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From the beam-envelope matrix to synchrotron-radiation integrps
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The equilibrium state of an electron in a storage ring can be described most accurately by the envelope
matrix, as long as the electron motion is hnear. The equilibrium envelope can be calculated in the same

way as the equilibrium barycenter (closed orbit). This is suited for accurate numerical calculations. The
"emittances" can be extracted from the envelope as approximate quantities. The radiation integrals,
which express the emittances in terms of Twiss parameters, dispersions, and other optical parameters,
are extended to cover general 6X6 dynamics. Without any coupling between modes, these reduce to
those of Sands.

PACS number(s): 41.60.Ap, 41.75.Ht, 29.20.Dh, 29.27.Fh

I. INTRODUCTION

Future electron rings (flavor factories, damping rings
of linear colliders, and synchrotron light sources) require
quite accurate control of the equilibrium emittances and,
more precisely, particle distribution to achieve high lumi-

nosity (for linear and circular colliders) or high bright-
ness (for a synchrotron light source). The "emittance cal-
culation" should become more accurate and more de-
tailed. To be more precise, however, we should be more
careful in using the concept of the emittance.

The most traditional approach is represented by the
so-called radiation integrals [1], which express the emit-
tances in terms of global optical quantities, such as three
normal modes and their Twiss parameters, etc. Even if
these traditional approaches give answers accurate
enough in many cases, they are approximations and not
the most direct way of determining the equilibrium beam
distribution. They do not provide the "definition" of the
equilibrium distribution.

The aim of this paper can be summarized as follows:
(1) We show how to calculate the equilibrium distribu-

tion of electron bunches as accurately as possible within a
linear approximation. This is the envelope formalism.
This is conceptually the most direct and practically, i.e.,
from a computational point of view, quite useful.

(2) We abstract the radiation integrals from the en-
velope formalism. As a result, we extend the
synchrotron-radiation integrals as much as possible.

In Sec. II, we will discuss the envelope formalism. The
synchrotron-radiation integrals will be discussed in Sec.
III. The final section will be devoted to discussions and
summary. Numerical examples of the envelope are given
in the Appendix.

II. BEAM-ENVELOPE FORMALISM

The equilibrium distribution 1b„(x,s ) should be defined

by the solution of

1b'(x, s) =1b(x,s),
where 1b' is f after one revolution and x is the 6-tuple

phase-space coordinate [2]. As long as we can assume
that the major part of g is embedded in a region of phase
space where the symplectic forces are linear, we can dis-
cuss g„(s) more directly: thanks to the central limit
theorem, this f„(s) is Gaussian and can be represented
by 21 second-order moments and 6 barycenter variables:

Here x is the barycenter variable

X=(x)= Jxy(x)dx,

and R is the envelope matrix

R; = ((x —x );(x —x ) ) =f (x —x );(x —x ),1b(x)d x .

(3)

(4)

(Higher-order moments can be defined in the same way. )

Since R; =R;, only 21 components are independent.
Under this approximation, Eq. (1) is rewritten in a form

x'=X, R'=R .

Here we discuss how to determine the equilibrium
barycenter and the equilibrium envelopes as accurately as
possible within the linear approximation. %e track the
change of the beam barycenter x and envelope matrix R
first through one element and later through one revolu-
tion to find the solution of Eq. (5). A computer code SAD

[3] uses this method. See the Appendix. Ruggiero, Pi-
casso, and Radicati [4,5] studied this approach indepen-
dently.

A. Motion of an electron and coherent quantities

We first discuss the nonlinear dynamics of x. We then
evaluate the development of R in terms of quantities
defined with respect to X.

Imagine that we have a kind of optical element, a part
of a magnet, a drift space, and so on. Each element is
defined by two faces: an entrance face and an exit face.

1b(x;x,R)= exp[ ,'R, '(x———x), (x —x ) ] .
(2ir) &detR

(2)
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A ring or a transport line is the summation of these ele-
ments.

Between the faces, the canonical variable x is defined.
The single-particle dynamics treats an equation as

dx(s) = —[H (s),x(s) ],

[f,g]= g a, fa,gs„. (7}

Here S is a matrix defined as

S=diag(S2, S2 S~), S2=
0 1

—1 0

This induces a map from the entrance face to the exit
face:

xent xexit

where H is the Hamiltonian representing the symplectic
part of the motion and [,] is the Poisson bracket:

is [, ] except that the differentiations are performed with
respect to x. Thus, in general, the barycenter and a parti-
cle follow different paths even if they were identical at the
entrance face. This difference becomes remarkable only
when a nonlinearity is large and the force changes rapidly
within the particle distribution. A typical example is the
beam-beam kick [6], which we do not consider in this pa-
per. Here, we assume this effect small so that

[{H(x,s)),x]'=[H(x, s), x]' . 416}

That is, we assume that the barycenter motion is deter-
mined only by the barycenter and is independent from
higher-order moments. Further discussion mill be given
in Sec. II D.

The second term in Eq. (13) has a similar property.
That is, when the amount of radiation depends on the po-
sition too much, we should take this averaging seriously.
The only example, at present, is the final focus quadru-
pole magnet near the limit of strong focusing [7]. We
here ignore it also and assume that

This map is symplectic:

JRSA'=S,

where JR is the Jacobi matrix

{g(x, s) ) =g, (x,s ):—(((x,s) )' .

The equation of the barycenter now becomes
(10) —= —[H(x, s), x]'+g', (x,s) .

dx
5

(17)

a(x,„,, )

a(x„„)

The synchrotron-radiation perturbs this motion. As a
result, the motion becomes stochastic. It is described by
a stochastic equation

This is a deterministic equation and defines a trajectory
of x between the entrance and exit faces.

