

The primordial curvature perturbation

David H. Lyth

Particle theory and cosmology group Physics Department Lancaster University

Plan of the talk

1. Statistical properties of the primordial curvature perturbation. Generation from scalar field perturbations.

2. Statistical anisotropy from vector field contributions.

LSS — our window on early universe

- LANCASTER
- Observation of large scale structure is our main window on early universe.
 - CMB anisotropy + galaxy distribution and bulk flow

LSS — our window on early universe

- LANCASTER
- Observation of large scale structure is our main window on early universe.
 - CMB anisotropy + galaxy distribution and bulk flow
- Can predict LSS in terms of primordial curvature perturbation $\zeta(\mathbf{x})$ existing at $T \sim 1 \,\text{MeV}$.
 - So $\zeta(\mathbf{x})$ is an observable.

LSS — our window on early universe

- Observation of large scale structure is our main window on early universe.
 - CMB anisotropy + galaxy distribution and bulk flow
- Can predict LSS in terms of primordial curvature perturbation $\zeta(\mathbf{x})$ existing at $T \sim 1 \,\text{MeV}$.
 - So $\zeta(\mathbf{x})$ is an observable .
- Other effects < 10%, probably $\simeq 0$
 - tensor perturbation, cosmic strings, textures, isocurvature (matter or ν) perturbation.

LANCASTE

Defining the curvature perturbation ζ

No restriction to first order cosmological perturbation theory Second order needed if non-gaussianity parameter $|f_{\rm NL}| \leq 10$.

Defining the curvature perturbation ζ

No restriction to first order cosmological perturbation theory Second order needed if non-gaussianity parameter $|f_{\rm NL}| \leq 10$.

- Unperturbed universe: $ds^2 = -dt^2 + g_{ij}dx^i dx^j$, $g_{ij} = a^2(t)\delta_{ij}$
- Perturbed universe:

$$g_{ij} = a^2(t)e^{2\zeta(\mathbf{x},t)}\gamma_{ij}(\mathbf{x},t), \qquad ||\gamma|| = 1, \qquad \langle \zeta \rangle = 0.$$

threading comoving, slicing uniform energy density $\rho(t)$

• Local scale factor $a(\mathbf{x},t) \equiv a(t)e^{\zeta(\mathbf{x},t)}$, volume $d\mathcal{V} \propto a^3(\mathbf{x},t)$.

LANCASTE

Defining the curvature perturbation ζ

No restriction to first order cosmological perturbation theory Second order needed if non-gaussianity parameter $|f_{\rm NL}| \leq 10$.

- Unperturbed universe: $ds^2 = -dt^2 + g_{ij}dx^i dx^j$, $g_{ij} = a^2(t)\delta_{ij}$
- Perturbed universe:

$$g_{ij} = a^2(t)e^{2\zeta(\mathbf{x},t)}\gamma_{ij}(\mathbf{x},t), \qquad ||\gamma|| = 1, \qquad \langle \zeta \rangle = 0.$$

threading comoving, slicing uniform energy density $\rho(t)$

- Local scale factor $a(\mathbf{x},t) \equiv a(t)e^{\zeta(\mathbf{x},t)}$, volume $d\mathcal{V} \propto a^3(\mathbf{x},t)$.
- Derivation of δN formula

$$\dot{\zeta} = \frac{\dot{a}(\mathbf{x},t)}{a(\mathbf{x},t)} - \frac{\dot{a}(t)}{a(t)}, \qquad N(\mathbf{x},t,t_1) \equiv \int_{t_1}^t dt \frac{\dot{a}(\mathbf{x},t)}{a(\mathbf{x},t)}$$

 $\zeta(\mathbf{x},t) - \zeta(\mathbf{x},t_1) = \delta N(\mathbf{x},t,t_1)$

Time dependence of ζ

- LANCASTER
- We smooth ζ on some scale L shorter than any of interest.
- Interested in ζ only before horizon entry, $L \gg (aH)^{-1}$.

