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Plan of the talk

1. Statistical properties of the primordial curvature perturbation.
Generation from scalar field perturbations.

2. Statistical anisotropy from vector field contributions.
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LSS — our window on early universe

• Observation of large scale structure is our main window on
early universe.

• CMB anisotropy + galaxy distribution and bulk flow

• Can predict LSS in terms of primordial curvature
perturbation ζ(x) existing at T ∼ 1 MeV.

• So ζ(x) is an observable .

• Other effects < 10%, probably ' 0

• tensor perturbation, cosmic strings, textures,
isocurvature (matter or ν) perturbation.
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Defining the curvature perturbation ζ

No restriction to first order cosmological perturbation theory
Second order needed if non-gaussianity parameter |fNL| <∼ 10.

• Unperturbed universe: ds2 = −dt2 + gijdxidxj , gij = a2(t)δij

• Perturbed universe:

gij = a2(t)e2ζ(x,t)γij(x, t), ||γ|| = 1, 〈ζ〉 = 0.

threading comoving, slicing uniform energy densityρ(t) (1)

• Local scale factor a(x, t) ≡ a(t)eζ(x,t), volume dV ∝ a3(x, t) .
• Derivation of δN formula

ζ̇ =
ȧ(x, t)

a(x, t)
−

ȧ(t)

a(t)
, N(x, t, t1) ≡

Z t

t1

dt
ȧ(x, t)

a(x, t)

ζ(x, t) − ζ(x, t1) = δN(x, t, t1)
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Time dependence of ζ

• We smooth ζ on some scale L shorter than any of interest.

• Interested in ζ only before horizon entry, L � (aH)−1.

• Smooth ρ and P on scale L. Local energy continuity
equation

ρ̇(t) = − ȧ(x, t)

a(x, t)
(ρ(t) + P (t) + δPnad)

where δPnad is pressure perturbation on uniform ρ slicing.

• If P (ρ) is unique ζ̇ = 0.

•

So ζ̇ = 0 for matter domination and for radiation domination.
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Setting the initial condition for LSS

Consider the epoch T ∼ 10−1 MeV .

• Universe is radiation dominated and ζ has time-independent
value ζ(x).

• LSS probes scales (inverse wavenumbers)
e−15H−1

0
<∼ k−1 <∼ H−1

0 .

• These ‘cosmological scales’ are outside horizon at
T ∼ 10−1 MeV.

• Assume adiabatic initial condition:
δργ = δρν = δρB = δρCDM = 0 on the slicing of uniform ρ.

• Then ζ(x) determines subsequent evolution of all
perturbations (except tensor mode).
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Spectrum Pζ(k, t)

• Work in box � scales of interest.

• Assume 〈ζ(x)ζ(x′)〉 translation invariant

• 〈〉 is average over box location

This is statistical homogeneity

• Define Pζ(k): 〈ζkζk′〉 ≡ (2π)3δ3(k + k
′)(π2/k3)Pζ(k)

• 〈〉 = average over cell d3kd3k′ in one box

• Assume Pζ(k) depends only on k (statistical isotropy).

• Mean-square (volume average) is

〈ζ2〉 =

∫

dk

k
Pζ(k)
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Non-gaussianity of ζ

• Gaussian means no correlation between ζk’s except that
required by ζk = ζ∗

−k
.

• Bispectrum: 〈ζkζk′ζk′′〉 = (2π)3δ2(k + k
′ + k

′′)Bζ(k,k′)

• Assuming statistical isotropy, Bζ = Bζ(k, k′, k′′).

fNL(k, k′, k′′) ≡ 5

6

Bζ(k, k′, k′′)
k3

2π2
k′3

2π2Pζ(k)Pζ(k′) + cyclic perms

• Curvaton-type models for origin of ζ predict

ζ(x) = g(x) +
3

5
fNL

[

g2(x) − 〈g2〉
]

with g gaussian and fNL constant.
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Observation of ζ on cosmological scales
• Statistical inhomogeneity and anisotropy <∼ 10%

• Tensor fraction r <∼ 10−1

• Pζ ' (5 × 10−5)2

• Assuming r <∼ 10−2

n − 1 ≡ d lnPζ

d ln k
= −0.04 ± 0.015

• Running

| dn

d ln k
| <∼ 10−2

• Non-gaussian fraction Pζ
−1/2fNL <∼ 10−2
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Origin of ζ

• Sufficient inflation makes universe homogeneous at
classical level

• Vacuum fluctuation of any light (|m|2 � H2) scalar field φ

with canonical kinetic term is converted at horizon exit to
classical perturbation δφk(t).

• For exponential and isotropic inflation Pδφ(k, t) ' (H/2π)2.

• Usual assumption: ζ generated from one (or more) of these
perturbations.

• Prediction: Statistical homogeneity and isotropy .
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Three paradigms for generating ζ

• φ is inflaton in single-field slow roll inflation.

• Negligible fNL but expect observable n′

• φ is curvaton-type field effective only after inflation.

• Expect observable fNL

• φ is inflaton in generic scalar field inflation.