Let us turn to R. We linearize the motion of x around
x. By using variables,

——= —[H(x, s),x]+g(x, s),

d&x) = —([H(x,s),x])+(g(x,s)) . (13}

Since {aH /ax; ) = a {H ) /ax;, we have

([H(x, s), x])=[(H(x,s)),x]',
where

{H(x,s)) = fdxg(x, s;x,R, . . . )H(x, s)

(14}

is a function of x and other statistical quantities and [, ]'

where g is a stochastic variable describing the effects of
the emission of photons. The latter depends on x and s.
(Imagine, for example, the radiation in a quadrupole
magnet. )

Because of its stochastic nature, we are forced to con-
sider coherent or statistical quantities: the barycenter x,
Eq. (3), the envelope R, Eq. (4), and in general higher-
order coherent quantities. It is convenient here to define
two averages: the average over the distribution P is { ) ~'

and that over all possible ways of photon emission is

( ) ~. The double average is written simply as ( ).
We first discuss x, Eq. (3). Imagine that a distribution

1(,„,appears at the entrance face. This has the barycenter
x,„,. Let us discuss its value at the exit. From Eq. (12),
we find

the classical linearized motion of each particle obeys

dX,
=[SH(s;x)—D(s;x)]X, .

ds

Here X, = (X),H(s;x) is a symmetric 6 X 6 matrix,

(20)

H(s;x),, =
—,
' H(x, s) (21)

and

D; (s;x)=— a(;(x,s)

BXJ X=X
(22}

where M(s, s') is the transfer matrix with the damping
effect,

The matrix D is called a damping matrix and causes the
radiation damping. The off-diagonal terms of D produce
a mixing between degrees of freedom, even if the sym-
plectic part does not have any coupling terms. Its expli-
cit form depends on the definition of x between both
faces. In the matrices H and D, x was written to note
that they are evaluated on x. Hereafter, x is always as-
sumed and will be omitted in the arguments, unless it
seems useful to stress x.

The solution of Eq. (2} can be written as

X,(s) =M(s, s')X, (s'),
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M (s,s' }= T exp f [SB(s") —D (s")]ds"
S

(24}
We evaluate the fluctuation term at x. Thus, this term
does not depend on X so that Eq. (26) can readily be
solved as

(25)

We introduce another approximation that

g'(x, s) —g', (x,s) =g'(X, s) —g, (x,s) =g(i, s) . (26}

Here T stands for the time-ordered product with respect
to s. The transfer matrix M is not (but actually very close
to) symplectic due to the presence of D.

The equation (12) is now replaced by

dX = [SP(s)—D(s)]X+)'(x,s) —g', (x,s) .
S

X(s)=M(s, so;x)X(so)+ f M(s, s', i)f'(s;x)ds' .
Sp

It can be shown that

(27)

(g(s„x)g'(s2;x) )~=B(s,;x)5(s, —s~), (28)

where B is a symmetric matrix called the diffusion ma-
trix. Here ( AB ), stands for the average
( AB ) —( A ) (B). Since R;.= (X,X ), its time evolu-
tion is found from Eq. (27) as

R (s}=M(s so )R (so)M (s $0) + f f M(s st ) ( g(si )g(s2 )'),M'(s, sz )ds, dsz
'o 'o

=M(s, s 0)R (so)M'(s, so)+ f M(s, s')B(s')M'(s, s')ds' .
So

(29)

We denote it in a concise manner [8]

R (s)=M(s, so)R(so)M'(s, sit)+B(s,so), (30)

where a matrix B(s,so) is the integrated diffusion matrix:

B(s,so) =f M(s, s')B(s')M'(s, s')ds' .
So

(31)

We thus have arrived at the expression of the mapping

(x,R),„t~(x,R),„;t . (32)

x,„;, is a nonlinear function of x,„, and it is obtained by
the solution of Eq. (18): we denote it as

xexit = f( xent ) '

On the other hand, R,„;, is given by

R exit ™exit& ettt ent ( exit & sent exit & ettt

(33)

(34)

B. Explicit forms of damping and difFusion matrices

The previous discussion was general within the linear
approximation. In order to give more explicit expres-
sions, we should fix the variables.

From the entrance to the exit of the element con-
sidered here, we define a reference frame of coordinates.
The choice is completely arbitrary [10]. Here, for illus-
tration, we employ a straight line. (This can be used al-

The change of (x,R ) can be calculated only from the
physical and local data of the element and (x,R ),„,.

We have employed several simplifications. They are all
sorts of linearizations and are necessary to arrive at a
linear system of envelope dynamics. More precisely, we
kept the largest generality within a condition that if f is
Gaussian at the entrance, it is still so at the exit. These
should always be used with careful attention to their lim-
its of validity. For example, the nonlinear wiggler [9]
cannot be treated by the envelope formalism in the
present form.

ways: in bending magnets, quadrupole and higher-
multipole magnets, solenoids, etc. In some cases, of
course, this is not the most clever choice, but it is still us-
able. } We chose two orthonormal unit vectors e„and e~.
The so-called time variable s is the length along this line.

Once the spacial coordinates are defined, the motion
of an electron is described by six variables x(s)
=(x,p„,y, p„,z, 5) as functions of s, the position in the
ring. The momenta p„and p are defined as x andy corn-
ponents of the relativistic 3-momentum normalized by
the design momentum p&.

[K+e A(x, y, s}]e„~
px, y

=
po

(35)

where e is the electron charge, K is the relativistic kinetic
momentum (my dx/dt: m is the electron mass and y the
relativistic Lorentz factor), and A is the vector potential.
The third pair z and 5 are defined, respectively, as the
difFerence in path length with respect to a reference parti-
cle and its canonical conjugate:

IKI —p, —ee(x,y, s)/c

P0

E Eo —e4(x,y, s)—
EO=&P'0 ~

0
(36)

where c is the light speed and 4 is the scalar potential.
In this coordinate frame, we have the Hamiltonian

H (x,y, z,p„,p~, 5)=5 eA, /po—
—

I (1+5+et /cpo )

—(p, —eA„/po)'
—(p, —A, /po)'] '" (37)

where @ is the scalar potential and A, = A (e„Xe~ ). We
have employed the ultrarelativistic limit (y »1) for the
sake of simplicity. The reference particle is a nominal
unphysical particle which runs on the reference line, with
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a constant velocity. We will call these coordinates the

physical variables in order to distinguish them from the
betatron variables, for example.

A photon is emitted in the direction of the motion of
the electron. Let ( ~q~, q) be the 4-momentum of the pho-
ton. We assume it to be real (not virtual). Since approxi-
mately q~~K, emission of a photon induces a change in K
according to

above, po(x, s) is the radius of the barycenter orbit, r, is
the classical electron radius, and 1 is the path length:

d1, aII
ds B6

Similarly, we have

N(x, s)(u (x,s))y= y
r, A

24&3 m'
u(x, s) KK~K —q=K—

c /K[
'

(38)
po dl(x, s)

ip, (x,s)
i

ds
(45)

where u =c ~q~ is the energy of the emitted photon [11].
This induces a change in (p„,py, 5), other components be-

ing kept fixed. Here, we introduced a slight approxima-
tion that the electron is real (on-shell) both before and
after the radiation. This breaks the energy-momentum
conservation: we ascribe all the inconsistency to
K, =K (e„Xe ), because the latter is not what we track.