Time dependence of ζ

- We smooth ζ on some scale L shorter than any of interest.
- Interested in ζ only before horizon entry, $L \gg (aH)^{-1}$.
- Smooth ρ and P on scale L. Local energy continuity equation

$$\dot{\rho}(t) = -\frac{\dot{a}(\mathbf{x},t)}{a(\mathbf{x},t)} \left(\rho(t) + P(t) + \delta P_{\text{nad}}\right)$$

where δP_{nad} is pressure perturbation on uniform ρ slicing.

Time dependence of ζ

- We smooth ζ on some scale L shorter than any of interest.
- Interested in ζ only before horizon entry, $L \gg (aH)^{-1}$.
- Smooth ρ and P on scale L. Local energy continuity equation

$$\dot{\rho}(t) = -\frac{\dot{a}(\mathbf{x},t)}{a(\mathbf{x},t)} \left(\rho(t) + P(t) + \delta P_{\text{nad}}\right)$$

where δP_{nad} is pressure perturbation on uniform ρ slicing.

• If $P(\rho)$ is unique $\dot{\zeta} = 0$.

So $\dot{\zeta} = 0$ for matter domination and for radiation domination.

Setting the initial condition for LSS

Consider the epoch $T \sim 10^{-1} \,\mathrm{MeV}$.

- Universe is radiation dominated and ζ has time-independent value ζ(x).
- LSS probes scales (inverse wavenumbers) $e^{-15}H_0^{-1} \leq k^{-1} \leq H_0^{-1}$.
- These 'cosmological scales' are outside horizon at $T\sim 10^{-1}\,{\rm MeV}.$
- Assume adiabatic initial condition: $\delta \rho_{\gamma} = \delta \rho_{\nu} = \delta \rho_{\rm B} = \delta \rho_{\rm CDM} = 0$ on the slicing of uniform ρ .
- Then $\zeta(\mathbf{x})$ determines subsequent evolution of all perturbations (except tensor mode).

Spectrum $\mathcal{P}_{\zeta}(k,t)$

- Assume $\langle \zeta(\mathbf{x})\zeta(\mathbf{x}')\rangle$ translation invariant
 - $\langle \rangle$ is average over box location

This is statistical homogeneity

Spectrum $\mathcal{P}_{\zeta}(k,t)$

- Assume $\langle \zeta(\mathbf{x})\zeta(\mathbf{x}')\rangle$ translation invariant
 - $\langle \rangle$ is average over box location

This is statistical homogeneity

• Define $\mathcal{P}_{\zeta}(\mathbf{k})$: $\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle \equiv (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}') (\pi^2/k^3) \mathcal{P}_{\zeta}(\mathbf{k})$

• $\langle \rangle =$ average over cell $d^3k d^3k'$ in one box

• Assume $\mathcal{P}_{\zeta}(\mathbf{k})$ depends only on k (statistical isotropy).

Spectrum $\mathcal{P}_{\zeta}(k,t)$

- Work in box \gg scales of interest.
- Assume $\langle \zeta(\mathbf{x})\zeta(\mathbf{x}')\rangle$ translation invariant
 - $\langle \rangle$ is average over box location

This is statistical homogeneity

• Define $\mathcal{P}_{\zeta}(\mathbf{k})$: $\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle \equiv (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}') (\pi^2/k^3) \mathcal{P}_{\zeta}(\mathbf{k})$

• $\langle \rangle =$ average over cell $d^3k d^3k'$ in one box

- Assume $\mathcal{P}_{\zeta}(\mathbf{k})$ depends only on k (statistical isotropy).
- Mean-square (volume average) is

$$\langle \zeta^2 \rangle = \int \frac{dk}{k} \mathcal{P}_{\zeta}(k)$$

Non-gaussianity of ζ

• Gaussian means no correlation between ζ_k 's except that required by $\zeta_k = \zeta^*_{-k}$.

