A Calculation of CSR

K. Oide

Nov 8, 2010
Mini CSR Workshop @ KEK
MAXWELL’S EQUATIONS

\[\begin{align*}
\frac{1}{r} \frac{\partial r E_{\phi}}{\partial r} - \frac{1}{r} \frac{\partial E_r}{\partial \phi} &= -\frac{\partial B_y}{\partial t} \\
\frac{1}{r} \frac{\partial E_r}{\partial \phi} - \frac{\partial E_{\phi}}{\partial y} &= -\frac{\partial B_y}{\partial t} \\
\frac{\partial E_r}{\partial y} - \frac{\partial E_{\phi}}{\partial r} &= -\frac{\partial B_y}{\partial t} \\
\frac{1}{r} \frac{\partial r B_{\phi}}{\partial r} - \frac{1}{r} \frac{\partial B_r}{\partial \phi} &= \mu_0 j_y + \frac{1}{c^2} \frac{\partial E_y}{\partial t} \\
\frac{1}{r} \frac{\partial B_y}{\partial \phi} - \frac{\partial B_{\phi}}{\partial y} &= \mu_0 j_r + \frac{1}{c^2} \frac{\partial E_r}{\partial t} \\
\frac{\partial B_r}{\partial y} - \frac{\partial B_y}{\partial r} &= \mu_0 j_\phi + \frac{1}{c^2} \frac{\partial E_\phi}{\partial t} \\
\frac{1}{r} \frac{\partial r E_r}{\partial r} + \frac{1}{r} \frac{\partial E_{\phi}}{\partial \phi} + \frac{\partial E_y}{\partial y} &= \frac{\rho}{\varepsilon_0} \\
\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial r E_r}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 E_r}{\partial \phi^2} + \frac{\partial^2 E_r}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_r}{\partial t^2} - \frac{2}{r^2} \frac{\partial E_\phi}{\partial \phi} &= \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial r} \\
\frac{\partial}{\partial \phi} \left(\frac{1}{r} \frac{\partial r E_{\phi}}{\partial \phi} \right) + \frac{1}{r^2} \frac{\partial^2 E_{\phi}}{\partial \phi^2} + \frac{\partial^2 E_\phi}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_\phi}{\partial t^2} + \frac{2}{r^2} \frac{\partial E_r}{\partial \phi} &= \frac{1}{\varepsilon_0} \left(\frac{1}{r} \frac{\partial \rho}{\partial \phi} + \frac{1}{c} \frac{\partial \rho}{\partial t} \right)
\end{align*} \]

\[j_r = j_y = 0, \quad j_\phi = \rho c \]
MAXWELL’S EQUATIONS

\[
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_r}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_r}{\partial \phi^2} + \frac{\partial^2 E_r}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_r}{\partial t^2} - \frac{2}{r^2} \frac{\partial E_\phi}{\partial \phi} = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial r}
\]

\[
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r E_\phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_\phi}{\partial \phi^2} + \frac{\partial^2 E_\phi}{\partial y^2} - \frac{1}{c^2} \frac{\partial^2 E_\phi}{\partial t^2} + \frac{2}{r^2} \frac{\partial E_r}{\partial \phi} = \frac{1}{\varepsilon_0} \left(\frac{1}{r} \frac{\partial \rho}{\partial \phi} + \frac{1}{c} \frac{\partial \rho}{\partial t} \right)
\]

\[
\rho \propto \delta(r - R) \delta(y) \exp \left(ik(R\phi - ct) \right)
\]

\[
E_{r,\phi} = (i\overline{E}_r(\phi), \overline{E}_\phi(\phi)) \exp \left(ik(R\phi - ct) \right)
\]

\[
\overline{E}_r = \overline{E}_r + \overline{E}_{r0},
\]

\[
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r \overline{E}_{r0}}{\partial r} + \frac{\partial^2 \overline{E}_{r0}}{\partial y^2} = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial r}
\]

★ Ignore \(\frac{\partial^2 E}{\partial \phi^2} \) terms (Stupakov-Agoh-Yokoya)
MAXWELL’S EQUATIONS

Then we obtain the first order differential equations for \(\overline{E}_{r,\phi} \).