The stochastic variable g(x, s) is now written as

From Eqs. (22), (42), and (43), we get

1 k k
Do = P(x, s) 0, , 0, , 0, 1

E0 (4 1+6k 1+6k '

(46)

The explicit form of D; is generally quite lengthy. As is
easily seen, we have D, =D3j D5j 0 For example,

g(x, s) =—u(x, s) 0
&

0 y
k k

Eo
'

1+51,
' ' 1+5' ' (39)

k„

Eo ' 1+5k
p a„„k,P,

Eo 1+5„(1+5„)'
where k„„=p„—eA„ /po and 5„=5+e4/cpo are re-
garded as functions of x.

Here, u represents the stochasticity of g. The quantity
u is stochastic in two different ways: whether a photon is
emitted or not is stochastic and its energy is also stochas-
tic when it is emitted. The former stochasticity is of
Poisson distribution while the latter is governed by the
radiation spectrum. We denote the average over the
latter as ( )y. To get the average ( )~, we need an
averaging over time in addition. This problem is com-
pletely solved and the solution is known as the
Campbell-Rice law [13]. Simple explanation can be
found in Refs. [14,15] for the second-order moments.
For more general cases used in accelerator contexts, see
Refs. [13, 16—19]. The law tell us that

((x,s) )'=N(x, s)(u(x, s) )y,

(u(x, s)u(x, s') )y=N(x, s)(u (x,s) )y5(s —s') .

(40)

(41)

k„k
X 0, , 0, , 0, 11+ k 1+ (42)

From the radiation spectrum, we have [20]

2 re 2N(x, s)(u(x, s) )y= ——y3 m pp(x s) ds

=P(x,s) . (43)

This quantity can be called the energy-loss rate. In the

Here cV is the photon number average for a unit length
[20].

Thus, we have

N(x, s)(u(x, s) )y

0

where a „=e/poBA„/Bx, P =OP/Bx, and

P „=e/cpoB4/Bx. Also, k, and 5k are k„and 51, of the
barycenter.

The diffusion matrix is much simpler and is expressed
as

N(x, s)(u(x, s)')'8 s;x =
E2

0 0 0 0

0 Ak 0 hkk
0 0 0 0

0 6kk 0 hk
0 0 0 0

0 hk, 0 Ak

0 0

0 Ak,

0 0
(48)

0 0

0 1

where b, = 1/(1+ 5k ).
We thus have given all necessary formulas to obtain ex-

plicit forms of D and 8.

C. Barycenter and envelope in a transport line and a ring

1. Making a transport line

We have constructed a map of (x,R ) for an element in
a transport line, Eqs. (33) and (34). This map was con-
structed without knowing any data of the whole trans-
port line. That is, the map is local.

Let us imagine that there are many elements in a series
making a transport line or a ring. In order to construct a
map for the whole line, we have only to apply the map
successively. In doing it, however, care should be taken.
To go from one element to the next, we should know the
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relation between the two canonical variables in each ele-
ment. The origin may be shifted or the definition of x
and y may be rotated. The relation between two sets of
(e„,e~) (displacement and rotation) is enough for us to
construct the transformation between two canonical vari-
ables. (We do not have to know what kind of elements
are connected. ) This transformation is symplectic. (If
the successive elements have employed different gauge,
we should perform the gauge transformation at the same
time. )

When the electron passes through two elements 1 and
2 successively, the total effects are

2(exit) 1+2(X1(ent) } 2( +12 1( 1(ent) }) ~ (49)

2. One-turn map and equilibrium beam envelope

Let us consider the case where the exit of the transport
line is identical to its entrance. That is a ring.

The evolution of (x,R) for one revolution of the ring is
now expressed as

i'(s) =x(s +C)= f(i(s)},
R'(s) =R (s+C) =M(s)R (s)M'(s)+B(s),

(51)

(52)

where C is the circumference (sum of the lengths of all
the elements), M(s) =M(s, s —C), and B(s)=B(s,s —C).

By repeatedly applying Eq. (52), (i,R } at s will fall into
an equilibrium [provided, of course, all the eigenvalues of
M(s} are less than unity in absolute value]. In the equi-
librium, (x,R) takes the same value every turn so that
this is a solution of

x(s) = f(i(s) ),
R (s)=M(s)R (s)M'(s)+B(s) .

(53)

(54)

The solution of Eq. (53) is the closed orbit of x. By
simplification of Eq. (16), we can solve it without know-
ing R. [Even without Eq. (16},we can still solve it to-
gether with R, if f can be assumed to be Gaussian. ]
Once I is fixed at s, we know it all around the ring. We
use it to express M and B in Eq. (52). This is a linear
equation and can be solved explicitly.

To express the solution in a concise manner, we intro-
duce a 21-vector. For any symmetric 6X6 matrix A, we
define

VA (~11 ~11 ~66) (55)

Correspondingly a 21 X 21 matrix M is defined in such a
way that

(56)

R(,„;,) —M2T12(M(R(,„,)M1+Bi )T(2M2+B2, (50)

where M; and 8; are the M and 8 for the ith element.
Here 'T(2 is the transformation between x,(,„;,) and x2(,„,)
and T,2 is its linearization.

Hereafter, for simplicity, we omit T and T, as we do in
denoting a line on a manifold [21]. By repeating the simi-
lar transformations, we can obtain the map of (i,R) for
the whole line.

That is,

M]] M]]M]2 M]6M]6
2

11 21 11M22 M16M26
(57}

M6] M6] M6] M62 . . M66
2

Thus Eq. (54) is cast in a simple form Vz =MVz+Vz.
The solution is simply

V~ — —Vg .I —M
(58)

is the horizontal beam size Th. e R (s) at the other s can
be obtained easily by using Eq. (30).

D. Comments on the equilibrium envelope

Several detailed discussions will be given.

1. Syrnplectic part ofM

There may be several possible ways to define a sym-
plectic transfer matrix from nonsymplectic matrix M.
Here we give one definition for later convenience.

In each element, we make a large number of slices in
the direction of s and assume that the radiation occurs
only at the borders between the slices. Between the bor-
ders, a particle obeys the symplectic (nonlinear) equation.
At each border, it is subject to the integrated (over the
slice) effect of radiation. Let us denote the slices as an in-
terval (s, „s;), where s s are points in the ring. The
closed orbit of x includes all the nonlinear elements in the
slices and the classical radiation efFect at the borders.

