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Basic idea

Cosmological implications
Analogue of Vainshtein effect
Caustic avoidance

List of future works
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* Scalingdimot ¢ . Renormalizability
t >bt ( )

X =2 b x

* Gravity Is highly non-
1+3-2+2s =0 linear and thus non-
renormalizable



| o j dtdx’¢? | ditdx*g"

 Anisotropic scaling

t > b2t ( ) <« Forz=3,
X 2 b X

are
2+3-2z+25 =0 renormalizable!
S = -(3-2)/2

* Gravity becomes
* renormalizable!?



Scale-invariant cosmological
perturbations from Horava-
Lifshitz gravity without inflation

arXiv:0904.2190 [hep-th]

c.f. Basic mechanism is common for “Primordial magnetic field from non-
inflationary cosmic expansion in Horava-Lifshitz gravity”, arXiv:0909.2149
[astro-th.CO] with S.Maeda and T.Shiromizu.



e 2 >> H?2: oscillate
m? << H? : freeze

»? =k?/a? leads to d?a/dt? > 0
Generation of super-horizon fluctuations requires
accelerated expansion, I.e. inflation.

« Scaling law
t 2bt ( )

x > b x )

Scale-invariance requires almost const. H, I.e.
Inflation.




®? =M-kb/a® leads to d?(a3)/dt> > 0
OK for a~tP with p > 1/3

« Scaling law
t > b3t ( )

X =2 b X
—)

Scale-invariant fluctuations!
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Dark matter as integration constant
IN Horava-Lifshitz gravity

arXiv:0905.3563 [hep-th]

See also arXiv:0906.5069 [hep-th]
Caustic avoidance in Horava-Lifshitz gravity



Foliation-preserving diffeomorphism

= 3D spatial diffeomorphism
+

3 local constraints + 1 global constraint

= 3 momentum @ each time @ each point
+

Constraints are preserved by dynamical
equations.

We can solve dynamical equations, provided
that constraints are satisfied at initial time.



* Approximates overall behavior of our patch
of the universe inside the Hubble horizon.

 No “local” Hamiltonian constrain
E.o.m. of matter , a
- pi +3—(pi+ F) =0
-> conservation eq. a
~ 2

o Dynaml.cal eq 98 a_2 _ 8rGy 3P
can be integratedtogive a a i=1

a2 n C
3— = 81Gyn (Z Di )

) 3
a — a




T G | Ndt/gd°x (K K" — 2K? + R —2A)
7T

* Looks like GR Iff A = 1. So, we assume that
A =1Is an IR fixed point of RG flow.

/de\/_ D - Agp) — 8nGNT,,)n"n" =0

n,dxt = —Ndt, n"0, = O, — N'0;)

1

v

 Momentum constraint & dynamical eq
(G + Aglh — 8nGNTy,)n* = 0

G + Ag(4) 87TGNTZ‘J' =0



Def. TH-, GY) + Ag) = 87Cy (T, + TEF)

174

General solution to the momentum
constraint and dynamical eq.

T = p"nun, 'V, n, =0
Global Hamiltonian constraint

/d?’af;\/ﬁpHL =\

Bianchi identity = (non-)conservation eq

O p7t + Kptt = n“V*1,,



« Overall behavior of smooth THL = pHln n_ is like
v P nv
pressureless dust.

(cf. early
universe bounce [Calcagni 2009, Brandenberger
2009)) If asymptotically free, would-be caustics
does not gravitate too much.

* Group of microscopic lumps with collisions and
bounces - When coarse-grained, can it mimic a
cluster of particles with velocity dispersion?

« Dispersion relation of matter fields defined in the
rest frame of “dark matter”
-> Any astrophysical implications?



Horava-Lifshitz gravity is power-counting renormalizable
and can be a candidate theory of quantum gravity.

While there are many fundamental issues to be addressed,
It IS Interesting to investigate cosmological implications.

The z=3 scaling and leads to scale-
Invariant cosmological perturbations for a~tP with p>1/3.

HL gravity does NOT recover GR at low-E but can instead
mimic GR+CDM:

Constraint algebra is smaller than GR since the time slicing
and the “dark matter” rest frame are synchronized.