\[
\begin{align*}
\frac{\partial \overline{E}_r}{\partial \phi} &= \frac{i}{2(k^2 R^2 - 1)} \left[kR \left((k^2(r^2 - R^2) + 1) (\overline{E}_r + \overline{E}_{r0}) + r \frac{\partial}{\partial r} (\overline{E}_r + \overline{E}_{r0}) + r^2 \left(\frac{\partial^2 \overline{E}_r}{\partial r^2} + \frac{\partial^2 \overline{E}_r}{\partial y^2} \right) \right) \\
&\quad + (k^2(r^2 + R^2) - 1) \overline{E}_\phi + r \frac{\partial \overline{E}_\phi}{\partial r} + r^2 \left(\frac{\partial^2 \overline{E}_\phi}{\partial r^2} + \frac{\partial^2 \overline{E}_\phi}{\partial y^2} \right) \right]\end{align*}
\]

\[
\begin{align*}
\frac{\partial \overline{E}_\phi}{\partial \phi} &= \frac{i}{2(k^2 R^2 - 1)} \left[kR \left((k^2(r^2 - R^2) + 1) \overline{E}_\phi + r \frac{\partial \overline{E}_\phi}{\partial r} + r^2 \left(\frac{\partial^2 \overline{E}_\phi}{\partial r^2} + \frac{\partial^2 \overline{E}_\phi}{\partial y^2} \right) \right) \\
&\quad + (k^2(r^2 + R^2) - 1) (\overline{E}_r + \overline{E}_{r0}) + r \frac{\partial}{\partial r} (\overline{E}_r + \overline{E}_{r0}) + r^2 \left(\frac{\partial^2 \overline{E}_r}{\partial r^2} + \frac{\partial^2 \overline{E}_r}{\partial y^2} \right) \right]\end{align*}
\]
SOLVER

\[\frac{d f}{d \phi} = Af + b , \quad f = (E_r, E_\phi) , \]

\[f(\phi) = f_0 \exp(A\phi) + b \int_{0}^{\phi} \exp (A(\phi' - \phi)) \, d\phi' \]

\(A \): Spatial differentiation matrix with boundary conditions

\(b \): Driving source term by \(E_{r0} \).

The exponent is evaluated by the eigen system of \(A \).

The cross section of the beam pipe must be uniform along \(\phi \).

The mesh size for \(A \) is varied with \(k \) under the condition:

\[(\Delta x, \Delta y) = \left(\frac{R/k^2}{{M_x, M_y}} \right)^{1/3} , \quad M_{x,y} \gtrsim (4, 1) \]
Implementation of the boundary condition

\[f_{\text{boundary}} = 0 : \quad f_{i+1} = -f_{i-1}, \quad f_i'' = \frac{f_{i-1} - 3f_i}{2} \]

\[f'_{\text{boundary}} = 0 : \quad f_{i+1} = f_i, \quad f_i'' = \frac{f_{i-1} - f_i}{2} \]

• Are these right choice?
Results for KEKB antechamber

Pipe height = 90 mm, Pipe width = 184 mm,
TiN thickness = .2 μm, TiN Cond. = 1.4 (μΩm)^{-1},
Maximum k = 3.5/σ_z, # of k = 32, Mesh Ratio = {4, 1}, σ_z = .3 mm

ρ = 16.3 m, L = 0.89 m, ∞ drift, 11/7/2010
Some eigen modes

\[\rho = 16.3 \text{ m}, \ k = 10 \text{ /mm}, 11/7/2010 \]

\[w = 187 \text{ /mm} \]

\[w = 521 \text{ /mm} \]

\[w = 595 \text{ /mm} \]

\[w = 940 \text{ /\mu m} \]
Results with an asymmetric pipe

- Δs and Δk agree with the path difference (next page) between the reflection.

- Also the modulation ratio of Z roughly agrees with the ratio of interference lengths:

$$L/(2L_0 - L) = 2.55/(82 \times 4 - 2.55) = 0.47$$

$\rho = 16.3$ m, $L = 4$ m, ∞ drift, 11/7/2010
\[\rho = 16.3 \text{ m}, w = 100 \text{ mm} : \]
\[\downarrow \]
\[L = 2.55 \text{ m}, \]
\[\Delta s = 5.2 \text{ mm}, \]
\[\Delta k = \frac{2\pi}{\Delta s} = 1210 \text{ m}^{-1} \]

\[\theta \approx \tan^{-1} \sqrt{\frac{w}{\rho}} \]
\[L = 2\rho \theta \approx 2\sqrt{\rho w} \]
\[\Delta s = 2\rho (\tan \theta - \theta) \approx 2\rho \frac{\theta^3}{3} \approx \frac{2w^{3/2}}{3\rho^{1/2}} \]
Unphysical results with a round pipe

- Converges to an unphysical result, even for $M \geq 128$.
- The reason has not been identified.

$\rho = 16.3 \text{ m}, L = 4 \text{ m}, \infty \text{ drift, 11/7/2010}$
Discussions

• The eigen mode method may have some merits:
 • Capability to handle arbitral shape of the beam pipe.
 • Saving computation for a repetitive arrangement.

• But it has demerits:
 • Heavy computation, if finer mesh is necessary.
 • Not suitable for varying cross section.