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1. Introduction

There are two broad areas of research in accelerator
physics, which involve electromagnetic radiation of
beams of charged particles. The first one deals mostly
with the properties of the radiation itself, focusing
on its intensity, angular and frequency distribution,
polarization, etc. These studies are mainly motivated
by various applications of the synchrotron and undu-
lator radiation, and come predominantly from usage
of relativistic beams as sources of intense radiation or
usage of radiation for diagnostic purposes. The sec-
ond area of research is concerned with the effect of
the electromagnetic field on the beam motion, and
was traditionally motivated by calculation of wake
fields of the beam, and analysis of the beam insta-
bilities caused by such wakes.

The study of radiation of charged particles
in accelerators has a long history [1] goes back
to the seminal papers by Schwinger [2–4], Schiff
[5] and Nodvick and Saxon [6] devoted to vari-
ous aspects of synchrotron radiation of relativis-
tic particles. Interaction of beams and currents
with self-fields also has deep roots in develop-
ment of rf sources and microwave circuits (see e.g.
[7–9]). While in the early stages of development
these two fields of research did not overlap, over
the last 10–15 years they have converged into a
unique discipline characterized by a multitude of
powerful new techniques. A good example of such

convergence is given by free electron lasers, where one
can trace a combination of ideas from such rf sources
as klystrons and traveling wave tubes with the prop-
erties of undulator and wiggler radiation and a tight
connection with the beam dynamics.

Another noticeable development of the last
decade is represented by the proliferation of com-
puter codes. These are used to numerically solve
Maxwell’s equations and provide invaluable results
in many practically important cases, where ana-
lytical solutions are not available. In addition to
solving practical problems, such codes are often
used for validation of new analytical methods.
They also provide an additional momentum for
search of effective algorithms to solve Maxwell’s
equation.

In most cases radiation in accelerators can
be described by classical electrodynamics, which
neglects quantum effects. A well-known exception is
the quantum recoil effect, which plays an important
role in the beam dynamics at high energy in lepton
circular machines by introducing diffusion effects into
the phase space of the beam [10]. The quantum diffu-
sion sets the scale of the beam emittance in electron
and positron rings, and thus plays a crucial role in
the beam dynamics. Other quantum effects in radia-
tion involve radiative spin polarization [11] and some
regimes in free electron lasers [12]. Consistent anal-
ysis of quantum effects in radiation is based on the
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quantum electrodynamics and lies beyond the scope
of this article.

We do not touch in this article an enormous
field of numerical methods in electromagnetism.
The reader interested in the latest developments of
numerical methods should consult recent books and
review papers (see e.g. [13–16]) on the subject.

In this article, we will try to review some fun-
damental concepts and present several recent tech-
niques used for calculation of radiation in various
environments. After a brief review of equations used
for calculation of radiation in Secs. 2–4, we begin
with a time domain analysis of synchrotron radia-
tion in Sec. 5 and a brief introduction to the basics
of undulator radiation in Sec. 6. We then discuss
properties of longitudinal and transverse formation
lengths of radiation, in Sec. 7. The technique of the
parabolic equation is discussed in Sec. 8. In Sec. 9
we introduce the method of the Kirchhoff diffrac-
tion integral valid for short-wavelength radiation. In
Secs. 10 and 11 we establish the connection between
the coherent radiation and fluctuations and correla-
tions in the beam. Finally, in Sec. 12, we discuss the
radiative reaction force, also called the CSR force,
resulting from coherent radiation.

2. Maxwell’s Equation and Boundary
Conditions

Within the classical electromagnetic theory the radi-
ation processes are described by Maxwell’s equations.
In the Gaussian system of units (which we adopt in
this article) Maxwell’s equations in free space are
[17, 18]

∇ ·E = 4πρ, (1a)

∇ ·B = 0, (1b)

∇× E = −1
c

∂B
∂t
, (1c)

∇× B =
4π
c

j +
1
c

∂E
∂t
, (1d)

where E(r, t) and H(r, t) are the electric and mag-
netic fields, ρ(r, t) is the charge density, and j(r, t) is
the current density.

It is often convenient to work with Fourier com-
ponents of the electric and magnetic fields. We define
the Fourier transformation of function f(t) as

f̂(ω) =
∫ ∞

−∞
dtf(t)eiωt, (2)

and use a “hat” to indicate the Fourier image. Apply-
ing the Fourier transformation to Maxwell’s equa-
tions, we find for the last two equations that involve
the time variable

∇× Ê =
ω

c
B̂,

∇× B̂ =
4π
c

ĵ − ω

c
Ê.

(3)

Maxwell’s equations are to be solved with appro-
priate initial and boundary conditions. For radia-
tion in free space, the boundary condition is that
far from the sources of radiation, |r| → ∞, the solu-
tion includes only waves propagating away from the
sources.

In the presence of metallic boundaries, Maxwell’s
equations are supplemented by the boundary con-
ditions on the surface of the metal. The two most
important types of boundary conditions used in prac-
tice are the perfect conductivity approximation and
the Leontovich boundary condition [19]. The former
is used when one can completely neglect the resis-
tivity of the metal, and consists in the requirement
of the vanishing tangential component of the electric
field, Et = 0, on the surface of the metal. The Leon-
tovich boundary condition is valid in the limit when
the skin depth is much smaller than the wavelength,
and relates the longitudinal electric field on the sur-
face of the metal Êt (in Fourier representation) to
the magnetic field,

Êt = ζĤ × n, (4)

where n is the unit vector normal to the surface and
directed toward the metal, and

ζ(ω) =
1 − i

σδ(ω)
,

with δ =
√

2/Z0σω the skin depth at the given fre-
quency, σ the metal conductivity, and Z0 = 4π/c =
377 ohms. In the limit σ → ∞ we have ζ → 0, and
(4) reduces to the boundary condition for the perfect
metal.

Maxwell’s equations can be rewritten in various
forms. A useful formulation, which is often employed
in both analytical and numerical studies, is to elimi-
nate the magnetic field, and obtain a second order
equation for the electric field. A straightforward
calculation yields

∇×∇× E +
1
c2
∂2E
∂t2

= −4π
c2
∂j
∂t
. (5)
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In the absence of charges and currents, j = 0, tak-
ing into account that the solenoidal property of the
electric field in this case is ∇ · E = 0, we arrive at
the well-known wave equation for the electric field in
vacuum

∆E +
1
c2
∂2E
∂t2

= 0. (6)

3. Retarded and Liénard–Wiechert
Potentials

Electromagnetic potentials φ(r, t) and A(r, t) are
introduced in such a way that (1b) and (1c) are sat-
isfied automatically. In the Lorentz gaugea they are
related to the observable field through

E = −∇φ− 1
c

∂A
∂t

, B = ∇× A. (7)

Remarkably, in terms of the electromagnetic
potentials Maxwell’s equations in free space can be
solved explicitly. This solution is often called the
retarded potentials [18] and is given by the equations

φ(r, t) =
∫
ρ(r′, tret)
|r − r′| d

3r′,

A(r, t) =
1
c

∫
j(r′, tret)
|r− r′| d

3r′,

(8)

where the integration is carried over the region
occupied by the charges, and the retarded time
tret(r, r′, t) is defined by

tret(r, r′, t) = t− 1
c
|r − r′|. (9)

It has a meaning of time at which the electromagnetic
field that arrives at point r at time t has been emit-
ted at point r′. Substituting (8) into (7) after some
transformations, one can obtain expressions for the
fields in terms of the charge and current density (and
their time derivatives) integrated over space; those
are sometimes called Jefimenko’s equations [18].