 Breakdown of perturbation in the Imit A 2 1

N=1, N;=0B+n;, g — % [eh}
3\—1¢
A—1)0%

Lin = M3, / dtd3f{(1 + 3¢) [

ij

B = n; = (0 <4=m momentum constraint

BA—1: 1,
ALy gy

+%C8i(8z-B82B + 38" BO;0; B) + %(a’“hijakB — 3h;;Q)0'"B
|

—Z(h”c‘?khij)akB} +O(h,

* No negative power of (A-1) in potential part
9

* Decoupling expected but non-perturbative
analysis needed for scalar graviton!



 Spherically symmetric, static ansatz
N =1, Ngdx'=B(z)dz, gydr'de’ = dx®+ r(z)*dQs
& R =300/, without HD terms

7 A—1 (3)\—1)(/8’)2}% (A_l)ﬁlR/ (R,)Q -
PR (TR T RS2 o
éf_()\_l)R /8, ’ A ﬁ()‘_l)/)\+[(2)\_1)62_1](R,)2 .
/8 ANR' /3 T RR' (3A—1)/62—|—()\—1) —
 Two branches
B 1++1+4A4B
B 2A ’
A = ()\—I)R B \ )6()\—1)/)\_|_[(2)\_1)52_1](RI)2

ANR' RR' BA=1)B2+(A—1)



s 1++1+4AB

3 24
4= W=DRrR o ) BA-D/A 12\ —1)82 — 1](R')?
- 4R’ T T RR BA-1)2+(A—1)

o (BN-1)B? << (A-1)

perturbative regime, 1/r expansion
o (3N-1)B% >> (A-1)

non-perturvative regime, recovery of GR
° (3A-1)B% ~ (A-1) with Bo~r /r >

analogue of Vainshtein radius???

dynamical

GR non-GR

(T-1)/ 1~

lzumi & Mukohyama 2009
“Steller center is dynamical”



* Numerical integration
with B(x=0)=1, r(x=0)=1, r'(x=0) given

for
A-1=10°
r'(x=0)=2

* Misner-Sharp energ

m= %[1—(1—,82)0')2}
almost constant

U




JCAP 0909:005,2009

In GR, congruence of geodesics forms
caustics because gravity is attractive.

HL gravity Is repulsive at short distances,
due to higher curvature terms.
(c.f. bouncing FRW universe)

With codimension 2 and 3, higher curvature
terms can bounce would-be caustics.

With codimension 1, deviation of A from 1 Is
also needed to bounce would-be caustics.



N=1 N =0

HD terms and deviation of A from
1 can bounce Would be\caustlcs'

Perhaps next step |s to see “shell
crossmg” W|thout sheII crossmg




Horava-Lifshitz gravity is power-counting renormalizable
and can be a candidate theory of quantum gravity.

While there are many fundamental issues to be addressed,
It IS Interesting to investigate cosmological implications.

The z=3 scaling and leads to scale-
Invariant cosmological perturbations for a~tP with p>1/3.

HL gravity does NOT recover GR at low-E but can instead
mimic GR+CDM:

Constraint algebra is smaller than GR since the time slicing
and the “dark matter” rest frame are synchronized.

For spherically-symmetric, static, vacuum configurations,

Caustics avoidance requires higher curvature terms and
deviation of A from 1 in the UV. Next step is to see If
bounce of shells can mimic shell crossing.



Renormalizability beyond power-counting

RG flow: 1Is A =1 an IR fixed point ? Does it satisfy

the stablility condition for the scalar graviton?
(|cs| < Max [|®|Y?,HL] for Max[M-1,0.01lmm]<L<H1)

Is there Vainshtein effect in general?
e.g. superhorizon nonlinear cosmological perturbations (to
appear soon, with K.lzumi)

Can we get a common “limit of speed” ?
() M_3<<M,y,, (i) supersymmetry, (iii) other ideas?
Micro & macro behavior of “CDM”

Adiabatic initial condition for “CDM” from the z=3
scaling

Spectral tilt from anomalous dimension

Extensions of the original theory: Blas, et.al; Horava
& Melby-Thompson ...






