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Plan of the talk

1. Statistical properties of the primordial curvature perturbation.
Generation from scalar field perturbations.

2. Statistical anisotropy from vector field contributions.
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LSS — our window on early universe

* Observation of
early universe.

large scale structure
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LSS — our window on early universe

* Observation of | large scale structure | is our main window on
early universe.

* CMB anisotropy + galaxy distribution and bulk flow

* Can predict LSS in terms of primordial curvature
perturbation | ((x) | existing at T' ~ 1 MeV.

* So|((x) is an observable |.

* Other effects < 10%, probably ~ 0

* tensor perturbation, cosmic strings, textures,
Isocurvature (matter or v) perturbation.
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Defining the curvature perturbation ¢

No restriction to first order cosmological perturbation theory
Second order needed if non-gaussianity parameter | fyi,| < 10.
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Defining the curvature perturbation ¢

No restriction to first order cosmological perturbation theory
Second order needed if non-gaussianity parameter | fyi,| < 10.

* Unperturbed universe: ds2 = —dt? + g;;dzidz?,  gi; = a2(t)6y;
* Perturbed universe:

gij = > ()X Dy;(x,t),  |l=1 (=0
threading comoving, slicing uniform energy densityp(t)

* Local scale factor a(x,t) = a(t)es=t, volume dav « a3(x,t) .
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Defining the curvature perturbation ¢

No restriction to first order cosmological perturbation theory
Second order needed if non-gaussianity parameter | fyi,| < 10.

* Unperturbed universe: ds2 = —dt? + g;;dzidz?,  gi; = a2(t)6y;
* Perturbed universe:

gij = > ()X Dy;(x,t),  |l=1 (=0
threading comoving, slicing uniform energy densityp(t)

* Local scale factor a(x,t) = a(t)es=t, volume dav « a3(x,t) .
* Derivation of ) N formula
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Time dependence of (

* We smooth ¢ on some scale L shorter than any of interest.

* Interested in ¢ only before horizon entry, L > (aH) ™.
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Time dependence of (

* We smooth ¢ on some scale L shorter than any of interest.
* Interested in ¢ only before horizon entry, L > (aH) ™.

* Smooth p and P on scale L. Local energy continuity
equation

5(t) = = 250 i) £ P(E) + 6 Praa)

where 0 P,.q IS pressure perturbation on uniform p slicing.
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Time dependence of (

* We smooth ¢ on some scale L shorter than any of interest.
* Interested in ¢ only before horizon entry, L > (aH) ™.

* Smooth p and P on scale L. Local energy continuity
equation

5(t) = = 250 i) £ P(E) + 6 Praa)

where 0 P,.q IS pressure perturbation on uniform p slicing.

* If P(p) is unique ¢ = 0.

So ¢ = 0 for matter domination and for radiation domination.
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Setting the Initial condition for LSS

Consider the epoch |T ~ 107! MeV |

* Universe is radiation dominated and ¢ has time-independent
value ((x).

* LSS probes scales (inverse wavenumbers)
—15 71 —1 —
e "Hy <k <H;".
* These ‘cosmological scales’ are outside horizon at
T ~ 107! MeV.

* Assume adiabatic initial condition:
0py = 0p, = 0pp = 0pcpm = 0 on the slicing of uniform p.

* Then ((x) determines subsequent evolution of all
perturbations (except tensor mode).

KEK 2010 — p.6/2



Spectrum P¢(k, t)

 Work in box > scales of interest.

* Assume (((x)((x’)) translation invariant
e () is average over box location

This Is

statistical homogeneity
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Spectrum P¢(k, t)

 Work in box > scales of interest.

* Assume (((x)((x’)) translation invariant
e () is average over box location

This Is

e Deflne Pc(k) <<k€k’> — (271')353(1{ R k/)(ﬂz/kB)Pc(k)
® () = average over cell d3kd3k’ in one box

* Assume P, (k) depends only on £ (statistical isotropy).

statistical homogeneity
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Spectrum P¢(k, t)

 Work in box > scales of interest.

