Optimization of the IR in SuperKEKB LER

Yiwei Wang (IHEP), Demin Zhou, Hiroshi Sugimoto, Yukiyoshi Ohnishi, Kazuhito Ohmi

SuperKEKB Optics meeting, 18 Nov 2015
Plan of collaboration between CEPC and SuperKEKB

• Start with a simplified SuperKEKB lattice (By H. Sugimoto, w/o solenoid)
 – Try to re-optimize the IR nonlinearity

• With a realistic SuperKEKB lattice
 – Try to find a better solution combine the beam-beam, space charge and nonlinearity in lattice (I hope but long-term study)
Aberration in IR

• Amplitude dependent
 – kinematic aberration due to ultra-low beta (not corrected intended)
 – fringe field of final doublet
 – finite length effect of vertical sextupoles in IR (maybe corrected globally by sextupole in ARC)
• Momentum dependent
 – high order chromaticities (corrected globally by sextupole in ARC)
• making effort to correct the high order aberration more locally in the IR.
Lattice of IRL

SLYTL.1 SLYTL.2

SuperKEKB optics meeting

18 Nov. 2015
W function

- W function along the beamline IRL ("INS")
- blue/red lines for x/y

Phase advance between center of QC1LP and SLYTLP.1: \(0.4999 \times 2\pi\)
QC2LP and SLYTLP.1: \(0.9679 \times 2\pi\)

\[
W = \sqrt{\left(\frac{d\beta}{\beta d\delta}\right)^2 + \left(\frac{d\alpha}{d\delta} - \alpha \frac{d\beta}{\beta d\delta}\right)^2}
\]

At PTSULM:
- \(W_x = 124.9\)
- \(W_y = 114.6\)

18 Nov. 2015
SuperKEKB optics meeting
Beta, tune vs. dp/p for only IRL

- The high order chromaticity of IR are not corrected locally
 - blue/red lines for x/y

non-periodic solution from “IP.1” to “PTSULM” (with IRL only)

periodic solution at “PTSULM” (with ASC)
Correction of high order chromaticity

• High order chromaticity due to the small chromaticity from 1st waist of β_y, i.e. QLC1LP
 *K. Oide, SLAC-PUB-4806

• Correct the high order chromaticity with an additional weak sextupole at 1st waist of β_y
 *R. Brinkmann, DESY M-90-14

 – Phase advance (Y direction) of QLC1LP change significantly from 0.338*2\text{Pi} to 0.506*2\text{Pi}
 – add sextupole after the QLC1LP
 – SLYTLP, SLXTLP reoptimized together

• The 2nd order geometric nonlinearity from the additional sextupole is much smaller than other sextupoles

 – QLC1LP: $\beta_y*K2=0.28$ m-1
 – SLYTLP: $\beta_y*K2=4847$ m-1
 – ARC sextupoles: $\beta_y*K2=180$ m-1
Correction result of first try

- The phase advance between FD and sextupole will be tuned as well to further optimization.

At PTSULM:
- $W_x = 104.5$
- $W_y = 27.1$
Correction result of first try

- The phase advance between FD and sextupole will be tuned as well to further optimization

non-periodic solution from “IP.1” to “PTSULM” (with IRL only)
Summary

• Try to correct the high order chromaticity of IR more locally
 – Preliminary result got
 – The phase advance between FD and sextupole will be tuned as well to further optimization
 – Further work is under going

• A question on SAD: What’s the difference between QUAD and MULT(K2=0)? (For example, changing QLC1LP from “QUAD” to “MULT” will change the W function. Similar experiences in CEPC.)