In each slice (s, ,s, +, ) the dynamics remain symplectic.
Let us linearize the dynamics around the closed orbit and
denote the resulting matrix MQ(s, + „s,). Then the matrix
M can be constructed as

n —1

M(s„,sQ;X)= lim g MQ(s, +„s;;i)II D(s, ;x)ds;}, —
Pf ~ (20 ~

p

(60)

where ds; =s,.+]—s;. We thus can define the symplectic
revolution matrix MQ(s) as

MQ(s; i)= lim g MQ(s; + „s;;i)
one turn

(61)

Here X was put in Mo to stress that it is defined on the
closed orbit. Note that the closed orbit depends on the
radiation damping.

2. Emittances as approximate quantities

As we have seen in this section, the beam envelope at a
particular location s, R (s), is given as the solution of Eq.
(54). This is a periodic function of s: the period is C.

With R, the beam size ( x &, at s is obtained directly in
terms of the physical variables without recourse to the
emittances, betatron functions, and such. For example,

(59)
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Since the transfer matrix M (s, s') is not symplectic and it
does not commute with B (s) (implying that it is impossi-
ble to diagonalize M and B simultaneously), there is not
any constant of motion, like Courant-Snyder invariants
for the symplectic dynamics. The emittances, thus,
should be defined as approximate invariants, which are
almost constant for the usual case when the damping is

much slower than the betatron and synchrotron oscilla-
tions.

We consider a (nonsymplectic and complex) transfor-
mation V(s) which diagonalizes M(s):

V(s)M(s) V '(s)= e ", (62)

where A is a diagonal matrix:

2 =diag(ip„—a„, i@„—a—„,ip, —
, a„ip—„a—„,ip —a, i—p —a ) . (63)

In this base, Eq. (54) can be solved more explicitly. Let
us define

R v(s) —= V(s)R (s) V (s), B~(s):—V(s)B(s) V (s) . (64)

Here t is the Hermite conjugate. Then Eq. (54) reads

Rv(s)=e "Rv(s)e" +Bv . (65)

It is readily solved as

(66)

3. Eigenualues

Since M(s) is a real matrix, the eigenvalues are written
in a form

exp(+i@„—ai, ), k=u, u, w (71)

as long as the motion is stable. Here ak &0 is the damp-
ing rate.

By performing the differentiations in Eq. (46), it can be
proved that [15]

Here + is the complex conjugate. In particular, we have

P(X, s)
) (72)

Rv(s)=
1 —e

Bv(s) .
I

(67)

The first term of Eq. (66) is of order unity in general. It
can become large, however, if

where P is the energy loss rate, Eq. (43), and
E =ED(1+51,). This equality holds true not only for the
motion around the closed orbit but also for general cases
(immediately after the injection, for example).

By using Eq. (60), it is easily shown that

iA, , +A,*,
i
«I . (68) exp 2 g ak =detexp QD(s, )ds;

Now, let us introduce here a natural assumption that
a, ((1,which is generally true for the usual accelerators.
Let us ignore the case of the linear resonances [23]: i.e.,
the case with p, =(integer) X 2m or p;+p =(integer) X 2~
for some i and j: The condition Eq. (68) is then satisfied
if and only if i =j. We thus can conclude that

Rv=diag(e„, e„,E„e„e,e, ) '0+( a)e,

(VBV )j

2QJ

(69)

(70)

The emittances e thus defined still depend on s weakly.
Their variations as functions of s are of the order of a.

Note that the off-diagonal parts of Bv can easily be-
come large, i.e., they can have magnitudes of the same or-
der as the diagonal terms. They, however, do not con-
tribute to the emittances except in the case of resonances.
By the same reasoning, when the ring has a periodicity
and the number of the period is large, B~ becomes almost
diagonal [24].

The resonant case requires more careful treatment. As
asserted in Ref. [4], it may be dangerous to represent the
envelope by only three emittances.

In a coupling resonance p; =+p. , if the tune difference

p,-+p can become comparable with or smaller than the
damping rates, Eq. (68) does not hold true and R~ has
off-diagonal terms comparable with diagonal terms. Ex-
amples are shown in the Appendix.

=exp gtrD(s, )ds; (73)

so that we obtain [25]

Uoa„=2 (74)

where Uo is the amount of radiation-energy loss per turn

for the particle on the closed orbit. Needless to say, it is

valid even when 4, 3„,and A exist.

4. Nonlinearity in the barycenter motions

We have assumed Eq. (16). It is equivalent to assuming
that the nonlinear force does not change its value consid-
erably within the beam distribution. One important ex-
ception is the beam-beam force. Its effect on the closed
orbit was discussed in Ref. [26]. Another possibly impor-
tant example is a strong sextupole magnet. Even if the
barycenter passes the center of the sextupole magnet, it
receives a dipole kick. When the motion of a single parti-
cle is described as x ~x +kx, for example, we have

x~x+k((x ),+x ) .

Fortunately, this effect does not seem to be large in usual
storage rings. For example, in design optics using the
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TRisTAN main ring [27], the horizontal closed orbit dis-
tortion due to this kick is around 40 pm at the injection
energy. It may be important, however, in the final focus
system of future linear colliders. Inclusion of this effect
in a computer code is easy. On the other hand, inclusion
of a similar effect in the calculation of g seems quite
difBcult, because a non-Gaussian distribution emerges
from a Gaussian one.

III. RADIATION INTEGRALS

given by

"0e"=e [1—A(s};;], i =u, u', U, u', w, w* .

Therefore the perturbed tune is given by

ip; —a; =ipp;
—A"(s),

where ipo;, = —ipo,- and A. +.+ =A,';. . Thus we have

a; =Re[A(s);;]

(84)

(85)

(86)

In many cases, the damping is very slow and the radia-
tion efFect can be regarded as a small perturbation.
Within this approximation, we can simplify the envelope
calculation and the emittances, Eq. (70), can be expressed
in terms of optical parameters. Here we express the emit-
tances in terms of quantities of the symplectic dynamics,
Twiss parameters, etc. This is essentially the radiation
integrals. We will extend the radiation integrals consid-
erably.

A. Symylectic normal modes

p, ;=@;—Im[A(s},, ] .

We also define

Bp(s)= J Mp(s, s')B(s')Mp(s, s')ds'
s —C

and

e(s) —= V,(s)B,V', (s) .

As easily seen,

(87)

(89)

Ao
Vp(sp )Mp(sp ) Vp (sp ) = Up(sp ) = e

Ap =diag(ip„, ip, „,i—p„ip„,—ip, ip )—.