Non-gaussianity of ζ

- Gaussian means no correlation between ζ_k 's except that required by $\zeta_k = \zeta^*_{-k}$.
- Bispectrum: $\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \zeta_{\mathbf{k}''} \rangle = (2\pi)^3 \delta^2 (\mathbf{k} + \mathbf{k}' + \mathbf{k}'') B_{\zeta}(\mathbf{k}, \mathbf{k}')$
 - Assuming statistical isotropy, $B_{\zeta} = B_{\zeta}(k, k', k'')$.

$$f_{\rm NL}(k,k',k'') \equiv \frac{5}{6} \frac{B_{\zeta}(k,k',k'')}{\frac{k^3}{2\pi^2} \frac{k'^3}{2\pi^2} \mathcal{P}_{\zeta}(k) \mathcal{P}_{\zeta}(k') + \text{cyclic perms}}$$

LANCAST

Non-gaussianity of ζ

- Gaussian means no correlation between ζ_k 's except that required by $\zeta_k = \zeta^*_{-k}$.
- Bispectrum: $\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \zeta_{\mathbf{k}''} \rangle = (2\pi)^3 \delta^2 (\mathbf{k} + \mathbf{k}' + \mathbf{k}'') B_{\zeta}(\mathbf{k}, \mathbf{k}')$
 - Assuming statistical isotropy, $B_{\zeta} = B_{\zeta}(k, k', k'')$.

$$f_{\rm NL}(k,k',k'') \equiv \frac{5}{6} \frac{B_{\zeta}(k,k',k'')}{\frac{k^3}{2\pi^2} \frac{k'^3}{2\pi^2} \mathcal{P}_{\zeta}(k) \mathcal{P}_{\zeta}(k') + \text{cyclic perms}}$$

• Curvaton-type models for origin of ζ predict

$$\zeta(\mathbf{x}) = g(\mathbf{x}) + \frac{3}{5} f_{\rm NL} \left[g^2(\mathbf{x}) - \langle g^2 \rangle \right]$$

with g gaussian and $f_{\rm NL}$ constant.

Observation of ζ on cosmological scales

- Statistical inhomogeneity and anisotropy $\leq 10\%$
- Tensor fraction $r \leq 10^{-1}$
- $\mathcal{P}_{\zeta} \simeq (5 \times 10^{-5})^2$
- Assuming $r \lesssim 10^{-2}$

$$n-1 \equiv \frac{d\ln \mathcal{P}_{\zeta}}{d\ln k} = -0.04 \pm 0.015$$

Running

$$\left|\frac{dn}{d\ln k}\right| \lesssim 10^{-2}$$

• Non-gaussian fraction $\mathcal{P}_{\zeta}^{-1/2} f_{\rm NL} \lesssim 10^{-2}$

 Sufficient inflation makes universe homogeneous at classical level

Origin of ζ

- Sufficient inflation makes universe homogeneous at classical level
- Vacuum fluctuation of any light $(|m|^2 \ll H^2)$ scalar field ϕ with canonical kinetic term is converted at horizon exit to classical perturbation $\delta \phi_{\mathbf{k}}(t)$.
- For exponential and isotropic inflation $\mathcal{P}_{\delta\phi}(k,t) \simeq (H/2\pi)^2$.

Origin of ζ

- Sufficient inflation makes universe homogeneous at classical level
- Vacuum fluctuation of any light $(|m|^2 \ll H^2)$ scalar field ϕ with canonical kinetic term is converted at horizon exit to classical perturbation $\delta \phi_{\mathbf{k}}(t)$.
- For exponential and isotropic inflation $\mathcal{P}_{\delta\phi}(k,t) \simeq (H/2\pi)^2$.
- Usual assumption: ζ generated from one (or more) of these perturbations.
- Prediction: Statistical homogeneity and isotropy.

Three paradigms for generating ζ

- ϕ is inflaton in single-field slow roll inflation.
 - Negligible $f_{\rm NL}$ but expect observable n'

Three paradigms for generating ζ

- ϕ is inflaton in single-field slow roll inflation.
 - Negligible $f_{\rm NL}$ but expect observable n'
- ϕ is curvaton-type field effective only after inflation.
 - Expect observable $f_{\rm NL}$

Three paradigms for generating ζ

- ϕ is inflaton in single-field slow roll inflation.
 - Negligible $f_{\rm NL}$ but expect observable n'
- ϕ is curvaton-type field effective only after inflation.
 - Expect observable $f_{\rm NL}$
- ϕ is inflaton in generic scalar field inflation.
 - Expect observable n' and in many cases observable $f_{\rm NL}$

Statistical anisotropy of the spectrum

Reality $\zeta_{\mathbf{k}}^* = \zeta_{-\mathbf{k}}$ requires $\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta}(-\mathbf{k})$

