Off-center CMB polarization anisotropy in the local void model

GOTO Hajime @Graduate University for Advanced Studies (GUAS)

Collabolator: Hideo Kodama @GUAS&KEK

Introduction

 In this talk, we consider only 4 dimensions (3+1 dimensions)

extra dimensions

ExDiP2010

ピカチュウ

Type-la supernova observations

Assumption Cosmological Principle

Other explanations e.g.) local void model (LTB model)(Tomita'00)

D

Conclusion cosmic acceleration

How can they be distinguished?

D

- CMB temperature & polarization anisotropies
- Gravitational lensing effect → B-mode & EB(&TB) correlations, for an off-center observer in the local void model
- Expected to be characteristic observables

Contents

- Gravitational lensing effect in the Lemaitre-Tolman-Bondi(LTB) model
 - Null geodesic in the LTB model
 - Shift vector $\delta \theta_{\rm obs}$
- CMB polarization in the LTB model
 - Flux intensity tensor
 - Initial condition at the last scattering surface
 - Propagation after last scattering
 - Change in the polarization distribution

Gravitational lensing effect in the LTB model

- Lemaitre-Tolman-Bondi(LTB) metric
 - $ds^2 = -dt^2 + S^2 d\chi^2 + r^2 (d\theta^2 + \sin^2 \theta d\varphi^2)$

$$S = rac{r'}{\xi}$$
 $r = r(t, \chi)$ $' = rac{\partial}{\partial \chi}$ $:= rac{\partial}{\partial t}$

$$\xi = \sqrt{1 - k(\chi)\chi^2}$$
 $k(\chi)$: curvature function

- Geodesic equation $dp^{\mu}/d\lambda = -\Gamma^{\mu}_{\nu\rho}p^{\nu}p^{
 ho}$
- Spherical symmetry \rightarrow equations of ω, μ, p_{\perp}

 $p^t = \omega$ $p^{\chi} = \mu \omega / S$ $p_{\perp} := r \sqrt{(p^{\theta})^2 + (p^{\varphi})^2 \sin^2 \theta}$

• 2-dim. problem \rightarrow use the plane of $\varphi = 0, \pi$

\rightarrow Set of ordinary differential equations for $\omega(t), \ \chi(t), \ \theta(t), \ \mu(t)$

- Determine the geodesic γ perturbatively with respect to γ_0
- However μ cannot be treated perturbatively
- → Instead, we use

$$b := \chi \sqrt{1 - \mu^2}$$

 $c := \chi \mu$

 Solve the perturbation equations

$$\theta(t_{1s}) = -\int_{t_0}^{t_{1s}} dt \frac{b}{\chi r} = \cdots$$
$$= \theta_{obs} - \frac{b(t_0)}{\chi_{1s}}$$
$$-b(t_0) \int_{t_{1s}}^{t_0} \frac{dt}{\chi^2} \left(\frac{1}{S} - \frac{\chi}{r} e^{Y(t,t_0)}\right)$$
here $Y(a,b) = \int_a^b dt \left\{\frac{\xi}{\chi} \left(\frac{1}{r'} - \frac{\chi}{r}\right) + \frac{\dot{r}}{r} - \frac{\dot{S}}{S}\right\}$

Shift vector $\delta \theta_{obs}$

Shift vector $\delta \theta_{obs}$

- In the homogeneous limit, $\delta \theta_{\rm obs} = 0$
- By eliminating the part that survives in the homogeneous limit,

$$\begin{split} \delta\theta_{\rm obs} &= -D\sin\theta_{\rm obs} \\ &\cdot \int_{t_{\rm ls}}^{t_0} \frac{dt}{\chi^2} \left(\frac{\chi}{r}(1-\xi) + \frac{1}{S} - \frac{\chi}{r}e^{Y(t,t_0)}\right) \end{split}$$

$$\delta arphi_{
m obs} = 0$$

CMB polarization in the LTB model

Flux intensity tensor

- Electric field $E = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2} \sum_{p} (\epsilon_p(k) a_p(k) e^{ik \cdot x} + \epsilon_p^*(k) a_p(k)^{\dagger} e^{-ik \cdot x})$
- Measured components of the electric field

$$\mathcal{E}_p = \int d^3 \boldsymbol{x} W(\boldsymbol{x}) \boldsymbol{\epsilon}_p^{\text{o}} \cdot \boldsymbol{E}(t_0, \boldsymbol{x})$$
Sensitivity function Detector polarization basis