(76)

At a particular point so, it is always possible to find a
complex matrix Vp(sp ) for Mp(sp ) which diagonalizes it:

e(s)= V(s)B (s) V (s)[1+O(a) ], (90)

so that in the present approximation, we can identify
these two.

Both the denominators and nominators of the emit-
tances in Eq. (70) have been expressed by the normal
mode bases. We thus have

The diagonal terms of exp Ap are eigenvalues of Mp(sp).
The matrix Vp(sp) can be obtained by eigenvectors of

Mp(sp) as

8;;(s)
e;(s)=

2 Re[A(s);; ]
(91)

Vp '(sp)=(v„, iv„",v„,iv„',v, iv') .

The eigenvectors are to be normalized as

v,'Sv,' = i5,J (—i,j =u,.u, w) .

(78)

(79)

This base defines the normal modes u, v, and w at sp and
is called the normal mode base. There remains some am-
biguity in defining Vp(sp ): we can multiply the eigenvec-
tor v, by any number of the form exp(iP, ). By Eq. (79),
Vp(sp ) satisfies the symplectic condition: VpSVp =S.

We recall Eq. (60) and employ the approximation that
we ignore second- and higher-order terms in D in the
product of it. We rewrite M (s}as

the

A(s)= Vp(s)D(s) Vp '(s),

e(s) = V,(s)B(s}Vt(s}.

(92)

(93)

As easily seen, we can rewrite Eqs. (82) and (88) as

where e.+ =e; since e.+. =e;;. We call it the perturba-
tive emittance. In this approximation, the e is indepen-
dent of s.

We extend Vo all around
Vp(s)=Mp(s, sp) Vp(sp). Let us define

M (s}= [I—D (s) ]Mp(s),

D(s)= f Mp(s, sp)D(sp)Mp '(s, sp)dsp=Dp(s) .
s —C

(80) A;;= A s;;ds,

6,,
=

ItI e(s);;ds .

(94)

(9&)

(81)

Let us define

A(s }=V (s )D (s )V '(sp) .

Corresponding to Eq. (81), we have

(82)

U(sp)—= Vp(sp)M(sp)vp '(sp}=[I—A(sp)]Up(sp) .

(83)
By the first-order perturbation, the eigenvalue of the ma-
trix U(s), which is equal to the eigenvalue of M(s), is

Note that the definition of the phase advance is irrevelant
for the calculations of these diagonal elements.

It can be seen that these are independent of s and so is
the perturbed emittance, Eq. (91). Integrations using
Eqs. (94} and (95) are employed in computer codes
PETROC [28], sLIM [29] and also used in [30]. In order to
calculate the equilibrium emittances, these are enough.
(In some cases, however, the three emittances are not
enough and we need the envelope formalism. ) In the ra-
diation integrals, our concern is not to calculate them but
to express them by some optics parameters.
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B. Diagonalization of the symplectic dynamics

Vo(so)=P(P„(t2 $3)B(so)R(so)H(so), (96)

where P, B (Twiss matrix), R (Teng matrix), and H
(dispersion matrix) are 6X6 symplectic matrices (R and
H being real):

We hope to express the numerator and denominator of
Eq. (91) by Twiss parameters, phase advances, dispersion
functions, and all such. These are widely used parame-
ters of the linear symplectic dynamics. The definitions of
these parameters, however, are not unique, especially in
the case where dynamics is coupled in the six-
dimensional phase space [31]. We thus should begin by
defining them explicitly without any ambiguity. Here, we

apply one possible way.
We have already constructed a symplectic complex

matrix Vo(so ). Let us start by parametrizing it.
We prove that the matrix Vo(so) can always be put in a

form

H„= Sz U3iS2 U33/a,

H, = —S2 U32Sz U33/a .

a=+jU„j,
(105)

we can put

Vo(so )H (s) = U~, U~2

0 0 U»/a

(106)

The (3,1), (3,2), (1,3), and (2,3) elements in the above van-
ish due to the symplecticity of Vo(so). We can further
get

V„(s„)H 'R =B'=diag(B„'B,', B„',), (107}

where U, - etc. are 2X2 submatrices. For the time being
we assume that

j U33 j
& 0, which implies that the x-z and

y-z couplings are not very strong. (By the symplecticity
of Vo, j U;; j is real) If we choose H, and H as

P(41 42 43) exp[i(pi pi p2 '62 p3 p3)],
B =diag(B„,B„,B„),

(97)

(98)
by choosing

R, = —S,U,'2S, U»/b, b=)/' (108)

0

0 0 I

bI S2R 2S2 0

R2 bI (99)
where we have assumed that j Uz2 )0. Here the B"s are
2 X2 symplectic matrices. Finally, if we choose three an-

gles of P properly, we arrive at the expression Eq. (101).
We have assumed

[1—jH„j/(1+a )]I
H= HyS2H„'S~/(I+a)

—S H'S

H„S2H'S2 /( 1+a ) H, —

[1—H /(1+a) ]I H-
—S2Hy'S2 aI

(100)

iQp, —

—i+a, (101)

Here B; (i =u, v, w), R2, H„and H are 2X2 matrices:

jU„j &0, jU,', j
&0. (109)

Even if the conditions Eq. (109) break, we can do the
decomposition after an appropriate redefinition or ex-
change of the eigenmodes at the location s. It is
guaranteed by the fact that one of U», U3z, and U33 or
one of U» and U,'~ must have a positive determinant, be-
cause of the symplecticity of Vo(so ).

Now, we apply the same process to the matrix
M„(s,so)V„'(so): we put it in a form of Eq. (104) and
find Vo(s) and P which satisfy

Vo '(s)P(g„,g„,g )=Mo(s, so)Vo '(so) . (110)

R2=
I"

p

P'4

0k )k
Hk=

bk 9k
(102)

Uiz
—1P Vo(so ) = Uz, U2~ U23

U3z

(104)

The suffix k means either x or y. Scalar parameters a in

Eq. (100) and b in Eq. (99) are determined by the equa-
tions

a'+jjH„j+jH, =1, b'+jR, j=l, (103)

respectively. Here a and P are real parameters and define
the Twiss parameters [32] at so. The form of R is due to
Refs. [33] and [34].