The simplicity of Eqs. (8) is deceptive: the
involvement of the retarded time in the arguments
of the charge density and the current makes calcula-
tions of the integrals a difficult task. However, they
are often used as a starting point of calculations
in various radiation problems, as well as numerical
treatment of radiation problems.

Integration in (8) can be carried out for a
point charge arbitrarily moving in free space along

a trajectory specified by r0(t). For such a charge
ρ = qδ(r − r0(t)) and j = qv(t)δ(r − r0(t)), with
v = dr0/dt. The result is known as the Liénard–
Wiechert potentials:

φ(r, t) =
q

R(1 − βret · n)
,

A(r, t) =
qβret

R(1 − βret · n)
.

(10)

Here the normalized particle’s velocity β = v/c
should be taken at the retarded time, βret =
β(tret), which is now considered as a function of r
and t, tret(r, t), and is defined as a solution to the
equation

tret = t− 1
c
|r − r0(tret)|. (11)

In the above equations R(r, t) = r− r0(tret) is a vec-
tor drawn from the retarded position of the particle
to the observation point, n is a unit vector in the
direction of R, and R = |R|.

Using (7) and (10) one can obtain formulas that
express the electric and magnetic fields of an arbi-
trary moving point charge [see Eqs. (14.13) and
(14.14) of Ref. 18]:

E = q
n− βret

γ2R2(1 − βret · n)3

+
q

c

n × {(n− βret) × β̇ret}
R(1 − βret · n)3

, (12a)

B = n × E, (12b)

where β̇ret is the acceleration (normalized by the
speed of light) taken at the retarded time, and γ =
(1 − β2)−1/2. These equations form a basis for cal-
culation of the synchrotron and undulator radiation
(see e.g. Refs. 21–24).

At large distance from the charge the second
term of (12a), which decays as R−1, dominates the
first one, proportional to R−2. This second term is
the radiation term, while the first one is usually asso-
ciated with the Coulomb field of the moving charge,
sometimes also called the velocity field.

4. Alternative Expression for the
Electromagnetic Field

To calculate the spectral and angular distributions of
radiation, one has to make Fourier transformation of

aAn illuminating discussion on gauge transformation in classical electromagnetic theory can be found in Ref. 20.
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the fields (12). Using (2) and changing the integra-
tion variable from t to tret (which is denoted below
by t′) with the help of dt = dt′(1−n ·β), we find the
Fourier image of the electric field

Ê(r, ω) =
e

γ2

∫ ∞

−∞
dt′

n− β

R2(1 − n · β)2
eiω(t′+R/c)

+
e

c

∫ ∞

−∞
dt′

n × [(n− β) × β̇]
R(1 − n · β)2

eiω(t′+R/c).

(13)

Here R,n,β, and β̇ are now considered as given func-
tions of time t′.

Recall that the usual approximation for the far
zone (fz) is to neglect the velocity field and to take
the limit R → ∞:

Êfz(r, ω) ≈ e

cR

∫ ∞

−∞
dt′

n × [(n − β) × β̇]
(1 − n · β)2

× eiω(t′+R/c).

In this expression, the value of R in front of the
integral and the vector n are considered as constant
but R in the exponential (and of course β and β̇)
are functions of time. If one integrates this expres-
sion over a finite time interval from t1 to t2, the
result is

Êfz(r, ω) = − ieω
cR

∫ t2

t1

dt′n × (n× β)eiω(t′+R/c)

+
e

cR

n× (n × β)
1 − n · β eiω(t+R/c)

∣∣∣∣
t2

− e

cR

n× (n × β)
1 − n · β eiω(t+R/c)

∣∣∣∣
t1

. (14)

The last two terms are responsible for the edge radi-
ation in the far zone [25].

Note that for a relativistic particle with γ� 1
the integrands in (13) have sharp narrow peaks
at time t′ when n is parallel to β, because at
this time the denominators (1 − n · β)2 ∼ 1/4γ4

become extremely small. This time corresponds to
the moment when the particle velocity is directed
toward the observation point. Because of these sharp
peaks, the direct numerical computation of the field
based on (13) becomes problematic for ultrarela-
tivistic particles. There is, however, an alternative
equivalent expression for the field of a moving point

charge [26]:

Ê(r, ω) =
ieω

c

∫ ∞

−∞

dt′

R

[
β − n

(
1 +

ic

ωR

)]

× eiω(t′+R/c). (15)

Although this equation looks very different from (and
much simpler than) (13), it gives the same result
for Ê(r, ω). The derivation of (15) using Liénard–
Wiechert potentials is given in the Appendix. This
equation forms the basis for numerical algorithm
of the Synchrotron Radiation Workshop computer
code [27].

5. Time Domain versus Frequency
Domain in Synchrotron Radiation

Traditionally, synchrotron radiation is analyzed in
the frequency domain [18, 21–24]. In an alternative
and complementary approach one can look at the
time structure of radiation pulses [28], which gives
a new insight into this classical radiation problem.
In particular, using the time domain approach helps
one to understand some properties of radiation from
short magnets.

Consider a point charge moving with relativis-
tic velocity (γ � 1) in a circular orbit of radius ρ,
as shown in Fig. 1. The position of the particle is
determined by angle ϕ, with ϕ = 0 corresponding
to the origin of the coordinate system. An observer
is located at point O in the plane of the orbit, at
distance r from the origin, far from the particle. The
observer will see a periodic sequence of pulses of elec-
tromagnetic radiation with the period equal to the
revolution period T0. Each pulse is emitted from a

x
z

ρ

r

R O

n

ϕ

Fig. 1. A schematic showing a part of a cicular orbit and the
observation point O. The position of the particle is shown by
the red dot. The Cartesian coordinate system is chosen in such
a way that its origin is located on the orbit and the z axis is
tangential to the circle and directed toward O. The y axis is
directed out of the page.
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small fraction of the orbit, x, z � ρ. We denote the
electric field of the pulse at the observation point
by E(t).

If we synchronize the clock in such a way that at
t = 0 the particle is passing through the origin of the
coordinate system, then the position of the particle
at time t is characterized by the angle ϕ = ω0t, with
ω0 = 2π/T0 the angular revolution frequency of the
particle. The electromagnetic pulse arrives at point
O at time t ≈ r/c. It is convenient to introduce the
dimensionless time variable t̃ = (γ3c/ρ)(t− r/c) and
the dimensionless electric field Ẽ = (rρ/4qγ4)Ex.
Using Taylor expansion of the field at the observation
point around t̃ = 0, one can show that the depen-
dence Ẽ(t̃) is given by the implicit relations [29]

Ẽ =
1 − ζ2

(ζ2 + 1)3
, t̃ =

1
2
ζ +

1
6
ζ3, (16)

where the variable ζ is related to the position on
the circle through ζ = ϕγ. These equations asso-
ciate each point on the curve Ẽ(t̃) with a position
on the circle and the corresponding moment of emis-
sion, and hence connect the radiation properties to
the geometry of the orbit. The plot of the function
Ẽ(t̃) is shown in Fig. 2; it is an even function of t̃.
We see from this plot that the characteristic width
of the pulse ∆t̃ ∼ 1, which means that the duration
of the pulse in physical units is

∆t ∼ ρ

cγ3
. (17)

This corresponds to the width of the radiation spec-
trum ∆ω ∼ cγ3/ρ, in agreement with the fact that
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Fig. 2. The radiation pulse of the electromagnetic field in
dimensionless variables.

the main energy of the synchrotron radiation is local-
ized in the frequency range of the order of the critical
frequency ωc = cγ3/ρ [18].