Flux intensity tensor

- $\langle a_p(\mathbf{k})^{\dagger} a_q(\mathbf{k'}) \rangle = 2(2\pi)^3 \rho_{pq}(\mathbf{k}) \delta^3(\mathbf{k} \mathbf{k'})$
 - ρ_{pq} : flux polarization matrix
- Flux density tensor

$$\rho_{ij}(\mathbf{k}) = \sum_{p,q} \epsilon_{pi}^*(\mathbf{k}) \epsilon_{qj}(\mathbf{k}) \rho_{pq}(\mathbf{k})$$

• Observed correlation of the electric fields $\langle : \mathcal{E}_p \mathcal{E}_q : \rangle = \epsilon_p^{oi} \epsilon_q^{oj} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} |\hat{W}(\mathbf{k})|^2 \rho_{(ij)}(\mathbf{k})$ ($\hat{W}(\mathbf{k})$ is the Fourier transform of $W(\mathbf{x})$)

Initial condition at the last scattering surface

• Boltzmann equation ρ_{ij} generalized

$$\left(\frac{k^{\mu}}{k^{0}}\nabla_{\mu} + f^{i}\partial_{k^{i}}\right)\rho^{\mu\nu}(x,\boldsymbol{k}) = C^{\mu\nu}(\rho)$$

• Up to the linear order in perturbations, $\delta \rho_{\mu\nu}$ on the last scattering surface can be Fourier decomposed into the contribution of each perturbation mode with the wave vector K

$$\delta \rho_{\mu\nu}(t_{\rm ls}, \boldsymbol{x}, \boldsymbol{k}) = \int d^3 \boldsymbol{K} e^{i \boldsymbol{K} \cdot \boldsymbol{x}} \rho_{\mu\nu}^{(1)}(\boldsymbol{K}; \boldsymbol{k})$$

Initial condition at the last scattering surface

- For an appropriate, customary choice of $\epsilon_p(k)$, $\rho_{pq}^{(1)} = \epsilon_p^{\mu*} \epsilon_q^{\nu} \rho_{\mu\nu}^{(1)}(K;k)$ depends only on ω and $\mu = \cos \theta = \hat{K} \cdot \hat{k}$
- Solve Boltzmann equation → initial condition at the last scattering surface

Propagation after last scattering

- LTB spacetime $\tilde{g}_{\mu
 u}$
- Let us work in the synchronous gauge

$$ds^2 = -dt^2 + \tilde{g}_{ij}(t,x)dx^i dx^j$$

- We take the constant-time surfaces so that the last scattering surface is represented by $t=t_{\rm ls}$
- \tilde{g}_{ij} is close to a spatially homogeneous and isotropic metric g_{ij} in the early universe $\tilde{g}_{ij} = g_{ij} + \delta_{\text{LTB}} g_{ij}$

Propagation after last scattering

 When the universe is well-described by the FLRW model until last scattering,

$$\tilde{\rho}_{pq}(t_{\rm ls}, \boldsymbol{x}, \boldsymbol{k}) = \frac{1}{2} \delta_{pq} I\left(\frac{\omega}{T_{\rm ls}}\right) + \delta \rho_{pq}(t_{\rm ls}, \boldsymbol{x}, \boldsymbol{k})$$

• Using
$$\sum_{p} \tilde{C}_{pq} \tilde{C}_{pr}^{*} = \delta_{qr}$$
,
 $\tilde{\rho}_{pq}(\mathbf{P}, \mathbf{k}_{0}) = \frac{1}{2} \delta_{pq} I\left(\frac{\omega}{T_{ls}}\right) + \tilde{C}_{pr} \tilde{C}_{qs}^{*} \delta \rho_{rs}(t_{ls}, \mathbf{x}, \mathbf{k})$

