注:20090526 時点においては、未だ個人見解レベルの検討書です。詳しくは ERL-Gr へ。

Particle Accelerator Development Note

RF pattern

~ FFAGのRF周波数パターン ~

報告者: 中村英滋 (KEK・加速器研究施設・加速器第六研究系)

要約

RF周波数パターンをどのようにもっていくか、という観点はあまり議論されていない。これは電磁石のパターンにRFが合わせるようにもっていくことが常とされ、電気回路上も特に問題がないからである。理論においてもこの発想が基盤となっているので、シンクロトロン振動の原理説明においても「差」の議論のみで終わっている。しかしながら、加速シミュレーションを行う上では、差ではなく、絶対値が必要となる。ここでは、RFのパターンと粒子エネルギー、運動量の関係を確認する。FFAGのように径方向への軌道変移が大きいものに小呈をあてて議論する。

従来のシンクロトロン振動での位相偏差の議論

$$p = q r B$$

$$\frac{p}{p} = \frac{r}{r} + \frac{B}{B}$$

$$B = B_0 \left(\frac{r}{r_0}\right)^k \quad \text{for FFAG accelerators} \qquad \frac{B}{B} = k \frac{r}{r} \qquad \frac{p}{p} = (1 + k) \frac{r}{r}$$

$$v T = C$$

$$\frac{v}{v} + \frac{T}{T} = \frac{C}{C}$$

$$p = m_0 c \beta \gamma$$

$$\frac{p}{p} = \frac{\beta}{\beta} + \frac{\gamma}{\gamma}$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$\frac{\gamma}{\gamma} = \frac{\left(\frac{1}{\sqrt{1 - \beta^2}}\right)}{\gamma} = \frac{\beta}{\gamma} \frac{\frac{1}{2}(-2\beta)}{(1 - \beta^2)^{3/2}} = \frac{\beta}{\beta} \beta^2 \gamma^2 = \frac{\beta}{\beta} \frac{\beta^2}{1 - \beta^2}$$

$$\frac{p}{p} = \frac{\beta}{\beta} + \frac{\beta}{\beta} \frac{\beta^2}{1 - \beta^2} \gamma^2 = \frac{\beta}{\beta} (1 + \frac{\beta^2}{1 - \beta^2}) = \frac{\beta}{\beta} (\frac{1}{1 - \beta^2}) = \frac{\beta}{\beta} \gamma^2$$

$$= \gamma^2 \frac{v}{v}$$

$$\frac{1}{\gamma^2} \frac{p}{p} + \frac{T}{T} = \frac{C}{C} - \frac{r}{r} = \frac{1}{1 + k} \frac{p}{p}$$

$$\frac{T}{T} = \left(\frac{1}{1 + k} - \frac{1}{\gamma^2}\right) \frac{p}{p}$$

包含した評価式。

磁束密度の径方向指数を取り込んだ形。

まず、turn by turn での粒子エネルギー増加量 eV を一定とした場合を示す。

Reference Relations

$$\frac{p}{p_{yy}} = \frac{B\rho}{B\rho_{yy}} = \left(\frac{r}{r_{yy}}\right)^{k} \frac{r}{r_{yy}} \cong \left(\frac{C}{C_{yy}}\right)^{k+1} \implies C = C_{yy} \left(\frac{p}{p_{yy}}\right)^{1/(1+k)}$$

$$T_{ref} = \frac{C}{c\beta} = \frac{C_{yy} \left(\frac{p}{p_{yy}}\right)^{1/(1+k)}}{c\beta}$$

$$p = m_{0} c \beta \gamma = m_{0} c \sqrt{1 - \frac{1}{\gamma^{2}}} \gamma = m_{0} c \sqrt{\gamma^{2} - 1}$$

$$T = \frac{C}{c\beta} = \frac{C_{yy} \left(\frac{\sqrt{\gamma^{2} - 1}}{\sqrt{\gamma_{yy}^{2} - 1}}\right)}{c\sqrt{1 - \frac{1}{\gamma^{2}}}} = \frac{C_{yy} \left(\frac{\gamma^{2} - 1}{\gamma_{yy}^{2} - 1}\right)^{1/2(1+k)}}{c\sqrt{\gamma^{2} - 1}}$$

$$= \frac{C_{yy}}{c\left(\gamma_{yy}^{2} - 1\right)^{1/2(1+k)}} \gamma \left(\gamma^{2} - 1\right)^{1/2(1+k) - 1/2}$$

$$= \frac{C_{yy}}{c\left(\gamma_{yy}^{2} - 1\right)^{1/2(1+k)}} (\gamma^{2} - 1)^{1/2(1+k)}$$

$$f = \frac{c\left(\gamma_{yy}^{2} - 1\right)^{1/2(1+k)}}{C_{yy}^{2} - 1} \left(\gamma^{2} - 1\right)^{k/2(1+k)}$$