The pulse in Fig. 2 has a positive core and
long negative tails where, for |t̃| � 1, we have
Ẽ ≈ −1/(6|t̃|)4/3. The long tails determine the low-
frequency part of the spectrum of the radiation with
ω � ωc.

A straighforward integration shows that the area
under the curve in Fig. 2 is equal to zero:

∫ ∞

−∞
dtE = 0. (18)

This is not accidental — it is a demonstration of the
general principle applicable to any radiating system
of finite size [30]. It is equivalent to the statement
that such systems do not radiate at zero frequency,
which is rather evident, because the zero-frequency
field is static and cannot propagate away from the
source.

As was mentioned at the beginning of this sec-
tion, the time domain analysis allows one to eas-
ily explain several features of synchrotron radiation
from a short magnet [31], when a point charge is
moving on an arc of a circle. Let us assume that the
angular extension of the arc is ϕmin < ϕ < ϕmax,
and outside of the arc the particle is moving along
straight lines (tangential to the end points of the
arc) with constant velocity. Since there is no acceler-
ation on the straight parts of the orbit, the radiation
pulse shown in Fig. 2 will be truncated: the value
of the radiation field Ẽ becomes zero for ϕ < ϕmin

and ϕmax < ϕ, while it remains the same for the
points on the arc where ϕmin < ϕ < ϕmax. Remem-
bering the relation ζ = γϕ, we conclude that the
radiation pulse for a short magnet is given by the
same equations, (16), where ζ is now constrained
by ϕmin/γ < ζ < ϕmax/γ. An example of the pulse
shape for ϕmin/γ = −0.5 and ϕmax/γ = 0.7 is shown
in Fig. 3. The discontinuities of the field at the front
and the tail of the pulse generate so-called edge radi-
ation,b [25, 32] represented by last two terms of (14).

It is interesting to note that for the pulse in
Fig. 3 Eq. (18) does not hold. This is due to the
fact that the complete trajectory of the charge (with
incoming and outgoing straight lines) is not confined

bIn reality, the abrupt changes of the field will be somewhat smeared out due to finite extension of the edge magnetic field at the
entrance to and the exit from the magnet.
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Fig. 3. The radiation pulse of the electromagnetic field for a
short magnet with ϕmin/γ = −0.5 and ϕmax/γ = 0.7.

to a limited region of space (in contrast to a circular
trajectory) but infinitely extends in both directions
in z. A charge moving on such an unconstrained orbit
creates a static field that decays inversely propor-
tional to the distance from the orbit. This results in
a nonvanishing zero harmonic of the field, Ê|ω=0 �= 0.
One of the consequences of nonzero Ê|ω=0 is that the
spectrum of the pulse shown in Fig. 3 is much richer
in low frequencies than the one shown in Fig. 2 [33].
A more detailed analysis of violation of the condition
(18) in the case of an arc is given in Ref. 28.

6. Basics of Undulator Radiation

An undulator is a spatially periodic magnetic struc-
ture used for generation of quasi-monochromatic
radiation. There are several ways to derive the
undulator radiation. The most direct approach is to
analyze the electromagnetic field with the Liénard–
Wiechert equations (12) in the far zone of a
point charge passing through an undulator. Alterna-
tively, one can connect the undulator radiation with
another well-known phenomenon in electromagnetic
theory — the Thomson scattering. We will demon-
strate the latter in what follows.

Let us consider a plane undulator with the mag-
netic field given by

By(z) = B0 cos kuz, (19)

with the undulator period λu = 2π/ku. The undula-
tor is characterized by the amplitude magnetic field
B0, the period λu, and the number of periodsNu. We
assume that a relativistic particle propagates along
the z axis with velocity v close to the speed of light.

Let us now consider the process of radiation in
the particle’s frame of reference. To find the undu-
lator field in this frame, we note that relative to
the particle the undulator is moving in the negative
direction of the z axis with velocity v = (0, 0,−v).
Using the Lorentz transformation for coordinates
and time, we find that

z = γ(z′ − βct′) ≈ γ(z′ − ct′), (20)

where we mark by a prime all quantities in the par-
ticle’s frame. Assuming that γ � 1 and using the
Lorentz transformation for the fields, we can also find
the undulator field in the particle’s frame:

E′
x = γβB0 cos kuz ≈ γB0 cos kuγ(z′ − ct′),

B′
y = γB0 cos kuz ≈ γB0 cos kuγ(z′ − ct′).

(21)

First, we see that in addition to the magnetic there
is an electric field in the x direction, perpendicular
to the direction of motion and the magnetic field.
Moreover, the magnitude of the electric field is equal
to that of the magnetic one, and both are γ times
larger than the lab field of the undulator. To a good
approximation, the electromagnetic field is indistin-
guishable from a plane electromagnetic wave with
the frequency ω′ = γkuc moving in the negative z
direction. Under the influence of this field the elec-
tron starts to oscillate and radiate secondary waves,
and this is exactly the problem of the Thomson
scattering.

Before we proceed further, we have to estimate
the velocity of the oscillations and compare it with
the speed of light. Consider a particle located at
z′ = 0. Inside the electromagnetic field its velocity is
vx = vosc cosω′t′, where vosc is the amplitude of the
oscillating velocity. Assuming that vosc � c, it is easy
to find vosc = eE′

x/mω
′ = eB0/mkuc. This intro-

duces the undulator parameter K, equal to vosc/c:

K =
eB0

kumc
. (22)

In what follows, we will require K � 1; in this limit
the frequency of the scattered wave is equal to the
frequency ω′ of the incident one.

The intensity of the Thomson-scattered radia-
tion can be found in textbooks [18]: it is proportional
to the square of the amplitude of the electric field,
which in our case is equal to γB0:

dI ′

dΩ′ =
e4γ2B2

0

8πc3m2
(1 − sin2 θ′ cos2 φ′), (23)
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where dI ′/dΩ′ is the the intensity of the radiation
per unit solid angle in the direction characterized by
the polar angle θ′ and the azimuthal angle φ′ (in the
spherical coordinate system with the z axis along the
direction of propagation of the wave). We now need
to transform the quantities dI ′, dΩ′, θ′, and ω′ into
the lab frame (the angles ψ and ψ′ are equal). The
Lorentz transformation for the angles gives

sin θ′ =
sin θ

γ(1 − β cos θ)
≈ 2θγ

1 + γ2θ2
, (24)

where we have assumed that θ � 1, expanded
cos θ ≈ 1 − θ2/2, and used 1 − β ≈ 1/2γ2. From
the Lorentz transformation for frequencies we also
find that

ω ≈ 2γω′

1 + γ2θ2
=

2γ2kuc

1 + γ2θ2
. (25)

This equation associates with each angle θ the fre-
quency of the radiation that propagates in that direc-
tion. The maximum frequency in the lab frame goes
in the forward direction, θ = 0, and is equal to

ω0 = 2γω′ = 2γ2kuc. (26)