Backup slides



GOING BACK TO
HORAVA'S IDEA



Horava (2009)

Basic quantities:
lapse , shift , 3d spatial metric

ADM metric (emergent in the IR)

ds? = -1N2dt? + ¢ (dx' + N'dt)(dx! + N'dt)
Foliation-preserving deffeomorphism
t-=>t(t), x' -2 x'(t,x)

Anisotropic scaling with z=3 in UV
t-=>b%t, X2 bX

Ingredients in the action

th g d 3X gij D. Rij
(Cyq=0in3d)



« Kinetic terms (2" time derivative)

| Ndt/gd*x (K K" - 2K?)

potential terms (61" spatial derivative)
det\Fd x[ DR,D'R* DRDR
RIR‘R, RR/R}  R* ]

c.f. DR, DR is written in terms of other terms



« z=2 potential terms (4" spatial derivative)
|Ndt/gd*x[ RR}  R* ]

« z=1 potential term (2"9 spatial derivative)

| Nt /gd°x( R ]

« 7z=0 potential term (no derivative)

| Nt /gd°x( 1 ]



, power-counting renormalizability

@ RG flow
. seemstorecoverGRIffA =2 1
kineji\c term

1 4 ' A
167G | Ndt/gd*x(K;K" - 2K? +cZR—2A)

note:
Renormalizability has not been proved.
RG flow has not yet been investigated.



Infinitesimal tr. &t = f(t), dx' = {i(t,x))
§gij — aigkgjk +aj§kgik +§kakgij + fgij
SN, =0.¢'N; +¢ 0N, + &g, + N, + N,
SN =¢'0.N + N + N

Space-independent N cannot be transformed to
space-dependent N.

N Is gauge d.o.f. associated with the space-
Independent time reparametrization.

It IS natural to restrict
Consequently,



Non-Gaussianity

w/ K.Izumi and T.Kobayashi
to appear



Bispectrum of z=3 scalar

Leading 3-point interactions with shift symmetry

L =5 (49)
L, =~ 5 (4%)(a9)¢
L, =5 (%) 4°

Corresponding H,dt has scaling dim O !



Order estimate

Power spectrum .
H X
P, o (0] ¢¢|0) o< MZX(MJ =M’
Bispectrum

H 0+3x0
oc (0| pghp| 0) ocujdg ([H(t,) ¢gg]) ocaxM®x (Mj =aM’
After conversion to curvature perturbation

B. ~ax(P.)"

3 S

» Strong constraint on a, perhaps
requiring asymptotic freedom of the theory.



« Schwarzschild BH in PG coordinate

2
ds® = —dt? + (dr +, /ZdetPj +r’dQ*  exact sol

_ _ forr=1
« Gaussian normal coordinate

2 2 approx sol
as __dtG+”' fora=1

| emaitre reference frame
Doran coordinate



= [ did's 3N\/[ 2 (02 = N'0,8)" + 200

O=m~wmzHa-m

FRW background with H >> M

1 ) |
loy =, [ dnd’ [a?(@ﬂé(b)g 500 (5710,0,)50

(61, 6®s) oy = —i / d73a? (5910,6®; — 6050, )



Normalized mode function

ik-2
€ ~1/27.—3/9 k* dn
Qﬁg—(gﬂ)SXQ /2 /Mexp( %MQ/ )

for aoct’, p>1/3

oo ) too (|t
/ — :/ — converges

a? a’

Power spectrum

a}f = \/ﬁ‘ 2’”)3‘3519‘ = ﬂ



GW 1 Ag

urv

4+ oN-1)

ur

+ (higher curvature corrections)
= 87TGN (TMV + pHLnun,,)
» Global Hamiltonian constraint
/d?’af;\/ﬁpHL =0
* Bianchi identity - (non-)conservation eq
-> initial condition of “"dark matter”

+ (higher curvature corrections)



There are at least four versions of the theory: w/wo
detailed balance & w/wo projectability.

Only the version without the detailed balance
condition has a
potential to be theoretically consistent and
cosmologically viable.

Horava’s original proposal was
and with/without the detailed
balance condition.

There Is an attempt to extend the non-projectable
theory by introducing a; = (In N); [Blas, Pujolas and
Sibiryakov 2009].



“On the extra mode and inconsistency of Horava
gravity”, by Blas, Pujolas and Sibiryakov,
arXiv:0906.3046

* This paper has three statements about the projectable
version: (1) Formation of caustics taking into
account backreaction of higher curvature terms to
geometry; (il) Relation to ghost condensate
taking into account difference in symmetries; (iii) Low
strong-coupling scale of their low-E EFT
A=1. This does not imply breakdown of the underlining
UV theory. (See “note added” in arXiv:0906.5069.)