Statistical anisotropy of the spectrum

Reality $\zeta_{\mathbf{k}}^* = \zeta_{-\mathbf{k}}$ requires $\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta}(-\mathbf{k})$

Simplest parameterisation with $\hat{\mathbf{n}}$ a preferred direction:

$$\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta}^{\text{isotropic}}(k) \left[1 + g(k) \left(\hat{\mathbf{n}} \cdot \hat{\mathbf{k}} \right)^2 \right]$$

Statistical anisotropy of the spectrum

Reality $\zeta_{\mathbf{k}}^* = \zeta_{-\mathbf{k}}$ requires $\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta}(-\mathbf{k})$

Simplest parameterisation with $\hat{\mathbf{n}}$ a preferred direction:

$$\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta}^{\text{isotropic}}(k) \left[1 + g(k) \left(\hat{\mathbf{n}} \cdot \hat{\mathbf{k}} \right)^2 \right]$$

WMAP gives $|g| < 10^{-1}$, PLANCK will give $|g| < 10^{-2}$ or detect. Strongly decreasing g(k) could explain axis of evil?

How to get statistical anisotropy?

Vector field during inflation can do it in two ways.

How to get statistical anisotropy?

Vector field during inflation can do it in two ways.

• Homogeneous vector field gives anisotropic expansion . Scalar field perturbation generates ζ

Kanno/Soda/Watanabe 1010.5307, Emami/Firouzjahi/Movahed/Zarei 1010.5495

How to get statistical anisotropy?

Vector field during inflation can do it in two ways.

• Homogeneous vector field gives anisotropic expansion . Scalar field perturbation generates ζ

Kanno/Soda/Watanabe 1010.5307, Emami/Firouzjahi/Movahed/Zarei 1010.5495

• Assume practically isotropic expansion, generate ζ from vector field perturbation.

S. Yokoyama/Soda 0805.4265; K. Dimopoulos/Karciauskas/DHL/Rodriguez 0809.1055

How to get statistical anisotropy?

Vector field during inflation can do it in two ways.

• Homogeneous vector field gives anisotropic expansion . Scalar field perturbation generates ζ

Kanno/Soda/Watanabe 1010.5307, Emami/Firouzjahi/Movahed/Zarei 1010.5495

• Assume practically isotropic expansion, generate ζ from vector field perturbation.

S. Yokoyama/Soda 0805.4265; K. Dimopoulos/Karciauskas/DHL/Rodriguez 0809.1055

I'll just discuss second possibility

Calculating ζ_A

$$\lambda = R, \ L \ {
m or} \ \|$$

If A gauge field, $A_{\parallel} = 0$

 $\delta \mathbf{A}(\mathbf{k}) = \sum_{\lambda} \mathbf{e}_{\lambda}(\hat{\mathbf{k}}) \delta A_{\lambda}(\mathbf{k}),$

Calculating ζ_A

$$\delta \mathbf{A}(\mathbf{k}) = \sum_{\lambda} \mathbf{e}_{\lambda}(\hat{\mathbf{k}}) \delta A_{\lambda}(\mathbf{k}),$$

$$\lambda = R, L \text{ or } \parallel$$

If A gauge field, $A_{\parallel} = 0$

$$\langle \delta A_{\lambda}(\mathbf{k}) \delta A_{\lambda'}^{*}(\mathbf{k}') \rangle = (2\pi)^{2} \frac{2\pi^{2}}{k^{3}} \delta_{\lambda\lambda'} \delta(\mathbf{k} - \mathbf{k}') \mathcal{P}_{\lambda}(k)$$

Calculating ζ_A

$$\delta \mathbf{A}(\mathbf{k}) = \sum_{\lambda} \mathbf{e}_{\lambda}(\hat{\mathbf{k}}) \delta A_{\lambda}(\mathbf{k}), \qquad \overline{\lambda = R, L \text{ or } \|}$$

If A gauge field, $A_{\|} = 0$

$$\langle \delta A_{\lambda}(\mathbf{k}) \delta A_{\lambda'}^{*}(\mathbf{k'}) \rangle = (2\pi)^{2} \frac{2\pi^{2}}{k^{3}} \delta_{\lambda\lambda'} \delta(\mathbf{k} - \mathbf{k'}) \mathcal{P}_{\lambda}(k)$$