The differential of the solid angle is transformed like

dΩ′ = sin (θ′)dθ′dφ′ = |d cos (θ′)|dφ, (27)

from which we find that

dΩ′ =
1 − β2

(1 − β cos θ)2
|d cos (θ)|dφ

≈ 4γ2

(1 + γ2θ2)2
dΩ. (28)

Finally, we need to transform the differential dI ′,
which is the radiated energy of the electromagnetic
field per unit time: dI ′ = dE′/dt′. The Lorentz trans-
formation of time is dt′ = dt/γ. The easiest way to
transform the energy is to invoke the quantum the-
ory and to consider radiation as a collection of pho-
tons. In quantum language the energy of a photon is
�ω, and the number of photons Nph is the same in
any reference frame. Hence the energy is transformed
as the frequency, and dE′ = Nph�ω′ = dE(ω′/ω).
This allows us to convert dI ′/dΩ′ into the beam
frame:

dI
dΩ

=
dE

dΩdt
=

dE′

dΩ′dt′
ω

ω′
1
γ

4γ2

(1 + γ2θ2)2

=
e4γ4B2

0

πcm2

(1 + γ2θ2)2 − 4θ2γ2 cos2 φ
(1 + γ2θ2)5

. (29)

To find the energy radiated per unit time in all
angles, we integrate this equation over the solid angle
using the approximation dΩ = dφ sin (θ)dθ ≈ dφθdθ:

I0 =
∫

dI
dΩ

dΩ ≈
∫ ∞

0

θdθ

∫ 2π

0

dφ
dI
dΩ

=
e4γ2B2

0

3cm2
.

(30)

Note that the radiated power from the undulator,
per unit time, is equal to the radiated power from
a bending magnet with the same averaged magnetic
field.

Since the angle θ is uniquely associated with the
frequency via (25), Eq. (29) also determines the spec-
trum of the undulator radiation. To find this spec-
trum of radiation, we need to integrate Eq. (29)
over φ and in the final result express θ through ω

using (25). This can be done analytically and leads
to the following expression for the intensity of the
radiation per unit frequency,

dI
dω

=
3I0

ω0

ω

ω0

(
2
(
ω

ω0

)2

− 2
(
ω

ω0

)
+ 1

)
, (31)

for ω < ω0 and zero for ω > ω0. The plot of this
function is shown in Fig. 4.

To find the radiated energy, rather than the
power, one has to multiply Eqs. (29)–(31) by the time
of flight through the undulator Nuλu/c.

In our analysis above we implicitly assumed an
infinite duration of the Thomson scattering process,
which, strictly speaking, corresponds to the limit
Nu → ∞. This has led us to the one-to-one corre-
spondence (25) between the angle and the frequency.
A more accurate analysis that takes into account
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Fig. 4. The spectrum of the undulator radiation given by
Eq. (31).
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finite, though large, Nu shows that there is a fre-
quency spread, ∆ω ∼ ω/Nu, in the spectral content
of the radiation propagating at a given θ.

In principle, the radiation for an undulator with
largeK can be obtained analogously to the caseK �
1. However, the calculations are much more comber-
some, because the particle’s motion in the beam
frame becomes relativistic. The interested reader can
find a detailed analysis of the undulator radiation in
Refs. 21–24.

7. Longitudinal and Transverse
Formation Lengths

It takes some time and space around the orbit for a
moving charge to generate radiation. This is a fun-
damental fact which is not always emphasized in cal-
culations of various radiation processes. Evaluation
of spatial scales involved in formation of radiation
is an important element of understanding whether
analytical results derived for free space are applica-
ble to practical problems. In accelerators a particle’s
orbit is surrounded by material walls, and if they are
located inside the formation volume, radiation will
be strongly affected by the presence of the walls. In
such a case, free space results become invalid, and
one has to solve the problem taking account of the
material boundaries in the system.

One comment is necessary before we proceed.
The formation length is not an exact quantity
which is rigorously defined by a mathematical for-
mula. While it can always be estimated by order
of magnitude, one cannot specify it with an accu-
racy better than a factor of order of 1. Even with
this uncertainty, however, the notion of the for-
mation length turns out to be extremely useful in
applications.

To illustrate the concept of the formation length,
we again consider the synchrotron radiation and use
the results of the previous section. The width of the
electromagnetic pulse in Fig. 2, ∆t̃ ∼ 1, means that
∆ζ ∼ 1, and through the relation ζ = γϕ translates
into the angular length of the trajectory which con-
tributes to the main body of the pulse, ∆ϕ ∼ 1/γ.
Hence the length of the orbit necessary for formation
of the radiation pulse, which we call the longitudinal
formation length, l‖, is

l‖ ∼ ρ

γ
. (32)

As an immediate consequence of this equation, we
conclude that if a bending magnet has a length
smaller than ρ/γ, the radiation pulse gets truncated
(see Fig. 3), and the spectrum of radiation changes
from the one calculated for a circular orbit.

Note that using the angular spread of the
synchrotron radiation ∆θ ∼ 1/γ and the reduced
wavelengthλ = λ/2π ∼ ρ/γ3, one can also write the
longitudinal formation length as

l‖ ∼ λ

∆θ2
. (33)

This equation can be better understood if one cal-
culates the distance on which a relativistic particle
(v ≈ c) slips in phase of the order of π with a plane
electromagnetic wave propagating at angle ∆θ to the
direction of motion of the particle. Since the phase
velocity of the wave in the direction of motion of
the particle is c/ cos∆θ, the slippage length is esti-
mated as λ/(1 − cos−1 ∆θ) ∼ λ/∆θ2, in agreement
with (33).

The notion of the formation length is much more
general and fundamental than implied by our deriva-
tion. It is introduced in the quantum theory of radi-
ation [34] (where it is often called the coherence
length, [35]) as a length associated with the momen-
tum transfer q to the external field by the radiating
particle. The longitudinal formation length is related
to the momentum transfer in the direction of motion:
l‖ ∼ �/q‖.

A more subtle but practically important ques-
tion is: How to define the formation length for
low frequencies, ω � ωc? To answer this question,
observe that, as follows from the uncertainty princi-
ple, formation of frequency ω involves the time inter-
val T ∼ 1/ω. For ω � ωc, the dimensionless time t̃
associated with T is t̃ = (γ3c/ρ)T ∼ γ3c/ρω � 1.
This large T includes the long tails of the radi-
ation pulse, where, as follows from the second of
Eqs. (16), ζ ≈ (6t̃)1/3. Using again the relation
ζ = γϕ, we arrive at the following result: the length
of the orbit (in angular units) required to generate
harmonic ω is ∆ϕ ∼ (c/ρω)1/3. We can also write
it in terms of the frequency-dependent formation
length l‖(ω):

l‖(ω) ∼ ρ∆ϕ ∼ ρ2/3λ1/3, (34)

whereλ = c/ω. For the critical frequency ω = ωc this
formula gives us the previous expression, (32).
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Note that (34) can also be obtained from
Eq. (33) taking into account that the angular spread
of radiation at small frequencies ∆θ ∼ (λ/ρ)1/3.

The practical importance of the formation length
is that to generate the full spectrum of the syn-
chrotron radiation the length of the bending magnet
should be several times longer than l‖(ω). Radiation
from a magnet that is shorter than l‖(ω) will have
properties different from that for a circular motion.