• If we express $\delta \rho_{rs}(t_{\rm ls}, \boldsymbol{x}, \boldsymbol{k})$ in terms of the following polarization basis that does not depend on the mode wave number(K), we can set $\tilde{C}_{pq} \approx 1$

Propagation after last scattering Transport along the radial line Ω =const. parallelly with respect to $g_{ij}(t_0, x)$

Now
$$t_0 - \epsilon'^{\mu}_p(k) \quad k^i - \epsilon'^{\mu}_p(\mathbf{P}, k) - \epsilon'^{\mu}_p(\mathbf{P}, k)$$

Last scattering surface t_{ls} –

In this way, we can define a polarization basis everywhere on the hypersurface $t = t_0$

Propagation after last scattering

Now
$$t_0 - \epsilon'_p{}^{\mu}(k) k^i$$

Last scattering surface t_{ls}
O P $\epsilon'_p{}^{\mu}(P,k)$
Transport along the timelike path corresponding to the symmetry center $\epsilon'_p{}^{\mu}(t_{ls}, \boldsymbol{x}, k)$

Extend to an arbitrary point by the parallel transport with respect to $g_{ij}(t_{ls}, x)$

Propagation after last scattering

• Relation between this basis and the basis that depends on the mode(K) is easily given by the rotation matrix

$$A_{pq} := \boldsymbol{\epsilon}'_p(t_{\mathrm{ls}}, \boldsymbol{x}, k) \cdot \boldsymbol{\epsilon}_q(\boldsymbol{K}, k) = R_{pq}(\theta_{\mathrm{ls}})$$

 → Initial condition at the last scattering surface is given by

$$\delta \rho_{pq}(t = t_{ls}, \boldsymbol{x}, \boldsymbol{k}) = \int d^3 \boldsymbol{K} e^{i\boldsymbol{K}\cdot\boldsymbol{x}} A(\hat{\boldsymbol{K}}, \hat{\boldsymbol{k}}) \rho^{(1)}(\boldsymbol{K}, \omega, \mu) A(\hat{\boldsymbol{K}}, \hat{\boldsymbol{k}})^{T}$$

• It turns out that $\tilde{C} = 1$ (without going into detail here)

Polarization distribution on the celestial sphere consists of two patterns

NASA/WMAP Science Team 'gradient' E-mode

'curl' B-mode

CMB polarization distribution (omitting "obs")

 $\rho_{ab}(\hat{\boldsymbol{n}}) = {}_{+2}A(\hat{\boldsymbol{n}})\bar{m_a}\bar{m_b} + {}_{-2}A(\hat{\boldsymbol{n}})m_am_b$

$$\hat{\boldsymbol{n}} = (\theta, \varphi)$$
 $a, b \in \{\theta \equiv 1, \varphi \equiv 2\}$

$$\boldsymbol{m} := \frac{1}{\sqrt{2}} (\boldsymbol{e}_{\theta} + i \boldsymbol{e}_{\varphi}) \quad \bar{\boldsymbol{m}} := \frac{1}{\sqrt{2}} (\boldsymbol{e}_{\theta} - i \boldsymbol{e}_{\varphi})$$

• $\pm_2 A(\hat{n})$, spin-2 functions, are expanded with spin-weighted spherical harmonics

$$\pm {}_{2}A(\hat{\boldsymbol{n}}) = \sum_{\ell m} \pm {}_{2}A_{\ell}^{m} \pm {}_{2}Y_{\ell}^{m}(\hat{\boldsymbol{n}})$$

- Rotationally invariant combination of ${}_{\pm 2}A^m_\ell$
- curl-free (E-mode) gradient-free (B-mode)
- Power spectra $X_1, X_2 \in \{T, E, B\}$ $\langle X_1^{m*} X_2^{m'} \rangle = C_{\ell}^{X_1 X_2} \delta_{\ell \ell'} \delta_{mm'}$ temperature
- If physics and the ensemble for averaging are invariant under a parity inversion,

$$C_\ell^{\mathrm{TB}} = C_\ell^{\mathrm{EB}} = 0$$

- *ρ_{ab}* : polarization distribution without lensing
- ρ'_{ab} : polarization distribution with lensing
- $\hat{\boldsymbol{n}} := \hat{\boldsymbol{n}}' + \delta \boldsymbol{\theta}$