Calculate contribution of $\delta \mathbf{A}$ to ζ using δN formula

$$\zeta_A = \delta N(\mathbf{A}) = \sum N_i \cdot \delta A_i + \sum N_{ij} \delta A_i \delta A_j + \cdots$$
$$N_i \equiv \partial N/\partial A_i, \qquad N_{ij} \equiv \partial^2 N/\partial A_i \partial A_j$$

Scenario for creating ζ_A gives $N(\mathbf{A})$.

Spectrum of ζ_A

Define $\mathcal{P}_{\perp} = (\mathcal{P}_R + \mathcal{P}_L)/2$ and $(\mathbf{N}_A)_i \equiv N_i$ [D/K/D/R]

$$\mathcal{P}_{\zeta_A} = N_A^2 \mathcal{P}_{\perp} \left[1 + \hat{\mathbf{N}}_A \cdot \hat{\mathbf{k}} \left(\frac{\mathcal{P}_{\parallel} - \mathcal{P}_{\perp}}{\mathcal{P}_{\perp}} \right) \right].$$

If A is a gauge field $\mathcal{P}_{\parallel} = 0$, anyhow expect $\mathcal{P}_{\parallel} \neq \mathcal{P}_{\perp}$. So small anisotropy needs

Vector contribution to ζ is small

Bispectrum of ζ_A

(D/K/L/R) Define $\mathcal{P}_{-}\equiv rac{1}{2}(\mathcal{P}_{R}-\mathcal{P}_{L})$

$$\begin{split} B_{\zeta_A} &= \sum_{ijnm} N_i N_n N_{jm} \left(P_{ij}(\mathbf{k}) P_{nm}(\mathbf{k}') + \text{cyclic perms.} \right) \\ P_{ij}(\mathbf{k}) &\equiv \frac{2\pi^2}{k^3} \left[\left(\delta_{ij} - \hat{k}_i \hat{k}_j \right) + p \hat{k}_i \hat{k}_j + iq \epsilon_{ijk} \hat{k}_k \right] \mathcal{P}_{\perp}(k) \\ p &\equiv \mathcal{P}_{\parallel} / \mathcal{P}_{\perp}, \qquad q \equiv \mathcal{P}_{-} / \mathcal{P}_{\perp} \end{split}$$

Analogue of 'local' bispectrum generated by *scalar* field perturbation.

No fit to observation yet done.

PLANCK team please note!

Non-canonical gauge kinetic function

Application: generate ζ at end of inflation S. Yokoyama/Soda 0805.4265 During exponential inflation take

$$S = -\frac{1}{4} \int d\eta d^{3}x \sqrt{-g} f^{2}(\chi(\eta)) F_{\mu\nu} F^{\mu\nu}$$

Scalar field χ assumed to give $f \propto a^{\alpha}$.

LANCASTE

Non-canonical gauge kinetic function

Application: generate ζ at end of inflation s. Yokoyama/Soda 0805.4265 During exponential inflation take

$$S = -\frac{1}{4} \int d\eta d^{3}x \sqrt{-g} f^{2}(\chi(\eta)) F_{\mu\nu} F^{\mu\nu}$$

Scalar field χ assumed to give $f \propto a^{\alpha}$. Gauge invariance gives $\mathcal{P}_{\parallel} = 0$.

$$\mathcal{P}_{\perp}(k) = \left(\frac{H}{2\pi}\right)^2 \left(\frac{k}{k_{\text{end}}}\right)^{3-2|\alpha+\frac{1}{2}|}$$

Flat spectrum for $\alpha \simeq -2$ or +1.