In addition to having a necessary path length,
the charge needs some space in the direction perpen-
dicular to the orbit to form radiation. We can eval-
uate this length, which we will call the transverse
coherence length, l⊥, using the following arguments.
If the characteristic angular spread of the radiation
is ∆θ and the wave number is k = ω/c, the trans-
verse component of the wave number is k⊥ = k∆θ.
From the Fourier uncertainty principle, the trans-
verse dimension needed to accommodate the trans-
verse wave number is l⊥ ∼ 1/k⊥ ∼ λ/∆θ. We can
now use the known angular spread of the synchrotron
radiation as a function of frequency, ∆θ ∼ (λ/ρ)1/3,
to obtain

l⊥(ω) ∼ λ

∆θ
∼ ρ1/3λ2/3. (35)

The length l⊥ is also associated with the transverse
source size for the synchrotron radiation — it is equal
to the size of the image to which the particle’s radi-
ation can be focused with 1:1 optics [21].

One of the practical consequences of the trans-
verse formation length is that the radiation can be
suppressed by metal walls, if they are put close to
the beam. More specifically, if the beam propagates
through a dipole magnet in a metal pipe with a
transverse size a, the radiation with l⊥(ω) � a or
λ �

√
a3/ρ is suppressed. This is called a shield-

ing effect of the metallic pipe [2, 3, 36, 37]. It plays
an important role in the modern accelerator, by
limiting the energy loss of the beam on coherent
radiation.

8. Parabolic Equation in
Electromagnetic Problems

The parabolic equation (PE) in diffraction theory was
proposed many years ago [38] and has been widely
used since that time for solution of various electrody-
namic problems. It is applicable to situations where
the electromagnetic field can be considered as a

monochromatic wave with a slowly-varying-in-space
amplitude. This usually means that the field is com-
posed of harmonics that propagate at small angles to
the axis of the system — a property that is described
by a paraxial, or small-angle, approximation. The PE
is routinely used for studies of propagation of laser
beams (such as analysis of Hermite–Gaussian and
Laguerre–Gaussian modes in wave optics [39]). It is
also a part of the standard approximation in a three-
dimensional theory of free electron lasers [40].

To derive the PE, we denote by Ē the Fourier-
transformed electric field multiplied by the factor
e−ikz ,

Ē = e−ikzÊ, (36)

with k = ω/c. Here we assume that the field prop-
agates in the z direction. We then use the Fourier-
transformed Eq. (5), which, with the help of ∇· Ê =
4πρ̂, can be written as

4π∇ρ̂−∇2Ê − ω2

c2
Ê = iω

4π
c2

ĵ. (37)

We now assume that the current is directed along
the z axis, so that its perpendicular components can
be neglected; ĵ⊥ = 0. Taking the transverse part of
(37), we then obtain

∇2Ê⊥ +
ω2

c2
Ê⊥ = 4π∇⊥ρ̂, (38)

where Ê⊥ is a two-dimensional vector Ê⊥ = (Êx, Êy)
and ∇⊥ = (∂/∂x, ∂/∂y). We now substitute Ê =
eikzĒ and ρ̂ = eikz ρ̄ into this equation:

∂2Ē⊥
∂z2

+ 2ik
∂Ē⊥
∂z

+ ∇2
⊥Ē⊥ = 4π∇⊥ρ̄. (39)

We neglect the second derivative ∂2Ē⊥/∂z2 in com-
parison with k∂Ē⊥/∂z, which is justified if variation
of the electric field amplitude Ē along the z axis is
relatively small on the wavelength 2π/k. This leads
us to the PE

∂Ē⊥
∂z

=
i

2k
(∇2

⊥Ē⊥ − 4π∇⊥ρ̄). (40)

For a known charge distribution, it describes evo-
lution of the transverse components of the field
along the z axis. The longitudinal component can be
expressed through the transverse one and the charge
density using again ∇ · Ê = 4πρ̂ written in terms of
the bar quantities

∂Ēz

∂z
+ ikĒz + ∇⊥Ē⊥ = 4πρ̄. (41)
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Again, neglecting the first term on the left hand side,
∂Ēz/∂z, in comparison with ikĒz, and expressing Ēz

through the transverse field yields

Ēz =
i

k
(∇⊥Ē⊥ − 4πρ̄). (42)

Equations (40) and (42), complemented with appro-
priate boundary conditions, define all components of
the electric field in the system.

One of the most important advantages of the PE
is that it eliminates the small wavelengthλ from the
problem. Indeed, a simple scaling analysis of (40)
shows that the longitudinal scale l of variation of the
field in the z direction is of the order of l ∼ a2/λ,
where a is the transverse size of the region occupied
by the field. If a � λ, then also l � a � λ. As a
result, numerical solution of the PE requires only a
coarse spatial mesh with the mesh size that can be
much larger than λ.

There are many electromagnetic problems in
accelerator physics to which the PE can be applied.
This is explained by the fact that radiation of rel-
ativistic beams at high frequencies propagates at
small angles to the direction of motion, and hence is
paraxial in its origin. This was clearly demonstrated
in Ref. 41, where the authors used the parabolic
Green function to reproduce many known results for
synchrotron, transition, and undulator radiation in
vacuum.

One of the areas where the PE turned out
to be extremely useful is calculation of wakefields
and impedances for various elements of the accel-
erator vacuum chamber in the high-frequency limit
[42, 43] — the problem motivated by the small
bunch length of electron beams in modern accel-
erators. In the presence of material boundaries, if
transverse apertures in the system are noticeably
larger than the wavelength of interest, they do not
destroy the paraxial propagation of the emitted field.
Direct numerical computation of wakefields based
on solution of Maxwell’s equations for such beams
requires extremely fine meshes and demands exces-
sive processing power from computers. It is inter-
esting to note that although the PE neglects the
backward-propagating waves reflected from obstacles
in the chamber and incorrectly treats the waves prop-
agating at large angles to the axis, nonetheless the
impedance calculations are accurate because those
waves do not catch up with the beam and hence do
not contribute to the impedance.
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Fig. 5. Real (red) and imaginary (blue) parts of the
impedance. Dots are calculated with the PE, solid lines are
the result of the computer code ECHO.

As an illustration, we show in Fig. 5 the longitu-
dinal impedance of a round tapered collimator calcu-
lated with the PE up to a frequency of about 4THz.
The collimator has two tapered transitions of length
30mm from a radius of 5mm to a radius of 2.5mm.
It has also a central part (2.5mm radius) of length
30mm. The result is compared with simulation with
the computer code ECHO [44], and shows excellent
agreement.

The PE was derived above for a system where
the beam propagates along a straight line (the z

axis). With minor modifications, it can also be
applied to a circular orbit, with a beam propagating
inside a vacuum chamber with conducting metallic
walls. This approach was first developed in Refs. 45
and 46 for a rectangular toroidal pipe and applied
to the problem of coherent synchrotron radiation.
More recently it was generalized for a combination of
toroidal and straight pipes [47, 48], allowing one to
study synchrotron radiation inside a vacuum cham-
ber in several dipole magnets connected by straight
sections.

9. Diffraction Radiation and Kirchhoff
Integral

In the presence of material boundaries one has to
solve Maxwell’s equations with appropriate bound-
ary conditions, as discussed in Sec. 2. Typically, such
problems are much more complicated than radiation
in free space, and often cannot be solved analytically.
There is, however, an important limit amenable to
analytical methods, when the wavelengths of inter-
est are small compared to the size of the apertures
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in the problem. In this case one can use an approx-
imate formulation based on the vectorial version of
the diffraction theory [18]. It is interesting to note
that this integral can be derived from the PE dis-
cussed in Sec. 8 by solving an initial value problem
with Green’s function.

