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Introduction

* In this talk, we consider only 4 dimensions
(3+1 dimensions)
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(or modified gravity)
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How can they be distinguished?

e CMB temperature & polarization anisotropies

e Gravitational lensing effect = B-mode &
EB(&TB) correlations, for an off-center
observer in the local void model

e Expected to be characteristic observables
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Gravitational lensing effect
in the LTB model



Null geodesic in the LTB model

* |Lemaitre-Tolman-Bondi(LTB) metric
ds? = —dt* + S?dx? + r*(d6? + sin? Ody?)
r! , 0 @

m_— — r(t e S s
S § r T(?X) aX at

¢ =+1—-k(x)x>  k(x): curvature function
» Geodesic equation dp"/dA = —T'} p"p”
* Spherical symmetry = equations of w, u, p1
pr=w  p*— = T\/(p9)2 + (p¥)2 sin” 0
e 2-dim. problem — use the plane of o =0, 7




— Set of ordinary differential equations for

w(t), x(t), 0(t), p(t)



Null geodesic in the LTB model

e Determine the
geodesic Y
perturbatively with
respect to Yo

* However i cannot be
treated perturbatively

% » — Instead, we use
b= x/1 -2
¢ = xp

e Solve the perturbation
equations




Null geodesic in the LTB model

to XT
b(t

= Hobs ( O)
Xls




Shift vector 0,ps

Homogeneous limit
<obs
<obs




Shift vector 00,1

* |n the homogeneous limit, §60,,s = 0

e By eliminating the part that survives in the
homogeneous limit,

560bs — —[)sin Hobs

o ¢ 1
[, (Ga-org-feew)
t

Is

590obs =0



CMB polarization in the LTB
model



Flux intensity tensor

e Electric field Polarization basis

B~ [ Gy Sles(biay ke’

+6 *(k)ap (k) e ")
e Measured components of the electric field
Epli= /d?’:vW(x)eg - E(ty,x)

/ B

Sensitivity function Detector polarization
basis




Flux intensity tensor

y <ap(k)Taq(k/)> ~ 2(277)3:01061(’“)53 (k — k/)
Ppq : flux polarization matrix
* Flux density tensor
pij (k) = Z 6;73 (K)eqs (k)ppq (k)
b,q
* Observed correlation of the electric fields

s =eie [ {“; W (k) 05, (k)

( W (k) is the Fourier transform of W (z) )




Initial condition at the last
scattering surface

e Boltzmann equation / pi; generalized

]{;,U 7 v v

(590 + £'00 ) () = ()

* Up to the linear order in perturbations, dp,,
on the last scattering surface can be Fourier
decomposed into the contribution of each
perturbation mode with the wave vector K

Stk = [ KX (1) (K )



Initial condition at the last
scattering surface
* For an appropriate, customary choice of
ep(k), pl) = e elp(t)(K; k) depends only
on wand p=cosh=K -k

e Solve Boltzmann equation — initial condition
at the last scattering surface



Propagation after last scattering

* LTB spacetime g,
e Let us work in the synchronous gauge
ds® = —dt* + §;;(t, x)dz" dz’

We take the constant-time surfaces so that
the last scattering surface is represented by

t = 115

e Gij is close to a spatially homogeneous and
iIsotropic metric gij in the early universe

gii = Gij + OLTBYi;



Propagation after last scattering
ko — (W(ko),ko)

Now % O f: = (to, o)

1 7(P7 kO)

Last >
scattering 2

surface %
tls 4

Q (ko)



Propagation after last scattering
e How is the polarization now related to that at

the last scattering Osurfacs? el (to, x, k)
Now tg B
/7
/7
Last % (7, ko)
scattering ,“
surface /
tls 4 7
Eg’(tls,af)k) Q(kO)

ﬁ(Pa kO) — éﬁ(tlsaxa k)éT



Propagation after last scattering

O H P ~M(t07m07k0)

Now ¢

0 y )\ “

/ s

Last A Parallelly *s V(P»ko)
scattering ,” propagate \
surface - .

tls 4 \ “OQ—(]{O)

g’g(tls,m(an kO)) k(il?(), k()))
5(P, ko) = Cp(tis, z,k)CT

I

épq — gp(t())m())k()) . 6q



Propagation after last scattering
 When the universe is well-described by the
FLRW model until last scattering,
W

N 1
o (t1s: @,K) = S0pq I (Tl ) + 6 ppq(tis, . k)