« Contrary to (i), we know that the scalar graviton gets
strongly coupled A=1. This is not a problem if
there is "Vainstein effect” and if the theory is
renormalizable.



Stellar center Is dynamical in
Horava-Lifshitz gravity

arxiv:0911.1814 [hep-th]
with K.lzumi



Schwarzschild geometry in PG coordinate (N=1) is
ocally an exact solution with A = 1.

Kerr geometry in Doran coordinate (N=1,N'=0) is
ocally an approximate solution with A = 1.

Those solutions are “black” for low-E probes but not
“black” for high-E probes. Visible singularity?

Extrinsic curvature diverges at the center of those
solutions = UV effects such as deviation of A from 1
9

To answer this question, we probably need to evolve
a regular initial data towards BH formation.

As a first step, let us consider stellar solutions.




Painlevé-Gullstrand coordinate
gijdr'dr’ = dz® + r*(x)dS;
Matter sector
T, = pr)u,u, + P(z) [gﬁ? + uﬂuy]

= R ()]

*The energy density p Is a piecewise-continuous
non-negative function of the pressure P.
*The central pressure P, Is positive.




Momentum conservation equation
P'(1-3%)+(p+P)(1=5%) =0
Global-staticity - 1-B2 > 0 everywhere.
Regularity of KX, - B’ is finite - P’ is also
finite = B(x) and P(x) are continuous -
p(X)+P(X) Is piecewise-continuous.
P.>0 & P continuous & p non-negative -
p+P>0 In a neighborhood of the center.
Define x, as the minimal value for which at
least one of (p+ P)lo—zy, limyap—o(p+ P)

and lim,_,,,.0(p + P) is non-positive.



In(1 — 68) (1 52) == [~
0 ‘ p. p(P)+ P

L.h.s. Is non-positive € =0 & r./=1 &
regularity of R & K9,
R.h.s. Is positive € P, Is non-positive € p IS
non-negative & at least one of (p + P)|z—z,-
lim,_,,,_o(p + P) and lim,_,,,.o(p + P)
IS non-positive & P(X) Is continuous

Contradiction! =

- stellar center Is
dynamical

The proof is insensitive to the structure of
higher-derivative terms - valid for any z



P,
. th |s non- posmveéBC 0&r . =1 &

Po dP
(-6 -1 - 8) = = [, 5

The proof supports
“DM as integration constant”:

“DM” accreates toward a star and

makes stellar center dynamical
o Ccontradiction:

- stellar center Is
dynamical

The proof is insensitive to the structure of
higher-derivative terms - valid for any z



* Imposing local Hamiltonian constraint would
result in theoretical inconsistencies and
phenomenological obstacles.

« “Strong coupling in Horava gravity”
by C.Charmousis, et.al., arXiv:0905.2579
“A trouble with Horava-Lifshitz gravity”
by M.Li and Y.Pang, arXiv:0905.2751
“A dynamical inconsistency of Horava gravity”
by M.Henneaux, et.al., arXiv:0912.0399

(c.f. section 5 of arXiv:0905.3563)



Non-projectable theory In IR limit

| ocal Homiltonian constraint

,ﬂ.z’j ﬂ.kl y
_ T
H = gz‘jkl \/gR = QYR
\/g X \/g
1 A ijkl ik 4l il kl
Gijki = 5(9%9;‘1 + 9iGjk) — 3y _ 1gz‘jgkl GV = 5(9 g +g 9 ) )\Q 9

Secondary constraint

V; []\72(9Z ( d )] %/ 2
dsx\mz[ ( )] 0
m™=20 Ve
Additional secondary constraint

(V2= R)N =0



Additional secondary constraint

(V- NNO%jd X\Ja | (VN)*+RN?|=0

N=0Iif R>0

L ocal Homiltonian constraint

Ho= Gou™ T GR =O0with=0
= Yijkl gt =0with T =
J \/g \/_
—> R>00rK;=0
Corollary
N=0orK;=0

Thus, In the rest of this talk we impose
the projectablility condition, N=N(t).




Dark matter as integration constant
» Def. T G + Agly) = 8nGy (T, + THF)

 General solution to the momentum
constraint and dynamical eq.