Traditionally, the diffraction theory considers
scattering of an electromagnetic wave emitted by a
remote source on a given aperture. In the acceler-
ator physics context, however, there are situations
where the radiation source is a beam that passes
through the same aperture — the radiation in this
case is called the diffraction radiation. With a slight
modification of the classical Kirchhoff integral, these
problems can also be solved in the diffraction approx-
imation [34]. We will illustrate below the technique
in a particular example of radiation of a relativistic
charge particle passing through a circular aperture in
a conducting plane screen shown in Fig. 6, following
the analysis of Ref. 34. Due to the relative simplicity
of the problem, it also allows for a rigorous mathe-
matical formulation in terms of coupled singular inte-
gral equations which can be solved numerically [49].
The simplified approach presented below has, how-
ever, the considerable advantages of simplicity and
transparency.

We consider a relativistic point charge, γ � 1,
moving along the z axis with velocity v. The ori-
gin of the coordinate system is located at the cen-
ter of the hole. As already mentioned, our approach
is valid if the reduced wavelength of the radiation
λ = λ/2π is much smaller than the radius of the
hole a. As it turns out, under this condition most
of the radiation propagates at small angles to the
direction of motion of the charge, θ � 1. According
to the vectorial formulation of the diffraction theory,
in Ref. 18 (Sec. 10.7), the field behind the screen, E ,
at large distance R → ∞ in the region z > 0, can be

Fig. 6. A relativistic charge (shown by the blue dot) moving
with velocity v is passing through a round hole in a conducting
screen (shown by the black thick lines). The red dashed lines
indicate electric field lines being truncated by the screen.

calculated by integrating the incident field E0 on the
screen at z = 0:

E =
eikR

R

i

2π
k ×

∫
hole

e−ikrn× E0dS, (43)

where r = (x, y) is the two-dimensional vector in the
plane of the hole, k is the wave number vector in the
direction of the radiation, k = |k| = ω/c, and n is
the unit vector perpendicular to the surface of the
hole. The integration in Eq. (43) goes over the cross
section of the hole.

Equation (43) is derived in Ref. 18 for the case
where the incident wave propagates in free space. In
our problem the incident field is the Coulomb field
carried by the particle. In this case, Eq. (43) gives
the total field behind the screen, including the field
of the particle, and to find the radiation field, E1, we
need to subtract the Coulomb field of the electron
EC. The latter can be calculated as the same inte-
gral in Eq. (43) in the limit a → ∞, i.e. when the
screen is removed. The result of such a subtraction is
an integral, with the sign opposite to that in Eq. (43),
in which the integration goes over the screen surface,
rather than the hole [34]:

E1 = E − EC

= −e
ikR

R

i

2π
k ×

∫
screen

e−ikrn× E0dS. (44)

A more rigorous proof of this equation can be found
in Ref. 50.

In the limit of a large Lorentz factor, γ � 1, the
radial electric and azimuthal magnetic fields of the
particle are

Er0 = Hθ0 =
eγr

[r2 + γ2(z − vt)2]3/2
, (45)

where r =
√
x2 + y2 is the distance from the

orbit. The particle’s field on the screen is given by
Er0(r, 0, t) and Hθ0(r, 0, t) in Eq. (45). Fourier trans-
formation of these fields defined by Eq. (2) gives

Er0(r, ω) = Hθ0(r, ω) ≈ ke

πcγ
K1

(
kr

γ

)
, (46)

where K1 is the modified Bessel function of the
first order, and we have used v ≈ c in the above
expression.

In the limit of large γ, the angle of the radiation
relative to the z axis, θ, is small: θ � 1. Substituting
(46) into (44) and neglecting higher-order terms in
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θ, we find that E1 has the radial component only:

Er1 = −k e
ikR

R

∫ ∞

a

rdrEr0(r, ω)J1(krθ)

= − ek2

πγc

eikR

R

∫ ∞

a

rdrK1

(
kr

γ

)
J1(krθ), (47)

where J1 is the Bessel function of the first order.
The integration in the last formula can be carried
out analytically [51]:

Er1 = A(ω, θ)
eikR

R
, (48)

with

A(ω, θ) =
e

πγc

ka

θ2 + γ−2

[
θJ2(kaθ)K1

(
ka

γ

)

− 1
γ
J1(kaθ)K2

(
ka

γ

)]
. (49)

The quantity |A|2 gives the angular and spectral
distribution of the radiation. This formula agrees
with the rigorous solution to the diffraction radiation
problem obtained in Ref. 49, if one takes the limit
γ � 1, ka� 1 of their result. In the limit λ � aγ−1

(but with λ still much less than a) we have [34]

A(ω, θ) = − e

πc

θ

θ2 + γ−2
J0(kaθ), (50)

which in a small-angle approximation yields

A(ω, θ) = − e

πc

θ

θ2 + γ−2
. (51)

Since the hole radius a drops out from the last equa-
tion, it is also valid in the limit a→ 0, when there is
no hole in the screen. In this limit, it is usually called
the transition radiation.

The reader can find further development of the
method and some of its applications in Refs. 52–57.

10. Coherent Radiation and
Fluctuations

Radiation of a beam is to be computed taking
account of interference of electromagnetic fields emit-
ted by different particles. This leads to the notions
of incoherent and coherent components of the radi-
ated field. The energy of the incoherent part scales
linearly with the number N of particles in the beam,
while the coherent radiation is proportional to N2.
In addition to these well-known characteristics of

the radiation of an ensemble of particles, another
important characteristic of beam radiation is its
fluctuations caused by randomness of particle posi-
tions in the bunch. The fluctuations carry important
information about distribution of particles in the
beam, and can be used, for example, for diagnostic
purposes [58–60].

Let us consider a one-dimensional model of the
beam and assume that each particle radiates an elec-
tromagnetic pulse with the electric field given by a
function e(t). We neglect here a possible dependence
of e(t) on the transverse position of the particle in the
beam, as well as polarization effects, using a scalar
quantity e. The exact mechanism of radiation does
not matter here: it may be a synchrotron or undula-
tor, or any other type of radiation. If the longitudi-
nal position of the kth particle within the bunch is
marked by a time variable tk, the total radiated field
E(t) of all particles is

E(t) =
N∑

k=1

e(t− tk), (52)

where N is the number of particles in the bunch. We
assume that tk are random numbers, with the prob-
ability of finding tk between t and t + dt equal to
f(t)dt, where f(t) is the bunch distribution function
[normalized so that

∫∞
−∞ f(t)dt = 1]. For a Gaussian

distribution, f(t) = (2πσ2
t )−1/2e−t2/2σ2

t , where σt is
the bunch length in units of time. We also assume
that positions of different particles in the bunch, tk
and ti for k �= i, are uncorrelated, 〈tkti〉 = 〈tk〉〈ti〉,
with angular brackets denoting the averaging.

