar center is dynamical in 

Horava-Lifshitz gravity 

arXiv:0911.1814 [hep-th] 
with K.Izumi 

 



Black holes and stars 

• Schwarzschild geometry in PG coordinate (N=1) is 
locally an exact solution with l = 1. 

• Kerr geometry in Doran coordinate (N=1,Ni=0) is 
locally an approximate solution with l = 1. 

• Those solutions are “black” for low-E probes but not 
“black” for high-E probes. Visible singularity? 

• Extrinsic curvature diverges at the center of those 
solutions  UV effects such as deviation of l from 1 
 Do UV effects resolve BH singularity? 

• To answer this question, we probably need to evolve 
a regular initial data towards BH formation. 

• As a first step, let us consider stellar solutions. 

 



Basic setup 

•The energy density r is a piecewise-continuous 

non-negative function of the pressure P. 

•The central pressure Pc is positive. 



No static star solution 
• Momentum conservation equation 

 

• Global-staticity  1-b2 > 0 everywhere. 

• Regularity of Kx
x  b’ is finite  P’ is also 

finite  b(x) and P(x) are continuous  
r(x)+P(x) is piecewise-continuous. 

• Pc>0 & P continuous & r non-negative  
r+P>0 in a neighborhood of the center. 

• Define x0 as the minimal value for which at 
least one of  

 



• L.h.s. is non-positive  bc=0 & rc’=1  

regularity of R & Kq
q 

• R.h.s. is positive  P0 is non-positive  r is 

non-negative & at least one of  

 

is non-positive & P(x) is continuous 

• Contradiction!  no spherically-symmetric 

globally-static solutions  stellar center is 

dynamical 

• The proof is insensitive to the structure of 

higher-derivative terms  valid for any z 



• L.h.s. is non-positive  bc=0 & rc’=1  

regularity of R & Kq
q 

• R.h.s. is positive  P0 is non-positive  r is 

non-negative & at least one of  

 

is non-positive & P(x) is continuous 

• Contradiction!  no spherically-symmetric 

globally-static solutions  stellar center is 

dynamical 

• The proof is insensitive to the structure of 

higher-derivative terms  valid for any z 

The proof supports  

“DM as integration constant”: 

“DM” accreates toward a star and 

makes stellar center dynamical 



Note 
• Imposing local Hamiltonian constraint would 

result in theoretical inconsistencies and 

phenomenological obstacles. 

• “Strong coupling in Horava gravity” 

 by C.Charmousis, et.al., arXiv:0905.2579 

“A trouble with Horava-Lifshitz gravity” 

 by M.Li and Y.Pang, arXiv:0905.2751 

“A dynamical inconsistency of Horava gravity” 

 by M.Henneaux, et.al., arXiv:0912.0399 

• Those problems disappear once we notice that 

there is no local Hamiltonian constraint. 

(c.f. section 5 of arXiv:0905.3563) 



Non-projectable theory in IR limit 

Local Homiltonian constraint 

Secondary constraint 

Additional secondary constraint 



Additional secondary constraint 

3 2 2( ) 0d x g N RN    
N = 0 if R>0 

= 0 with  = 0 

R > 0 or Kij = 0 

Local Homiltonian constraint 

Corollary 

N = 0 or Kij = 0 No dynamics ! 

Thus, in the rest of this talk we impose 

the projectability condition, N=N(t). 



Dark matter as integration constant 

• Def. THL
mn 

• General solution to the momentum 

constraint and dynamical eq.  

 

• Global Hamiltonian constraint 

 

   rHL can be positive everywhere in our 

patch of the universe inside the horizon. 

• Bianchi identity  (non-)conservation eq 

GR is NOT recovered 

but GR+CDM is! 



Dark matter as integration constant 

• Def. THL
mn 

• General solution to the momentum 

constraint and dynamical eq.  

 

• Global Hamiltonian constraint 

 

   rHL can be positive everywhere in our 

patch of the universe inside the horizon. 

• Bianchi identity  (non-)conservation eq 

GR is NOT recovered 

but GR+CDM is! 

Indeed, one can prove that 

there is no exactly static 

star: “CDM” accretes! 
[arXiv:0911.1814 w/ K.Izumi] 



• Understanding the universe is one of our 

greatest dreams. 

• Quantum gravity is another great dream. 

• In January 2009, Horava proposed a power-

counting renormalizable theory of gravitation. 

• Why don’t we apply Horava’s theory to 

cosmology? 