« Bianchi identity - (non-)conservation eq

0, p"" + Kp""t = n'VHIT,,



Dark matter as inteqgration constant

’ Indeed one can prove that
there Is no exactly static

star: “CDM” accretes!
[arX|v 0911. 1814 w/ K.Izumi]}




Understanding the universe is one of our
greatest dreams.

Quantum gravity is another great dream.

In January 2009, Horava proposed a power-
counting renormalizable theory of gravitation.

Why dont we apply-Horava's theory to
cosmology?

The Cosmic Uroboros by
Sheldon Glashow



Higher curvature terms lead to

(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a°, 1/a%)

might make the

(Kiritsis&Kofinas 2009).

The z=3 scaling solves the horizon problem and
leads to scale-invariant cosmological perturbations
without inflation (Mukohyama 2009).

Absence of local Hamiltonian constraint leads to

CDM as integration “constant” (Mu

New mechanism for generation of
magnetic seed field (Maeda, Muko
Shiromizu 2009).

Kohyama 2009).
orimordial

nyama,



* The z=3 scaling and leads to
scale-invariant cosmological perturbations for a~tP
with p>1/3.

* The lack of local Hamiltonian constraint may explain
GR is NOT
recovered: constraint algebra is smaller than GR
since the time slicing and the “dark matter” rest
frame are synchronized in the theory level.

The rest of this talk
« Comments on scalar graviton
* Non-Gaussianity



Minkowski + perturbation
Residual guage freedom =
time-independent spatial diffeo.

Momentum constraint
0,0, Hij =0 Hij = hij —/1h5ij

Fix the residual guage freedom by setting
0\ Hij -0 at some fixed time surface.

Decompose H; into trace and traceless parts
part : 2 d.o.f. (usual tensor graviton)




. _ 0.0.
h.=H. + 1-4 Ho. — '2’
ooV 2a-31) Y 26

, the scalar graviton H

becomes pure gauge. So, it
« However, its kinetic term will vanish

o, Al
i ~jdtd X|:(atHij) "‘2(3/1_1) (0,H) }

H

and H gets

* |t is important to see if there is “Vainshtein
effect’, i.e. decoupling of the strongly-coupled
sector from the rest of the world.



Linear instability of scalar graviton
Appendix C of arXiv:0911.1814 with K.Izumi

« Sign of (time) kinetic term (A-1)/(3A-1) > 0.
« The dispersion relation in flat background

®? = C%k? X [1+ O(k?/M?)] with ¢ 2 =-(A-1)/(31-1)<0

- IR Instabllity in linear level
(Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009)

« Slower than Jeans instability of “DM as integration const” if

t;~(Gnp) Y2 <t ~L/|c| -
« Tamed by Hubble friction or/and O(k?/M?) terms if

H-1 <t or/and L < 1/(|c M).
« Thus, the linear instability

(®~-G\pL?)

L>0.01lmm (Shorter scales = similar to spacetime foam)

 Phenomenological constraint on properties of RG flow.



Basics of Horava-Lifshitz gravity

Generation of scale-invariant
cosmological perturbation

Dark matter as integration “constant’
Comments on scalar graviton
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* 4D diffeomorphism -
4 constraints = 1 Hamiltonian + 3 momentum

« Constraints are preserved by dynamical
eguations.

* We can solve dynamical equations, provided
that constraints are satisfied at initial time.



o ds?=-dt? + a?(t) (dx? + dy? + dz?)
* Approximates overall behavior of our patch
of the universe inside the Hubble horlzon

« Hamiltonian constraint 3a_2 _ 87TGNZ/0%

- Friedmann eq a’
E.o.m. of matter
. i +3=(pi+P)=0
-> conservation eq. pit (’0+ ) =

-2

—2— — CL_ —87TGNZP3‘

CL2

but follows from the above n+1 egs.



free part j dtd x( + ¢O¢)
A3 KA® )
M 4 M 2 C¢A _ m¢

FERMI. MAGIC O =
- M>101GeV
for photon

, renormalizable nonlinear theory
Il RG flow

, familiar Lorentz invariant theory

Note: we need a mechanism or symmetry to make “limits of
speed” of different species to be essentially the same.
Perhaps, embedding into an unified theory is necessary.