To see that the decomposition Eq. (96) is possible, let
us denote

In this case, P defines the phase advance of the modes.
Let us assume that Vo(s) satisfies Eq. (109). [Let us

call it (3-2) diagonalizable. ] It may be true that Vo(s) also
satisfies

j Uz2 j
)0 and

j
U'», & 0, i.e., it is (2-1) diagonaliz-

able. That is, Vo(s) is both (3-2) diagonalizable and (2-1)
diagonalizable. A11 optical parameters in P, 8, R, and H
in both schemes are related by a symplectic transforma-
tion. We can use either definition if we declare it explicit-
ly. Thus, all optical parameters should have indices indi-
cating the block elements used in the diagonalization:
/3'„', etc. If for s, ~s ~s2, the (2-1) diagonalization
was employed but (3-2) was used otherwise, the optical
parameters jump from (3-2) to (2-1) at s, and return from
(2-1) to (3-2) at s, . That is, the optical parameters are
discontinuous at s, and sz. We will assume this conven-
tion and will omit the suffices like (3-2) below.

We thus expressed the transfer matrix as
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Mo(s, so)= Vo(s)P(g„(s,so), g„(s,so) g (s so)) Vp (so),

where

Vo(s) =B(s)R (s)H(s) . (112)

The definition Eq. (112) of the decomposition matrix
looks reasonable, because it involves the conventional
usage of dispersions ri and ri' and a and P functions at the
weak-coupling limit.

C. Kmittances

Let us express the integrals Eqs. (94) and (95) using op-
tical parameters thus defined. This is a direct generaliza-
tion of the method stated in [20]. Here we discuss the di-
agonal parts only, because off-diagonal parts are not
necessary in expressing the emittances, although such an
extension is easy.

Since D and 8 are defined on the closed orbit, it is use-
ful to redefine the coordinates around it. %'e employ the
Frenet-Serret construction of coordinates with respect to
the closed orbit. Expressions in the preceding section are
almost valid. The Hamiltonian now is

H(x, y, z,p„,p, 5)=5 e 1+——3, /po —(xp —yp„)/r
p

1+—[(1+5+e4/cpo) —(p„—eA„/po) —(p —eA„/po) j
'

p
(113)

where p and s are curvature radius and torsion of the
closed orbit.

ri„+(P„ri'„+a„ri„)I.=Bii=622=-,' B6sds
M

1. Di+usion matrix

Since k's are zero on the closed orbit, only the (6,6)
component remains in Eq. (48):

ri„+(P„ri'„+a„ri, )'
I„=B33=B~=—,

' " " " '
B66ds,

U

(120)

B(Xp s) =B66166 (114) I =Bs=B66=—,' $ a i3 B—66ds .

where 166 is a matrix whose (6,6) element is 1 but other
elements are zero, and 2. Damping matrix

55 "e y
24m'3 mc ~p~

(115) The damping matrix is still expressed by Eq. (46). Us-
ing that k„=O and k =0 on the closed orbit, we have

Thus only the (i, 6) components of Vo contribute to the
matrix 8,.;. In the present parametrization, these are
written as

0 0 0 0 0 0
—ha„„b, —ha„O 0 0

V' (s)= i [V (s)]'=—

Vo (s)= i [VO (s)—]'=

1

2

(116)

1 —ia,
i +P,ri'„—

p 0 0 0 0 0 0
D(s)=

E —Oha „0 —ha 6 0 0

0 0 0 0 0 0
P 'P„, 0 P 'P

r 0 0 2b

where

(121)

(117) 1 aPP-'P =— =—+
P Bx p B~ Bx

(122)

V (s)= i [V (s)]'= — ——a+P (118)

Hu bI S2Rs S2

H„R2 bI
H

H„
(119)

Note that /H„ f
+ /H, J

= /H„ f
+ /H

/

= 1 —a .
Using Eq. (117)we obtain the integral expression

where g„, q„', g„, and g„' are "the dispersions of the
eigenmodes" defined by

2 BB

B By
{123)

Here use is made of Eqs. (43) and (113) and we have used

p =po/eB~ ignoring the radiation in rf cavities.
Thus, the damping matrix D has only D22 =D44

=D66/2, D2), D23, D4(, D43 D6„and D6, components.
The contributions from both Dz& and D~3 to the Re[A;,. ]
are zero. The damping integrals are written as
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a„=ReA» —ReAz3= —,
' f (1+~H„~ )D&6ds+,' f q„[H„/

1+a

f„(1+a—iH„i)
br2~+ "', "

(D23 D—4, )ds,
( I+a)

q, (1+a —
~H„~ )

D63ds

n. (I+~ —IH. I
) q, ~H„

a, =ReA33 ReA44= —,
' 1+ H„D«ds+ —,

' +by„— D6& s+ —,
—bg, + D63ds1+a 1+a

1

2

f„,(1+~ —
~H„~ )+

p (D33 D4j )ds
( I+a)

(124)

a =ReA»=ReA6&= ,' f—(1+a)D6sds ,' g—ar—i D6, ds ,' —f—ariD63ds+ —,
'

tt) f„(Dz3 D4, )—ds,

where

f., =k. ri, —ri. ky— (125)

I +I, I, —I, I +I,
(J„,J„J )= 1—,1—,2+

2 I, I2

The result satisfies Robinson's condition

Re[A»+A33+A55] )D66ds . (126)

I;
F, = (i =u, u, w) .

2ai
(127)

In summary, the perturbative emittances, Eq. (91),
have been put in the form

(131)

If, further, we use the smooth approximation for the lon-
gitudinal motion, we get

(t) a„ds
4(2I2+ I„+I„)

and

I, is expressed by Eq. (120), while a; is expressed by Eq.
(124).

D. Reduction to simpler cases

( 2 ) —f32 (g2)

where

zE=z+(xri„' —p„g„+yri~ —
p~ri~) .

(133)

(134)

I 0 —ri(s)

H(s) = [S2g(s)]' 1 0

0' 0

(128)

This happens when the dispersion function g vanishes in
rf cavities. In this case, we have

a„=I2 -—I„—I, ,

a, =I2 —I, +I, ,

a =2I2+I„+I, ,

where

(129)

I3 =
—,
' )D66ds,

I„=—,
' |t) [br)„D6, + (r) bg, )D6, ]ds, —

I„=,' f [(q —br)„)D6,+br)„D63—]ds,

I, =
—,
' f [br&(D33 D4, )]ds . —

The damping partition numbers are written as

(130)

In many cases, the coupling between transverse and
longitudinal degrees of freedom are weak. If (=0 and
g'=0, we have ~H„)=0, ~H~~=O, and a =1. We thus
have

Finally, without any coupling, the transfer matrix Mo
is written in a block diagonalized form. We have then
further R2 =0, b = 1, g„=q~, and g, =g~. It is easy to
see that all the radiation integrals reduce to those in Ref.
[11

IV. DISCUSSION

We have treated two different formalisms: the en-

velope formalism in Sec. II and the radiation integrals in
Sec. III.