* Using »  CpeChy = bgr.
p

w

B 1 =l
Ppq(P ko) = idpql <Tl > + Cpr Cys0prs(tis, 2, k)

o |If we express dprs(tis, x, k) in terms of the
following polarization basis that does not
depend on the mode wave number(K ), we
can set ), ~ 1



Propagation after last scattering

Transport along the radial line Q=const. parallelly
with respect to g:;(to, )

0 P
Now to—¢/¥ (k) k' ~armmpo=c! (P k) —

Last
scattering

surface
tls

In this way, we can define a polarization basis
everywhere on the hypersurface t = i



Propagation after last scattering

- O P
Now to—e ¥ (k) &* 1 —c "(P,k) —

.Transport along the

Last 'tumellke path
scattering rcorresponding to the
surface !fl ymmetry center
tls
o e F (s, 2, k)

Extend to an arbitrary point by the parallel
transport with respect to gi;(tis, x)



Propagation after last scattering

 Relation between this basis and the basis
that depends on the mode(XK ) is easily given
by the rotation matrix

A e;(tls,a:, k) -€y(K,k) = Rpq(6s)

« — |nitial condition at the last scattering
surface is given by

Spalt = te,,k) = [ PR AR k) (K, w0, ) AR )

e |t turns out that C =1 (without going into
detail here)



Change in the polarization
-\ dlstrlbuthn
e Polarization
Fee N, distribution on the
e rwae i g celestial sphere
consists of two

S o patterns
ASA/AP Science Team
'gradient’ ‘curl’
E-mode B-mode
N N | /— =\

— I NN/
/1N N/ — | | \—



Change in the polarization
distribution
 CMB polarization distribution
pab(’fb) — _|_2A(’ﬁ,)ma7ﬁb -+ _QA('ﬁ,)mamb
n= 0, ¢) abel{ld=1, p=2}
1 , i 1 .
m = E(eg + ie,) M= E(eg — ie,)
.2 A(R), spin-2 functions, are expanded with
spin-weighted spherical harmonics
+2A(n ZﬂAe +2Y," (1)



Change in the polarization

distribution
* Rotationally invariant combination of 12 A)"
e 1 o Ay curl-free
EE - §(+2A€ S —QAE ) (E_mode)
. A ul gradient-free
BE 22 2_7;(4-2142 U —2A€ ) (B_mode)
* Power spectra X;,X2 € {T,E,B}

m* m’\ _ ~X1Xs
(X17" Xoy) >—Ce Oe' Omm/ fe?peratm@

* |If physics and the ensemble for averaging are
invariant under a parity inversion,

C/°=Cy® =0




Change in the polarization

distribution
* pgb : polarization distribution without lensing
SR polarization distribution with lensing
* n:=n+ 50
n': direction in which the observer looks
e Gravitational lensing effect = o), (R') = pas(R)

e Finally
m. o ~m AERL Y — e
= 0] —DF(€+2)\/( ) 2_1@£+1

40+ 1)

62—77?/2

LD — 1)\/422 — 67, + O(D?)




Change in the polarization
distribution

E') =Ep

(£ + 1)4a= i -
o F\/ A+ 121 T2 E

(2 = m?)(& — 4 .
o, [EomC Dy
2m

DT’ B D?




Change in the polarization
distribution

B, = By’

(£ + 1)4a= i -
o F\/ (LA + 121 2B

(2 = m?)(& — 4 .
o, [EmCD g
2m

—iDT Em x




Change in the polarization

distribution

* If B =0 inthe homogeneous case (the case
without lensing),

2m
B ~ DT’ 13047
y £+ 1) ¢

L I8 X o e (O
s /t x2[ (1-¢0d)+ 5 reXp/t dtli X (7" 7“>+"“ S}t]

EB correlation (non-zero part only)

2m
E *B'm ~ DI’
( )OMB A (0 + 1)0

(TB similarly)



Change in the polarization
distribution

e |f B=0 in the homogeneous case, correlations
in the first order in D become nonzero only if

6 dependence [T, TE, EE TB, EB
of the shift vector correlations correlations

sin 6 I =4+1 0 — ¢

Cf. sin‘6 /Ay ¢ =¢+1

Cf. anisotropic inflation (Professor Soda's talk)



Summary and outlook

e |n this work, we developed a formulation to
calculate the gravitational lensing effect on
the CMB temperature and polarization for an
off-center observer in a spherically
symmetric void described by the LTB model

 Next, we are going to numerically estimate
this effect

* In future, we will limit the distance from us to
the center by the results of B-mode
observations
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