 \hat{n}' : direction in which the observer looks

- Gravitational lensing effect $\rightarrow \rho'_{ab}(\hat{\boldsymbol{n}}') = \rho_{ab}(\hat{\boldsymbol{n}})$
- Finally, $\Theta'^{m}_{\ell} = \Theta^{m}_{\ell} - D\Gamma(\ell+2)\sqrt{\frac{(\ell+1)^{2} - m^{2}}{4(\ell+1)^{2} - 1}}\Theta^{m}_{\ell+1}$

$$+D\Gamma(\ell-1)\sqrt{\frac{\ell^2-m^2}{4\ell^2-1}}\Theta_{\ell-1}^m + \mathcal{O}(D^2)$$

 $E'^m_\ell = E^m_\ell$

$$-D\Gamma \sqrt{\frac{((\ell+1)^2 - m^2)((\ell+1)^2 - 4)}{(\ell+1)^2(4(\ell+1)^2 - 1)}} (\ell+2) E_{\ell+1}^m + D\Gamma \sqrt{\frac{(\ell^2 - m^2)(\ell^2 - 4)}{\ell^2(4\ell^2 - 1)}} (\ell-1) E_{\ell-1}^m$$

$$+iD\Gamma rac{2m}{\ell(\ell+1)}B^m_\ell + \mathcal{O}(D^2)$$

 ${B'}_{\ell}^m = B_{\ell}^m$

$$-D\Gamma \sqrt{\frac{((\ell+1)^2 - m^2)((\ell+1)^2 - 4)}{(\ell+1)^2(4(\ell+1)^2 - 1)}} (\ell+2) B_{\ell+1}^m + D\Gamma \sqrt{\frac{(\ell^2 - m^2)(\ell^2 - 4)}{\ell^2(4\ell^2 - 1)}} (\ell-1) B_{\ell-1}^m$$

$$\frac{-iD\Gamma}{\ell(\ell+1)}\frac{2m}{E_{\ell}^m} + \mathcal{O}(D^2)$$

If B = 0 in the homogeneous case (the case without lensing),

$$\frac{B'_{\ell}^{m}}{\ell} \approx D\Gamma \frac{2m}{i\ell(\ell+1)} E_{\ell}^{m}$$

$$\Gamma := -\int_{t_{1s}}^{t_0} \frac{dt}{\chi^2} \left[\frac{\chi}{r} (1-\xi(\chi)) + \frac{1}{S} - \frac{\chi}{r} \exp \int_t^{t_0} dt_1 \left\{ \frac{\xi(\chi)}{\chi} \left(\frac{1}{r'} - \frac{\chi}{r} \right) + \frac{\dot{r}}{r} - \frac{\dot{S}}{S} \right\}_{t_1} \right]$$

EB correlation (non-zero part only) $\langle E_{\ell}^{m*} B_{\ell}^{\prime m} \rangle_{\text{CMB}} \approx D\Gamma \frac{2m}{i\ell(\ell+1)} C_{\ell}^{\text{EE}}$

(TB similarly)

 If B=0 in the homogeneous case, correlations in the first order in D become nonzero only if

θ dependence of the shift vector	TT, TE, EE correlations	TB, EB correlations
$\sin heta$	$\ell' = \ell \pm 1$	$\ell' = \ell$
Cf. $\sin^2 \theta$	$\ell' = \ell \pm 2$	$\ell' = \ell \pm 1$

Cf. anisotropic inflation (Professor Soda's talk)

Summary and outlook

- In this work, we developed a formulation to calculate the gravitational lensing effect on the CMB temperature and polarization for an off-center observer in a spherically symmetric void described by the LTB model
- Next, we are going to numerically estimate this effect
- In future, we will limit the distance from us to the center by the results of B-mode observations