The spectral properties of the radiation are
determined by the Fourier transform Ê(ω) of the
radiated field:

Ê(ω) = ê(ω)
N∑

k=1

eiωtk ,

where ê(ω) =
∫∞
−∞ e(t)eiωtdt. In the experiment, one

is interested in the spectrum of the radiation P (ω),
which is proportional to |Ê(ω)|2 [we take P (ω) =
|Ê(ω)|2 for brevity]:

P (ω) = |ê(ω)|2
N∑

k,l=1

eiω(tk−tl). (53)

Averaging this equation over all possible positions
of an electron with the help of the distribution
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function f , we find that

〈P (ω)〉 = |ê(ω)|2
N∑

k,l=1

∫ ∞

−∞

∫ ∞

−∞
dtkdtl

×f(tk)f(tl)eiω(tk−tl)

= |ê(ω)|2(N +N2|f̂(ω)|2), (54)

where f̂(ω) =
∫∞
−∞ f(t)eiωtdt is the Fourier trans-

form of the distribution function [for the Gaussian
distribution mentioned above, f̂(ω) = e−ω2/2σ2

t ], and
we approximated N − 1 ≈ N . The first term of
Eq. (54) is incoherent radiation proportional to the
number of particles in the bunch. The second term
is the coherent radiation that scales quadratically
with N .

The coherent radiation term carries information
about the distribution function of the beam but only
at relatively low frequencies of the order of ω � σ−1

t ,
where f̂(ω) is not negligible. At high frequencies,
where N |f̂(ω)|2 � 1, the coherent radiation is small
in comparison with the incoherent radiation. How-
ever, the original, not averaged, expression for the
spectral power (53) shows that the properties of the
radiation even at high frequencies carry information
about the distribution function. Indeed, each term,
eiω(tk−tl), considered separately, oscillates as a func-
tion of frequency, with the period ∆ω = 2π/(tk −
tl) ∼ 2π/σt. Because of the random distribution of
particles in the bunch, the sum in Eq. (53) fluctuates
randomly as a function of frequency ω, and statisti-
cal properties of these fluctuations depend on the
distribution function of the bunch.

To obtain a quantitative characteristic of these
fluctuations, we first calculate the average value of
the product P (ω)P (ω′):

〈P (ω)P (ω′)〉 = |ê(ω)|2|ê(ω′)|2
N∑

k,l,m,n=1

×〈eiω(tk−tl)+iω′(tm−tn)〉.
Assuming that N |f(ω)|2, N |f(ω′)|2 � 1 (which
means that we can neglect the coherent radition at
frequencies ω and ω′), it is straightforward to show
that

〈P (ω)P (ω′)〉 = N2|ê(ω)|2|ê(ω′)|2

× (1 + |f̂(ω − ω′)|2), (55)

where the contribution to the final result comes
from the terms with k = l,m = n, k �= m and
k = n, l = m, k �= l.

Let us now assume that the spectral measure-
ment is performed with a narrow bandpass filter
which is characterized by a transmission coeffi-
cient T (ω). The measured signal E is a fluctuating
quantity,

E =
∫ ∞

−∞
P (ω)T (ω)dω, (56)

with the average value 〈E〉 =
∫∞
−∞〈P (ω)T (ω)〉dω. To

calculate the fluctuation of the signal ∆E = E − 〈E〉,
we will compute the quantity

δ2 =
〈∆E2〉
〈E〉2

= 〈E〉−2

∫ ∞

−∞
TT ′〈[P − 〈P 〉][P ′ − 〈P ′〉]〉dω

= 〈E〉−2

∫ ∞

−∞
TT ′[〈PP ′〉 − 〈P 〉〈P ′〉]dω, (57)

where we have used the notation P = P (ω), P ′ =
P (ω′). We now use Eqs. (54) (where we neglect the
N2 term) and (55) for the average power 〈P 〉 and
the averaged product 〈PP ′〉 to obtain

δ2 =
(∫ ∞

−∞
Tdω

)−2 ∫ ∞

−∞
TT ′|f̂t(ω − ω′)|2dω.

(58)

The integrals in Eq. (58) can be easily calculated
if we assume a Gaussian profile for the function
T, T (ω) = T0e

−(ω−ω0)
2/2σ2

ω , where ω0 and σω are
respectively the central frequency of the filter, and
where we have assumed that σω is much smaller than
the spectral width of the radiation. The result is

δ2 =
1√

1 + 4σ2
ωσ

2
t

. (59)

The expression (59) shows the potential of fluc-
tuation analysis for measuring the absolute length of
a bunch. If the frequency acceptance of the system,
σω, is known, then by measuring δ it is possible to
derive the absolute value of the rms bunch length.
For σt � 1/2σω, Eq. (59) becomes δ2 � 1/2σωσt,
and using the fact that the longitudinal coherence
length of an electromagnetic mode with frequency
content σω is σtc = 1/2σω, we can write

δ2 � σtc

σt
=

1
M
, (60)

where M is the number of modes contained in
the bunch. Equation (60) leads to the physical
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interpretation that the intensity fluctuation is due
to M independent longitudinal modes radiating ran-
domly within the bunch.

The theory outlined above was corroborated by
several experiments. The reader can find details of
these studies in the original publications [60–62]. In
addition to measuring the rms bunch length, the
method allows one to infer some information about
the shape of the longitudinal distribution function of
particles [62].

11. Fluctuations and Correlations

Averaging Eq. (53) over the distribution function to
obtain (54) relied on the fact that particles’ positions
in the bunch are not correlated. Indeed, (53) involves
terms that depend on positions of pairs of parti-
cles. Strictly speaking, it should be averaged with a
two-particle distribution function f2(t1, t2), defined
in such a way that f2(t1, t2)dt1dt2 gives a probabil-
ity of finding one of the particles within the interval
dt1 near point t1 and at the same time finding the
second particle within dt2 near point t2. In Eq. (54)
we assumed that f2(t1, t2) = f(t1)f(t2), where f(t)
is a one-particle distribution. In case where there are
such correlations, a more general expression for the
distribution function reads (see e.g. Ref. 63)

f2(t1, t2) = f(t1)f(t2) + g(t1, t2), (61)

where g(t1, t2) is the correlation function. Neglect-
ing the second term on the right hand side of this
equation is valid if there are no correlations in the
beam. Taking account of g we obtain an additional
contribution to (54) which we denote by 〈P (ω)cor〉:

〈P (ω)cor〉 = N2|ê(ω)|2
∫ ∞

−∞

∫ ∞

−∞
dt1dt2g(t1, t2)

× eiω(t1−t2). (62)

If we assume that g(t1, t2) = G(t1 − t2) for
0 < t1, t2 < Tb, where Tb is the bunch length in
units of time, then

〈P (ω)cor〉 = N2|ê(ω)|2
∫ ∞

−∞

∫ ∞

−∞
dt1dt2G(t1 − t2)

× eiω(t1−t2)

= N2|ê(ω)|2Ĝ(ω), (63)

i.e. it is proportional to the Fourier transform of the
correlation function. In Eq. (63) we assumed that Tb

is much larger than the correlation time defined by
the function G.

The above calculation illustrates the point that
correlations between particles’ positions in the beam
can dramatically change statistical properties of radi-
ation. This should not be surprising; a good example
of such an effect is a self-amplified spontaneous emis-
sion free electron laser (SASE FEL). In such an FEL
a specific beam instability leads to amplification of
initial shot noise in the beam and establishes cor-
relations between the particles. Detailed studies of
statistical properties of FEL radiation can be found
in the original papers [64–66].