* Assume (((x)((x’)) translation invariant
e () is average over box location

This Is | statistical homogeneity

e Deflne Pc(k) <Cka/> = (271')353(1{ R k/)(ﬂ'z/]fS)Pc(k)

® () = average over cell d3kd3k’ in one box

* Assume P, (k) depends only on £ (statistical isotropy).

* Mean-square (volume average) is

dk

(%) = ?Pc(k)
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Non-gaussianity of ¢

* Gaussian means no correlation between (’'s except that
required by ¢ = C*,..
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Non-gaussianity of ¢

* Gaussian means no correlation between (’'s except that
required by ¢ = C*,..
* Bispectrum: ((x () = (27)%6%(k + k' + k") B¢ (k, k')
* Assuming statistical isotropy, B, = B (k, k', k").

B:(k, K E")
k2K P (k)P (k') + cyclic perms

o2 2772

fNL(ka kla k”)

0
6

KEK 2010 — p.8/2



LANCASTER
UNIVERSITY

Non-gaussianity of ¢

* Gaussian means no correlation between (’'s except that
required by ¢ = C*,..
* Bispectrum: ((x () = (27)%6%(k + k' + k") B¢ (k, k')
* Assuming statistical isotropy, B, = B (k, k', k").

B:(k, K E")
k2K P (k)P (k') + cyclic perms

o2 2772

fNL(ka kla k”)

g
§
* Curvaton-type models for origin of ¢ predict

() = 90 + 2 fe. [17(x) — (")

with g gaussian and fyp, constant.
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Observation of ( on cosmological scales

* Statistical inhomogeneity and anisotropy < 10%
* Tensor fraction » < 10!
¢ 7)( e (5 X 10_5)2

* Assuming r < 10~°

dIn P,
— 1= = —0.04 £ 0.01
n Ik 0.0 0.015
* Running
0 ) g
dln k

e Non-gaussian fraction P,/ fyr, < 1072
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Origin of ¢

* Sufficient inflation makes universe homogeneous at
classical level
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Origin of ¢

* Sufficient inflation makes universe homogeneous at

classical level

* Vacuum fluctuation of any light (|m|* < H?) |scalar
with canonical kinetic term is converted at horizon exit to
classical perturbation d¢y(t).

°* [or

exponential and isotropic inflation
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field ¢

Pso(k,t) ~ (H/27)>.
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Origin of ¢

* Sufficient inflation makes universe homogeneous at
classical level

* Vacuum fluctuation of any light (|m|* < H#) |scalar |field ¢
with canonical kinetic term is converted at horizon exit to
classical perturbation d¢y(t).

* For |exponential and isotropic inflation | Ps,(k, t) ~ (H/2m)=.

* Usual assumption: ¢ generated from one (or more) of these
perturbations.

* Prediction: | Statistical homogeneity and isotropy |.
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Three paradigms for generating ¢

* ¢ Is Inflaton in single-field slow roll inflation.

* Negligible fxr, but expect

observable n’
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Three paradigms for generating ¢

* ¢ Is Inflaton in single-field slow roll inflation.

* Negligible fxr, but expect

* ¢ IS curvaton-type field effective only after inflation.

* Expect|observable fy.
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Three paradigms for generating ¢

* ¢ Is Inflaton in single-field slow roll inflation.

* Negligible fyi, but expect |observable n’

* ¢ IS curvaton-type field effective only after inflation.

* Expect|observable fy.

* ¢ Is inflaton in generic scalar field inflation.

* EXxpect|observable n’|and in many cases
observable fyi,

LANCASTER
UNIVERSITY
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Statistical anisotropy of the spectrum
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Simplest parameterisation with n a preferred direction:

PC(k) _ PgisotropiC(k) [1 X g(k) (ﬁ | 12) 2]
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Statistical anisotropy of the spectrum

Reality ¢ = (_x requires P;(k) = P.(—k)
Simplest parameterisation with n a preferred direction:

PC(k) _ Pcisotropi(:(k) [1 X g(k) (ﬁ | 1A<> 2]

WMAP gives |g| < 107!, PLANCK will give |g| < 1072 or detect.