$$t_{n+1} = t_n + T$$
$$\gamma_{n+1} = \gamma_n + \frac{e V}{m_0 c^2}$$

In the case that V is constant,

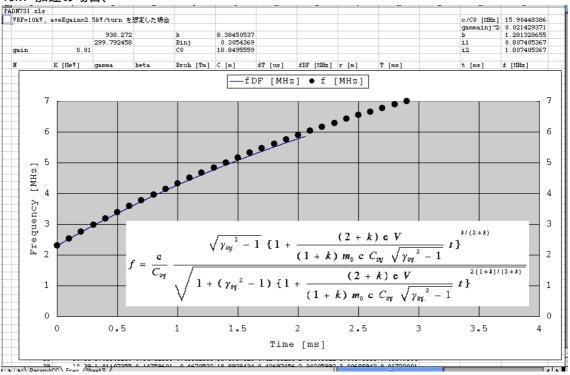
$$\begin{split} \frac{\partial f}{\partial N} &= T = \frac{C_{eg} \, \gamma}{c \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)} \, \left(\, \gamma^2 \, - 1 \, \right)^{k/2 \, (1+k)}}{c \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)} \, \left(\, \gamma^2 \, - 1 \, \right)^{k/2 \, (1+k)}} \\ \frac{\partial \gamma}{\partial t} &= \frac{e \, V}{m_0 \, c^2} \\ &= \frac{e \, V}{m_0 \, c \, C_{eg}} \frac{C_{eg} \, \gamma}{c \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)}} \\ &= \frac{e \, V \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)} \, \left(\, \gamma^2 \, - 1 \, \right)^{k/2 \, (1+k)}}{\gamma} \\ &= \frac{e \, V \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)}}{m_0 \, c \, C_{eg}} \frac{(\gamma^2 \, - 1)^{k/2 \, (1+k)}}{\gamma} \\ &= \frac{e \, V \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)}}{m_0 \, c \, C_{eg}} \frac{(\gamma^2 \, - 1)^{1/2 \, (1+k)}}{\gamma} \\ &= \frac{\gamma}{(\gamma^2 \, - 1)^{k/2 \, (1+k)}} \frac{\partial \gamma}{\partial t} = \frac{e \, V \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)}}{m_0 \, c \, C_{eg}} \\ &= \frac{2 \, e \, V \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)}}{m_0 \, c \, C_{eg}} \\ &= \frac{(\gamma^2 \, - 1)^{(2+k)/2 \, (1+k)}}{(\gamma^2 \, - 1)^{(2+k)/2 \, (1+k)}} = \frac{(2+k) \, e \, V \, \left(\, \gamma_{eg}^{\, 2} \, - 1 \, \right)^{1/2 \, (1+k)}}{(1+k) \, m_0 \, c \, C_{eg}} \\ &= \frac{(\gamma_{eg}^2 \, - 1)^{(2+k)/2 \, (1+k)}}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \\ &= \frac{(\gamma_{eg}^2 \, - 1)^{(2+k)/2 \, (1+k)}}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \\ &= \frac{(\gamma_{eg}^2 \, - 1) \, \left\{ 1 + \frac{(2+k) \, e \, V}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \right\}}{(\gamma^2 \, - 1)^{1/2 \, (1+k)} \, (\gamma_{eg}^2 \, - 1) \, \left\{ 1 + \frac{(2+k) \, e \, V}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \right\}} \\ &= \frac{C_{eg} \, \gamma}{(\gamma_{eg}^2 \, - 1) \, \left\{ 1 + \frac{(2+k) \, e \, V}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \right\}}{(\gamma_{eg}^2 \, - 1)^{1/2 \, (1+k)} \, (\gamma_{eg}^2 \, - 1) \, \left\{ 1 + \frac{(2+k) \, e \, V}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \right\}} \\ &= \frac{C_{eg} \, \sqrt{1 + (\gamma_{eg}^2 \, - 1) \, \left\{ 1 + \frac{(2+k) \, e \, V}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \right\}}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t^{2 \, (1+k) \, (2+k) \, e \, V}}} \\ &= \frac{C_{eg} \, \sqrt{1 + (\gamma_{eg}^2 \, - 1) \, \left\{ 1 + \frac{(2+k) \, e \, V}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg}^{\, 2} \, - 1}} t \right\}}{(1+k) \, m_0 \, c \, C_{eg} \, \sqrt{\gamma_{eg$$

$$f = \frac{c}{C_{ivy}} \frac{\sqrt{\gamma_{ivy.}^{2} - 1} \left\{1 + \frac{(2 + k) e V}{(1 + k) m_{0} c C_{ivy} \sqrt{\gamma_{ivy.}^{2} - 1}} t\right\}^{k/(2 + k)}}{\sqrt{1 + (\gamma_{ivy.}^{2} - 1) \left\{1 + \frac{(2 + k) e V}{(1 + k) m_{0} c C_{ivy} \sqrt{\gamma_{ivy.}^{2} - 1}} t\right\}^{2(1 + k)/(2 + k)}}}$$