The radiation integrals were derived from the envelope
formalism as approximate quantities. In deriving them,
we have lost some information so that the opposite direc-
tion is impossible. Our radiation integrals are already ex-
tended considerably. Further extension may be done but
it cannot become more accurate than the envelope for-
malism. The synchrotron-radiation integrals are of
course useful. They are practically useful when, for ex-

ample, we need rough lattice parameters which may pro-
vide some desired emittances for a perfect machine. In
this case, the radiation integrals are useful only when

they are simple. [We can express the off'-diagonal terms
of Rz, Eq. (66), in terms of optics parameters. This may

generalize the radiation integrals and they are more accu-
rate. It seems, however, that the expressions are too
complicated and not quite useful in the design stage. ]
They may be also useful in perturbative approach, for ex-
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ample, when we want to understand what kind of errors
are dangerous for a blowup of the emittances. They are
not useful, however, in calculating f„accurately. It is

dangerous to use them without noting that they are ap-
proximations and without paying attention to the border
beyond which the approximations fail.

The envelope formalism is more general. It can be ap-
plied even when the damping is extremely fast. Any
linear resonance does not cause trouble. In other words,
if there were a divergence in the envelope calculation,
this would be a real, physical phenomenon. The same
formalism can also be used in calculating the intrabeam
and/or Touschek effects, as sAD does. In this case, the
Gaussian approximation should be imposed by hand.

There is another difference: the envelope formalism re-
lies only on local quantities [22]. To study their motions,
all we need is the local quantities, like the field strength.
The definitions and translation law, Eq. (50), are valid
whether the beam is in a ring or in a transport line. %'e

can construct the one-turn map of R and x by simply per-
forming the transformations in each element successively.
On the other hand, the radiation integrals rely on the glo-
bal quantities like normal modes defined by the symplec-
tic part Mo and defined around the closed orbit. To
define it, we need information all over the ring.

Because of the local property of the envelope formal-
ism, it is quite suited to numerical calculations: the cal-
culation of making the one-turn map and that of finding
equilibrium value are completely separated. This fact is
well known for X. We do not need the normal modes, etc.
to find the closed orbit. The envelope is treated in exactly
the same manner. If one has a tracking code for x, it
should be quite easy to convert it to the tracking code for
R. For any new type of ring element, as 1ong as we know
how to track a particle motion through it, we can also
track the motion of R through it.

In order to illustrate the difference between two for-
malisms, let us imagine that we insert a thin quadrupole

R „,„(s)=M(s)ER e„(s)[M (s)E]'+8(s), (135)

instead of

R,is(s) =M(s)R id(s)M'(s)+s(s) . (136)

On the other hand, in the radiation-integral formalism,
we should first recalculate all the optical parameters
throughout the ring, new principal modes, new P's, new
ri's, and so on. In addition, we should perform the in-
tegrals again. The latter is more complicated and is still
less accurate. In this case, the use of the radiation in-
tegrals is an unnecessary detour.

A numerical example of the envelope and the conven-
tional synchrotron-radiation integrals are shown in the
Appendix for realistic ring parameters.
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APPENDIX; ENVELOPES IN sAD

The computer code SAD (Strategic Accelerator Design)
[3] has been using the envelope formalism since 1987.
(Afterwards, the synchrotron-radiation integrals were in-

magnet in the center of the closed orbit at s, where the
dispersion and coupling may exist. In order to calculate
its effect on R (s), all we need is the insertion strength E
(a matrix), the revolution matrix before the insertion
M(s), and the integrated diffusion matrix 8(s), which is
not affected by the insertion. %e can calculate the new
envelope R„,„by solving [35]

TABLE I. The closed orbit, the symplectic part Mp of M, and some optics parameters. The numbers in brackets denote multipli-
cative powers of 10.

Entrance
Exit

1.373[—5)
1.373[—5]

px ipo

Closed orbit
1.808[—7]
1.808[—7]

3.070[—8]
3.070[—8]

py ipo

6.363[—9] —1.193[—4]
6.363[—9] —1.193[—4]

dp ~po

4.723[—4]
4.723[—4]

p ipo

pyi'po
z

dplpo

—0.001 303
—0.182 901

0.040 748
0.028 355

—0.005 227
1.108[—5]

Symplectic part
5.617 656

—0.010729
0.914 161

—0.038 875
—0.027 922
—0.002 671

of the transfer matrix
0.046268
0.027 934
0.046 834

—0.174 197
7.959[—4]

—4.605[—7]

0.910642
—0.044668

5.894994
0.013 122

—0.001405
—6.973[—6]

0.002 666
5.085[—6]
6.767[—6]—3.264[—7)
0.932 765
0.091 258

0.025 313
0.005 401

—0.001 211
—8.148[—4)
—1.875 072

0.888 617

Parameters

Design momentum
Energy loss per turn
Stationary position
Orbit dilation
Bucket height

Po = 10.0000 GeV
Up =20.6482 MV
dz =21.7188 mm
dl =0.00000 mm
d V/Po =0.034 03

Revolution frequency
EfFective voltage
Momentum compact.
EfFective harmonic No.

f0=99325.2 Hz
V, =90.0000 MV
a =6.43[—4]
h =5120.00
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TABLE II. The eigenvalues and eigenvectors of Mp. The latter is shown in the form of t . The numbers in brackets denote
multiple powers of 10.