$\frac{1}{6}RA^2$ coupling to gravity

Application: vector curvaton model

K. Dimopoulos hep-ph/0607229; D/K/L/R 0809.1055

$$S = \int d\eta d^3x \sqrt{-g} \left[\frac{1}{2} M_{\rm P}^2 R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \left(m^2 + \frac{R}{6} \right) B_{\mu} B^{\mu} \right]$$

$$F_{\mu\nu} \equiv \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}, \qquad \text{physical field } A_{\mu} = B_{\mu} / a(\eta)$$

$\frac{1}{6}RA^2$ coupling to gravity

Application: vector curvaton model

K. Dimopoulos hep-ph/0607229; D/K/L/R 0809.1055

$$S = \int d\eta d^3x \sqrt{-g} \left[\frac{1}{2} M_{\rm P}^2 R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \left(m^2 + \frac{R}{6} \right) B_{\mu} B^{\mu} \right]$$

$$F_{\mu\nu} \equiv \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}, \qquad \text{physical field } A_{\mu} = B_{\mu} / a(\eta)$$

This action may have problems Himmetoglu/Contaldi/Peloso 0909.3524 but it doesn't have a ghost. Karciauskas/DHL 1007.1426

$\frac{1}{6}RA^2$ coupling to gravity

Application: vector curvaton model

K. Dimopoulos hep-ph/0607229; D/K/L/R 0809.1055

$$S = \int d\eta d^3x \sqrt{-g} \left[\frac{1}{2} M_{\rm P}^2 R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \left(m^2 + \frac{R}{6} \right) B_{\mu} B^{\mu} \right]$$

$$F_{\mu\nu} \equiv \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}, \qquad \text{physical field } A_{\mu} = B_{\mu} / a(\eta)$$

This action may have problems Himmetoglu/Contaldi/Peloso 0909.3524 but it doesn't have a ghost. Karciauskas/DHL 1007.1426 Use it during exponential inflation when $R = 12H^2$.

$$\mathcal{P}_{+}(k) = \left(\frac{H}{2\pi}\right) \left(\frac{k}{k_{\text{end}}}\right)^{2m^{2}/3H^{2}}, \qquad \mathcal{P}_{\parallel}(k) = 2\mathcal{P}_{+}(k)$$

Flat spectrum for m = 0.

Vector inflation

Golovnev/Mukhanov/Vanchurin 0802.2068, D/K/DHL/R.

- Uses $\frac{1}{6}RA^2$ interaction with many vector fields.
- Random orientation gives almost isotropic inflation.
- Anisotropy of ζ_A is small so don't need scalar fields! D/K/L/R
- Except for anisotropy, prediction same as for ϕ^2 chaotic inflation.
- Tensor with statistical anisotropy is the smoking gun.

Non-abelian gauge field perturbation

LANCASTER

- Non-Abelian gauge field has many components.
- Could use it with non-canonical kinetic term.
- Statistical anisotropy could be small, no need for scalar fields.

Non-abelian gauge field perturbation

LANCASTER

- Non-Abelian gauge field has many components.
- Could use it with non-canonical kinetic term.
- Statistical anisotropy could be small, no need for scalar fields.
- But gauge interaction might generate too much non-gaussianity.
- Existing studies incomplete

Bartolo/Dimastrogiovanni/Matarrese/Riotto 0906.4944, 0909.5621.

LANCASTER

LSS observations are very worthwhile

We expect to see either running or non-g.

- LANCASTER
- LSS observations are very worthwhile
 We expect to see either running or non-g.
- LSS might remain our only window on the early universe
 - If dark energy is a cosmological constant it won't have properties
 - If the CDM isn't a WIMP (eg. if susy breaking is gauge-mediated) we direct detecton will probably be impossible.

LANCASTER

LSS observations are very worthwhile

We expect to see either running or non-g.

- LSS might remain our only window on the early universe
 - If dark energy is a cosmological constant it won't have properties
 - If the CDM isn't a WIMP (eg. if susy breaking is gauge-mediated) we direct detecton will probably be impossible.
- A vector field during inflation could generate statistical anisotropy. but there's no reason to expect it.
- Still, we have to understand it and see if it's there.

LANCASTER

LSS observations are very worthwhile

We expect to see either running or non-g.

- LSS might remain our only window on the early universe
 - If dark energy is a cosmological constant it won't have properties
 - If the CDM isn't a WIMP (eg. if susy breaking is gauge-mediated) we direct detecton will probably be impossible.
- A vector field during inflation could generate statistical anisotropy. but there's no reason to expect it.
- Still, we have to understand it and see if it's there.
 Thanks for listening!