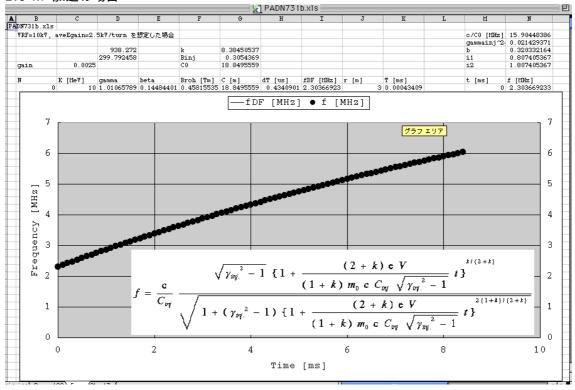
下記の加速器パラメーターで計算する。

0N731.xls	-					
			Injection	Exctraction		Reference
Particle	[-]	P	P		P
Mass of particle	[Ge₹	1	0.938272	0.938272		0.938272
Velocity of Light	[Gm /:]	0.299792458	0.299792458		0.29979246
Kinetic Energy	[Ge₹	1	0.01	0.1		0.5
Gamma	[-	j i	1.01065789	1.106578902		1.53289451
Beta	[-	i i	0.144844011	0.428195502		0.75790872
Broh	[Tm	1	0.458155354	1.482970597		3.63611181
Vertical beam size index	[%	ĵ.	100	56		35
Area ratio shared for Bending magnets	[%	j i	50	50		50.5
Bending Radius	[m	i i	1.5	1.7		3.03
Averaged Radius of Accelerator	[m	ĵ.	3	3.4		6
Circumference	[m	ĵ.	18.850	21.363		37.6991118
Magnetic Flux Density	[T	ĺ i	0.3054	0.8723		1.2000369
k-value	i –	i			8.385	
Gap height, assumed h=30 at 100MeV	[mm	i i	85.7	30		40
Excitation current	[kAt	ĺ l	21	21		38
	ĴGe₹	ĺ				
Transit time	[ns	i	434	166		166
Frequency	[MHz	i	2.304	6.009		6.02707354

10kV 加速の場合、



2.5 kV 加速の場合



式をまとめると

式をまとめると
$$f = \frac{c}{C_{\text{by}}} \frac{\sqrt{\gamma_{\text{by}.}^2 - 1} \left\{ 1 + \frac{(2+k) \text{ e } V}{(1+k) \text{ } m_0 \text{ c } C_{\text{by}} \sqrt{\gamma_{\text{by}.}^2 - 1}} t \right\}^{k/(2+k)}}{\sqrt{1 + (\gamma_{\text{by}.}^2 - 1) \left\{ 1 + \frac{(2+k) \text{ e } V}{(1+k) \text{ } m_0 \text{ c } C_{\text{by}} \sqrt{\gamma_{\text{by}.}^2 - 1}} t \right\}}^{2(1+k)/(2+k)}}$$

$$\gamma = \sqrt{1 + (\gamma_{\text{by}.}^2 - 1) \left\{ 1 + \frac{(2+k) \text{ e } V}{(1+k) \text{ } m_0 \text{ c } C_{\text{by}} \sqrt{\gamma_{\text{by}.}^2 - 1}} t \right\}}^{2(1+k)/(2+k)}}$$

$$p = m_0 \text{ c } \sqrt{(\gamma_{\text{by}.}^2 - 1) \left\{ 1 + \frac{(2+k) \text{ e } V}{(1+k) \text{ } m_0 \text{ c } C_{\text{by}} \sqrt{\gamma_{\text{by}.}^2 - 1}} t \right\}}$$

$$C = C_{\text{by}} \left\{ 1 + \frac{(2+k) \text{ e } V}{(1+k) \text{ } m_0 \text{ c } C_{\text{by}} \sqrt{\gamma_{\text{by}.}^2 - 1}}} t \right\}$$
 となり、下記のように簡略化される。

となり、下記のように簡略化される。

For simplicity,

$$a = \sqrt{{\gamma_{ivj.}}^2 - 1}$$
, $b = \frac{(2 + k) e V}{(1 + k) m_0 c C_{ivj.} \sqrt{{\gamma_{ivj.}}^2 - 1}} = \frac{(2 + k) e V}{(1 + k) m_0 c C_{ivj.} a}$

$$f = \frac{c}{C_{inj}} \frac{a (1 + b t)^{k/(2+k)}}{\sqrt{1 + a^2 (1 + b t)^{2(1+k)/(2+k)}}}$$

$$\gamma = \sqrt{1 + a^2 (1 + b t)^{2(1+k)/(2+k)}}$$

$$p = m_0 c a (1 + b t)^{(1+k)/(2+k)}$$

$$C = C_{inj} (1 + b t)^{1/(2+k)}$$