12. Radiative Reaction Force and
Coherent Radiation

When a bunch of relativistic particles emits radia-
tion, the energy of the electromagnetic field is taken
from the kinetic energy of the radiating particles.
The energy balance in the process is maintained
through a force that acts in the direction opposite
to the velocity of the particles. This force is called
the radiative reaction force.

One can find general expressions for the radia-
tive reaction force in the case of a single radiating
electron (point charge) in textbooks [17, 18]. In the
limit of small nonrelativistic velocities, this force is
proportional to the second derivative of the veloc-
ity with respect to time and, in addition to the
expected damping effect, it exhibits a so-called “run-
away” solution with exponentially growing accelera-
tion on a timescale of the order of e2/mc3. This is
sometimes considered as a serious deficiency of the
force and a possible source of controversy, although a
simple recipe for how to avoid the spurious solution
is well known: one has to use the radiative reaction
as a perturbation force for a regular motion of the
particle [17].

For an ensemble of particles radiating coher-
ently, one has to include in the consideration
the effect of mutual interaction of particles in
the process of radiation and the energy loss due
to the interaction forces. In accelerator research
the radiative reaction force is usually called the
CSR wakefield or CSR force, with CSR standing
for “coherent synchrotron radiation.” An extensive
review of the history of the subject can be found
in Ref. 67.
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There are two approaches to calculation of the
CSR wake field. In the first approach one finds the
electric field in the vicinity of a point charge moving
along a given trajectory, and then adds contributions
of all charges in the beam to obtain the radiative field
at a given point inside the bunch. A systematic anal-
ysis based on this approach for a circular motion of a
relativistic particle was carried out in Ref. 68 for the
case of free space as well as the motion between two
conducting plates parallel to the orbit plane. The
total field of the point charge exhibits a singular-
ity at the location of the charge, and one has to be
careful to separate the singular Coulomb field from
the radiative one. To uniquely identify the Coulomb
term, it was proposed in Ref. 69 to subtract the field
of the charge moving in the same direction along
a straight line with constant velocity. Since such a
charge does not radiate, there is only (relativistically
transformed) Coulomb force in this case, which does
not result in the energy loss of the beam, but leads
to the energy exchange between different particles.

In a different approach, one can avoid prob-
lems associated with the subtraction of the singular
Coulomb field by considering the beam as a charged
medium with given densities of space charge and cur-
rent, and using retarded potentials [Eqs. (7) and (8)]
for direct calculation of the field. We will illustrate
this approach below following the original paper [70].

We first note that the integrands in the
expressions (8) have singularities when r → r′; how-
ever, for a smooth distribution of charges in three-
dimensional space these singularities are integrable,
and the resulting potentials and fields are continu-
ous functions of r. This is not true, though, if one
considers the beam as a line charge, neglecting its
transverse size. It is remarkable, however, that the
radiative reaction force remains finite even in this
limit and can be easily calculated.

Let us consider a bunch that is moving along
a circular trajectory of radius ρ. Denote the linear
charge density of the line charge beam by λ(s, t),
where s is the arc length measured along the circu-
lar path of motion. Since we assume that each parti-
cle is moving with a constant velocity v, λ actually
depends on the combination ζ = s − vt. In addi-
tion, we will make the assumption that the electro-
magnetic fields on the orbit also depend only on the
difference ζ = s − vt; in other words, the field dis-
tribution on the orbit is transported together with

the beam without changes. Physically, this assump-
tion means that we neglect transient effects associ-
ated with injection of the beam to the circular orbit
and assume that a steady state electromagnetic field
has been established.

We are interested in the longitudinal electric field
E‖ = −∂φ/∂s − ∂A‖/∂ct, where A‖ = A · τ , with
τ the unit tangential vector to the orbit. This field
is responsible for the energy change of the particles.
Due to the fact that the functions φ and A‖ depend
on the difference ζ = s− vt only, we can also write

E‖ = −∂(φ− βA‖)
∂s

. (64)

Using (8) we find that

φ− βA‖ =
∫
ds′λ(s′, tret)

1 − β2τ (s) · τ (s′)
|r(s) − r(s′)| ,

(65)

where τ (s) is the tangential vector in the direc-
tion of motion at point s, |r(s) − r(s′)| is the dis-
tance between the points s and s′, and tret(s, s′, t) =
t− |r(s) − r(s′)|/c.

First, we note that this integral diverges if β �= 1.
This is due to the fact that the space charge effects
are infinitely large for a line charge beam. This dif-
ficulty can be avoided if we take the limit γ → ∞
and set β = 1. We then assume that only a small
part of the circle contributes to the integral, and use
Taylor expansion assuming that |s − s′| � ρ. One
can show that the main contribution to the integral
in the ultrarelativistic limit comes from the region
s′ < s, i.e. only preceding points of the orbit con-
tribute to s. A simple geometrical consideration then
gives |r(s) − r(s′)| ≈ (s − s′) − (s − s′)3/24ρ2 and
1 − τ (s) · τ (s′) ≈ (s − s′)2/2ρ2. We also take into
account that λ(s′, tret) actually depends on the dif-
ference of the arguments, λ(s′− ctret). Equation (65)
can now be written as

φ− βA‖ =
∫ s

−∞
ds′λ(s′ − ctret)

1
2ρ2

(s− s′)

=
∫ s

−∞
ds′λ(s− ct− (s− s′)3/24ρ2)

× 1
2ρ2

(s− s′)

=
1

2ρ2

1
3
(24ρ2)1/3

×
∫ ∞

0

ds′λ(s− ct− ξ)ξ−1/3, (66)
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where the new integration variable is ξ = (s −
s′)3/24ρ2. Finally, using (64) we find the electric field
in the beam

E‖ = − 2
ρ2/331/3

∫ ∞

0

ds′λ′(s− ct− ξ)ξ−1/3,

(67)

where λ′ is the derivative of λ with respect to its
argument. Analysis shows that typically this field
accelerates particles in the head of the bunch, and
decelerates in the tail, with the total deceleration
prevailing. Moreover, it can be proven that the
energy loss due to the field E‖ is exactly equal to
the coherent radiation power of the beam [69], as
was mentioned at the beginning of this section.

The result derived in this section represents one
of the simplest problems in the theory of the CSR
wake field. The reader can find further development
of the concept, as well as its application to practi-
cal accelerator research, in the original publications
[47, 71–77].

Appendix

To derive Eq. (15) we use the Liénard–Wiechert
potentials (10) and the first equation in (7). We first
make the Fourier transformation of Eq. (7):

Ê(r, ω) =
∫ ∞

−∞

(
iω

c
Â−∇φ̂

)
eiωtdt. (A.1)

Using the retarded time t′ as a new integration vari-
able instead of t, with dt = (1 − n · β)dt′, we find
that

Ê(r, ω) =
ieω

c

∫ ∞

−∞
dt′

β

R
eiω(t′+R/c)

− e∇
∫ ∞

−∞
dt′

1
R
eiω(t′+R/c)

=
ieω

c

∫ ∞

−∞
dt′

β

R
eiω(t′+R/c)

+ e

∫ ∞

−∞
dt′n

(
1
R2

− iω

Rc

)
eiω(t′+R/c)

=
ieω

c

∫ ∞

−∞

dt′

R

[
β − n

(
1 +

ic

ωR

)]

× eiω(t′+R/c).

Replacing the dummy integration variable t′ with t,
this equation gives Eq. (15).
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