The Cosmic Uroboros by 

Sheldon Glashow 



Horava-Lifshitz cosmology 

• Higher curvature terms lead to regular bounce 
(Calcagni 2009, Brandenberger 2009). 

• Higher curvature terms (1/a6, 1/a4) might make the 
flatness problem milder (Kiritsis&Kofinas 2009). 

• The z=3 scaling solves the horizon problem and 
leads to scale-invariant cosmological perturbations 
without inflation (Mukohyama 2009). 

• Absence of local Hamiltonian constraint leads to 
CDM as integration “constant” (Mukohyama 2009). 

• New mechanism for generation of primordial 
magnetic seed field (Maeda, Mukohyama, 
Shiromizu 2009). 

 



Summary so far 
• The z=3 scaling solves horizon problem and leads to 

scale-invariant cosmological perturbations for a~tp 

with p>1/3. 

• The lack of local Hamiltonian constraint may explain 

“dark matter” without dark matter. GR is NOT 

recovered: constraint algebra is smaller than GR 

since the time slicing and the “dark matter” rest 

frame are synchronized in the theory level.  

 The rest of this talk 

• Comments on scalar graviton 

• Non-Gaussianity 



Propagating d.o.f. 
• Minkowski + perturbation 

N = 1, Ni = 0, gij = ij + hij 

• Residual guage freedom =  

 time-independent spatial diffeo. 

• Momentum constraint 

 

• Fix the residual guage freedom by setting 

                         at some fixed time surface. 

• Decompose Hij into trace and traceless parts 

   TT part      : 2 d.o.f. (usual tensor graviton) 

   Trace part : 1 d.o.f. (scalar graviton) 

0i ijH 

0t i ijH   ij ij ijH h hl  



Scalar graviton and l  1 

• In the limit l  1, the scalar graviton H 
becomes pure gauge. So, it decouples. 

• However, its kinetic term will vanish 
 
 
and H gets strongly self-coupled. 

• It is important to see if there is “Vainshtein 
effect”, i.e. decoupling of the strongly-coupled 
sector from the rest of the world.  
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Linear instability of scalar graviton 

• Sign of (time) kinetic term (l-1)/(3l-1) > 0. 

• The dispersion relation in flat background 

 w2 = cs
2k2 x [1+ O(k2/M2)] with cs

2 =-(l-1)/(3l-1)<0 

   IR instability in linear level   

      (Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009) 

• Slower than Jeans instability of “DM as integration const” if 

 tJ~(GNr)-1/2 < tL~L/|cs| .  

• Tamed by Hubble friction or/and O(k2/M2) terms if  

 H-1 < tL or/and L < 1/(|cs|M). 

• Thus, the linear instability does not show up if 

 |cs| < Max [|F|1/2,HL,1/(ML)].    (F~-GNrL2) 

L>0.01mm  (Shorter scales  similar to spacetime foam) 

• Phenomenological constraint on properties of RG flow. 

Appendix C of arXiv:0911.1814 with K.Izumi 



Contents of this talk 

• Basics of Horava-Lifshitz gravity 

• Generation of scale-invariant 

cosmological perturbation 

• Dark matter as integration “constant” 

• Comments on scalar graviton 

 



 ln L 

 ln a 

H >> M H << M 

Horizon exit and re-entry 

pa t
1/3 < p < 1 



Structure of GR 

• 4D diffeomorphism   

4 constraints = 1 Hamiltonian + 3 momentum 

@ each time @ each point 

• Constraints are preserved by dynamical 

equations. 

• We can solve dynamical equations, provided 

that constraints are satisfied at initial time. 



FRW spacetime in GR 
•  ds2 = - dt2 + a2(t) (dx2 + dy2 + dz2) 

• Approximates overall behavior of our patch 

of the universe inside the Hubble horizon. 

• Hamiltonian constraint 

    Friedmann eq  

E.o.m. of matter 

    conservation eq. 

• Dynamical eq  

 is not independent 

 but follows from the above n+1 eqs. 



Scalar with z=3  

UV: z=3 IR: z=1 
• UV: z=3 , renormalizable nonlinear theory 

            RG flow 

•  IR: z=1 , familiar Lorentz invariant theory 
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free part 

Note: we need a mechanism or symmetry to make “limits of 

speed” of different species to be essentially the same. 

Perhaps, embedding into an unified theory is necessary.  

FERMI, MAGIC 

 M>1011GeV 

       for photon 