Strongly decreasing g(k) could explain axis of evil?
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Vector field during inflation can do it in two ways.



How to get statistical anisotropy?

Vector field during inflation can do it in two ways.

* Homogeneous vector field gives
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anisotropic expansion |

Scalar | field perturbation generates ¢

Kanno/Soda/Watanabe 1010.5307, Emami/Firouzjahi/Movahed/Zarei 1010.5495
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How to get statistical anisotropy?

LANCASTER
UNIVERSITY

Vector field during inflation can do it in two ways.

* Homogeneous vector field gives

Scalar

anisotropic expansion |

field perturbation generates (

Kanno/Soda/Watanabe 1010.5307, Emami/Firouzjahi/Movahed/Zarei 1010.5495

* Assume practically |isotropic expansion

vector

field perturbation.

, generate ¢ from

S. Yokoyama/Soda 0805.4265; K. Dimopoulos/Karciauskas/DHL/Rodriguez 0809.1055
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How to get statistical anisotropy?

Vector field during inflation can do it in two ways.

* Homogeneous vector field gives | anisotropic expansion |.

Scalar | field perturbation generates ¢

Kanno/Soda/Watanabe 1010.5307, Emami/Firouzjahi/Movahed/Zarei 1010.5495

* Assume practically | isotropic expansion |, generate ¢ from

vector | field perturbation.

S. Yokoyama/Soda 0805.4265; K. Dimopoulos/Karciauskas/DHL/Rodriguez 0809.1055

* I'll just discuss second possibility
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If A gauge field, A, =0

10 ANk

A=R, Lor|
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Calculating (4

Z ex(k)dA,(k

If A gauge field, A, =0

27T

A=R, Lor|

(0AN()3 A3 (K')) = (2m)° - d(k — K| Pa(k)
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Calculating (4

ZGA )0 Ax(k A=R, Lor|

If A gauge field, A, =0

(6A\(K)3A3 (K)) = (27)° Qkiw(k K[ Pa (k)

Calculate contribution of 4 A to ¢ using N formula

Ca = ON(A) =D N;-6A;++ Y Nij0AdA;+ -
N; = ON/OA;, N =0°N/OADA,

Scenario for creating (4 gives N(A).
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Spectrum of (4

Define P, = (Pr + Pr)/2 and (N 4); = N; [DIK/DIR]

Pea = NP, [1 +Ny4 -k (P _PL>] .
P

If A Is a gauge field P, = 0, anyhow expect P # P,. So small
anisotropy needs

Vector contribution to ¢ is small
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Bispectrum of (4

(okiLr) Define P_ = 2(Pr — Pyr)

Be, = Z NiN,N;m (P;; (k)P (k") + cyclic perms.)
1ynm

272

p = Py/PL, q=P_/P,

Analogue of ‘local’ bispectrum generated by scalar field
perturbation.

No fit to observation yet done.

PLANCK team please note!
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Non-canonical gauge kinetic function

Application: generate ¢ at end of inflation s. Yokoyama/Soda 0805.4265
During exponential inflation take

1

S =7 [ dnd'sv/=g () Fu P

Scalar field y assumed to give f x a“.
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Non-canonical gauge kinetic function

Application: generate ¢ at end of inflation s. Yokoyama/Soda 0805.4265
During exponential inflation take

1
4

5 / Ao/ =g f2( () oy F*

Scalar field y assumed to give f x a“.
Gauge invariance gives P = 0.