• Expect observable n’ and in many cases

observable fNL
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Statistical anisotropy of the spectrum

Reality ζ∗
k

= ζ−k requires Pζ(k) = Pζ(−k)

Simplest parameterisation with n̂ a preferred direction:

Pζ(k) = Pζ
isotropic(k)

[

1 + g(k)
(

n̂ · k̂
)2

]

WMAP gives |g| < 10−1, PLANCK will give |g| < 10−2 or detect.

Strongly decreasing g(k) could explain axis of evil?
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How to get statistical anisotropy?

Vector field during inflation can do it in two ways.

• Homogeneous vector field gives anisotropic expansion .

Scalar field perturbation generates ζ

Kanno/Soda/Watanabe 1010.5307, Emami/Firouzjahi/Movahed/Zarei 1010.5495

• Assume practically isotropic expansion , generate ζ from

vector field perturbation.
S. Yokoyama/Soda 0805.4265; K. Dimopoulos/Karciauskas/DHL/Rodriguez 0809.1055

• I’ll just discuss second possibility
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Calculating ζA

δA(k) =
∑

λ

eλ(k̂)δAλ(k), λ = R, L or ‖

If A gauge field, A‖ = 0

〈δAλ(k)δA∗
λ′(k′)〉 = (2π)2 2π2

k3
δλλ′δ(k− k

′) Pλ(k)

Calculate contribution of δA to ζ using δN formula

ζA = δN(A) =
∑

Ni · δAi + +
∑

NijδAiδAj + · · ·
Ni ≡ ∂N/∂Ai, Nij ≡ ∂2N/∂Ai∂Aj

Scenario for creating ζA gives N(A).
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Spectrum of ζA

Define P⊥ = (PR + PL)/2 and (NA)i ≡ Ni [D/K/D/R]

PζA
= N 2

AP⊥

[

1 + N̂A · k̂
(P‖ − P⊥

P⊥

)]

.

If A is a gauge field P‖ = 0, anyhow expect P‖ 6= P⊥. So small
anisotropy needs

Vector contribution to ζ is small
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Bispectrum of ζA

(D/K/L/R) Define P− ≡ 1
2
(PR − PL)

BζA
=

∑

ijnm

NiNnNjm (Pij(k)Pnm(k′) + cyclic perms.)

Pij(k) ≡ 2π2

k3

[(

δij − k̂ik̂j

)

+ pk̂ik̂j + iqεijkk̂k

]

P⊥(k)

p ≡ P‖/P⊥, q ≡ P−/P⊥

Analogue of ‘local’ bispectrum generated by scalar field
perturbation.
No fit to observation yet done.

PLANCK team please note!
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Non-canonical gauge kinetic function

Application: generate ζ at end of inflation S. Yokoyama/Soda 0805.4265

During exponential inflation take

S = −1

4

∫

dηd3x
√
−gf 2(χ(η))FµνF

µν

Scalar field χ assumed to give f ∝ aα.

Gauge invariance gives P‖ = 0.

P⊥(k) =

(

H

2π

)2 (

k

kend

)3−2|α+ 1
2
|

Flat spectrum for α ' −2 or +1.
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1
6RA2 coupling to gravity
Application: vector curvaton model
K. Dimopoulos hep-ph/0607229; D/K/L/R 0809.1055

S =

∫

dηd3x
√−g

[

1

2
M 2

PR − 1

4
FµνF

µν − 1

2

(

m2 +
R

6

)

BµB
µ

]

Fµν ≡ ∂µBν − ∂νBµ, physical field Aµ = Bµ/a(η)

This action may have problems Himmetoglu/Contaldi/Peloso 0909.3524 but it
doesn’t have a ghost. Karciauskas/DHL 1007.1426

Use it during exponential inflation when R = 12H2.

P+(k) =

(

H

2π

) (

k

kend

)2m2/3H2

, P‖(k) = 2P+(k)

Flat spectrum for m = 0.
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Vector inflation
Golovnev/Mukhanov/Vanchurin 0802.2068, D/K/DHL/R.

• Uses 1
6
RA2 interaction with many vector fields.

• Random orientation gives almost isotropic inflation.

• Anisotropy of ζA is small so don’t need scalar fields! D/K/L/R

• Except for anisotropy, prediction same as for φ2 chaotic
inflation.

• Tensor with statistical anisotropy is the smoking gun.
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Non-abelian gauge field perturbation
• Non-Abelian gauge field has many components.

• Could use it with non-canonical kinetic term.

• Statistical anisotropy could be small, no need for scalar
fields.

• But gauge interaction might generate too much
non-gaussianity.

• Existing studies incomplete
Bartolo/Dimastrogiovanni/Matarrese/Riotto 0906.4944, 0909.5621.
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Concluding remarks
• LSS observations are very worthwhile

We expect to see either running or non-g.

• LSS might remain our only window on the early universe

• If dark energy is a cosmological constant it won’t have
properties

• If the CDM isn’t a WIMP (eg. if susy breaking is
gauge-mediated) we direct detecton will probably be
impossible.

• A vector field during inflation could generate statistical
anisotropy. but there’s no reason to expect it.

• Still, we have to understand it and see if it’s there.
Thanks for listening!
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