7\ 2 2 3—2|a+1|
Pi0=(55) ()

Flat spectrum for o ~ —2 or +1.
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+RA* coupling to gravity

Application: vector curvaton model

K. Dimopoulos hep-ph/0607229; D/K/L/R 0809.1055

1 1 1 R
S = /Cl?’]dBQZ'\/ —g liMPQ)R — Z 'UJ,/F'LW — 5 (m2 -+ E) BILLB'LL]

F 0,B, —0,B,, physical field A, = B,,/a(n)

1%
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+RA* coupling to gravity

Application: vector curvaton model

K. Dimopoulos hep-ph/0607229; D/K/L/R 0809.1055

1 1 1 R
S = /Cl?’]dBQZ'\/ —g liMPQ)R — ZF/“/FW/ — 5 (m2 -+ E) B,LLBM]
F

w = 0,B,—0,B,, physical field A, = B,,/a(n)

This action may have problems Himmetoglu/Contaldi/Peloso 0909.3524 but it
doesn’t have a ghost. Karciauskas/DHL 1007.1426
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+RA* coupling to gravity

Application: vector curvaton model
K. Dimopoulos hep-ph/0607229; D/K/L/R 0809.1055
1 1 1 R
S = /Cl?’]dBI'\/ —g liMPQ)R — Z M,/F'wj — 5 (m2 -+ E) B,LLBM]
F, = 0,B,—-0,B,, physical field A, = B,,/a(n)

This action may have problems Himmetoglu/Contaldi/Peloso 0909.3524 but it
doesn’t have a ghost. Karciauskas/DHL 1007.1426
Use it during exponential inflation when R = 12H°.

P, (k) = (H ) ( i >2m2/3H2, Py(k) = 2P, (k)

% kend

Flat spectrum for m = 0.
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Vector inflation

Golovnev/Mukhanov/Vanchurin 0802.2068, D/K/DHL/R.
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* Uses %RA2 Interaction with many vector fields.

* Random orientation gives almost isotropic inflation.

* Anisotropy of (4 Is small so don’'t need scalar fields! bxiLr

e Except for anisotropy, prediction same as for ¢* chaotic

Inflation.

e | Tensor

with

statistical anisotropy

IS the smoking gun.
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Non-abelian gauge field perturbation

* Non-Abelian gauge field has many components.
* Could use it with non-canonical kinetic term.

* Statistical anisotropy could be small, no need for scalar
fields.
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Non-abelian gauge field perturbation

* Non-Abelian gauge field has many components.
* Could use it with non-canonical kinetic term.

* Statistical anisotropy could be small, no need for scalar
fields.

* But|gauge interaction | might generate too much
non-gaussianity.

* EXisting studies incomplete

Bartolo/Dimastrogiovanni/Matarrese/Riotto 0906.4944, 0909.5621.

KEK 2010 — p.20/2!



LANCASTER
UNIVERSITY

Concluding remarks

* LSS observations are very worthwhile

We expect to see either running or non-g.




LANCASTER
UNIVERSITY

Concluding remarks

* LSS observations are very worthwhile
We expect to see either running or non-g.

* LSS might remain our only window on the early universe

* |f dark energy is a cosmological constant it won’t have
properties

* |f the CDM isn’'t a WIMP (eg. if susy breaking Is
gauge-mediated) we direct detecton will probably be
Impossible.
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* LSS observations are very worthwhile
We expect to see either running or non-g.

* LSS might remain our only window on the early universe

* |f dark energy is a cosmological constant it won’t have
properties

* |f the CDM isn’'t a WIMP (eq. if susy breaking is
gauge-mediated) we direct detecton will probably be
Impossible.

* A vector field during inflation could generate statistical
anisotropy. but there’s no reason to expect it.

e Still, we have to understand it and see If it's there.
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Concluding remarks

* LSS observations are very worthwhile
We expect to see either running or non-g.

* LSS might remain our only window on the early universe

* |f dark energy is a cosmological constant it won’t have
properties

* |f the CDM isn’'t a WIMP (eq. if susy breaking is
gauge-mediated) we direct detecton will probably be
Impossible.

* A vector field during inflation could generate statistical
anisotropy. but there’s no reason to expect it.

e Still, we have to understand it and see If it's there.
Thanks for listening!
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