Eigenvalues and eigenvectors

Real
Imaginary

Imaginary tune
Real tune

—0.005 803 1

0.999983 2
0.000 000 0
0.250 923 6

—0.005 803 1
—0.999983 2

0.029 765 2
0.999 556 9
0.000 000 0
0.245 262 0

0.029 765 2
—0.999 556 9

0.910691 1
—0.413088 1

0.000 000 0
—0.677 749

0.910691 1

0.413 088 1

X

P /Po
3'

Py /Po
Z

dP/Po

P„
Y

Py
z
P,

X

2.356 799
—7.190[—4]

0.129 128
—0.013 772
—2.445[—4]
—7.699[—6]

0.426 843
7.190[—4]

—0.022 723
0.013 885
4.450[—5]
4.586[—6]

P„

0.000000
0.426 843

—0.020992
—0.044 101

0.012 392
1.135[—6]

P /Po

0.000000
2.356 799
0.020402
0.250 868

—0.013 628
7.225[ —4]

0.250 868
—0.013 885

2.424 971
—0.006 602
—4.190[—4]
—7.080[—7]

—0.044 101
0.013 772
0.414 844
0.006 602

—1.602[—6]
—4.607[—8]

Py

—0.020402
—0.022 723

0.000000
0.414 844

—6.390[—4]
5.462[—8]

Py /Pp

0.020 992
0.129 128
0.000000
2.424 971

—2.129[—5]
8.872[—7]

z
7.225[—4]

—4.586[—6]
8.872[—7]
4.607[—8]
2.130618
0.025 080

1.135[—6]
7.699[—6]
5.462[ —8]
7.080[—7]
0.469 347

—0.025 080

P,

0.013 628
4.450[—5]
2.129[—5]

—1.602[—6]
0.000000
0.469 347

dP /Po

—0.012 392
—2.445[—4]

6.390[—4]
—4.190[—4]

0.000000
2.130618

eluded for users accustomed to such integrals. ) The con-
cept of tracking R itself has been used frequently in the
context of transport lines. Computer codes such as
TRANSPORT [36] and DIMAD [37] calculate it at the exit
of the line Rp t when it is given at the entrance R;„: sAD

calculates the solution of R;„=R,„,. In using it for a

ring, however, we should calculate the closed orbit and

evaluate M and B on it.
In this appendix, we show how SAD calculates the

equilibrium envelope and show a related part of its out-

puts. We use the TRISTAN SOR lattice [38] as the exam-

ple. The source of the x-y coupling is some skew quadru-

TABLE III. The damping part M —Mp in physical and diagonalizing bases. The damping rates, the

real tunes, and the partition numbers are also shown. The numbers in brackets denote multiplicative

powers of 10.

Radiation part of the transfer matrix

P /Po Py /Po dp /pp

Px /Po

P /Po
Z

dp /pp

X
P„
Y

Py
Z
P,

2.357[—4]
2.054[ —4]
8.637[—6]

—2.853[—5]
3.341[—6]
3.297[ —6]

X

2.361[—4]
0.001 125
3.621[—5]
2.149[—5]

—2.890[ —6]
1.676[ —5]

—0.005 277
—1.748[ —4]
—0.001 036

5.590[—5]
—3.210[—5]

3.261[—6]

P„
—9.383[—4]
—1.791[—4]—2.170[—5]—1.585[—6]
—5.084[ —6]

6.327[ —7]

—3.675[ —5]
—3.517[—5]—8.434[ —5 ]

1.783[ —4]
—1.101[—6]
—3.529[ —7]

3.611[—5]
—2.159[—5]—6.292[ —5]

0.001 021
—2.427[ —7]—3.135[—8]

—7.914[—4]
3.511[—5]

—0.006 134
—4.320[ —6]

2.739[—7]
—1.110[—6]

Py

2.013[—5]
—1.377[—6]—0.001 041
—2.202[ —5]

1.417[—7]—1.152[—6]

—3.002[ —6]
1.632[ —8]—2.502[ —9]
1.281[—9)
7.046[ —5]

—1.023[ —4]

z
—3.675[ —8]

1.465[ —7]
4.265[ —9]
2.038[ —8]
1.254[ —4]—6.753[—4]

—1.195[—4]
—6.082[ —6]
—6.796[ —7 j

8.591[—7]
0.004 670

—0.003 823

P,.

—4.172[—7]
2.648[ —7 j—4.053[—8]
4.843[ —8]
0.001 029

—0.003 878

Damping per one revolution
X: —1.031840[—03] Y: —1.031896[—03] Z: —2.060653[—03]

Tune shift due to radiation
X: —3.586 321[—06] 1'. 1.871 788[ —06] Z: 1.382 670[ —07 j

Damping partition number
X: 1.0007 Y: 1.0008 Z: 1.9985
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TABLE IV. The integrated diffusion matrix in physical (8) and diagonalizing bases (BE). Sym-
metric matrices are shown in this way. The numbers in brackets denote multiplicative powers of 10.

Beam matrix by radiation fiuctuation

P ~Po Py ~So dp /Po

X

P iso

Sy~uo
2

du~S o

3.138[—11]
1.336[—13]
2.166[—12]

—2.194[—14]
—5.925[—10]

4.814[—10]

5.602[ —13]
2.148[—13]

—3.754[ —14]
—2.571[—12]

1.434[ —12]

4.336[—13]
—1.565[ —14] 4.920[ —15]
—1.622[ —12) 1.365[—13] 2.969[—08]

1.179[—12] —9.117[—14] —2.024[ —08] 1.645[ —08]

X P„ Py P,

X
P„
Y

Py
Z
P,

3.072[ —12]
8.455[ —14]
2.044[ —13]
9.628[—14]

—9.577[—13]
3.363[—12]

3.103[—12]
2.333[—13]
1.241[—13]

—6.346[ —13]
—9.203[ —13]

4.712[—14]
1.590[ —14] 2.181[—14]

—9.138[—14] —2.517[—14] 6.541[—09]
1.990[—13] —1.605[—13] —2.058[—08] 7.685[—08]

pole magnets artificially inserted in the ring. The random
alignment errors are not used in this example.

For each element, we introduce a longitudinal slicing,
as in Sec. II D 1. The radiation is thought to occur at the
borders between the slices and the dynamics is thought to
be symplectic within the slice. Thus the orbit appears
discontinuous (in phase space) at each border due to the
radiation. For each slice, we prepare a map of (x,R) in
terms of local coordinates. This includes the (in general
nonlinear) map of x and Mp for arbitrary orbit. The
latter determines the transformation of R. At each bor-
der, we give mutual relations of x's between neighboring
slices. (The alignment and tilt errors are included here).
The classical radiation, Eq. (42), the matrix D, Eq. (46),
and B, Eq. (48), are prepared at the border for an arbi-
trary value of x. We track x for one turn from so to

sp+ C to find its closed orbit, Eq. (53). Here sp is an arbi-
trary point and will be called the reference point (RP).
As long as we employ the approximation of Eq. (16), this
is equivalent to finding the closed orbit for a single parti-
cle with a damping effect. Then we track once again for
one turn using the data of x to find M(sp;x) and B(sp;X).
Then we get the equilibrium value R (sp) by Eq. (54).

In Table I, the first part of sAD outputs is shown. The
coordinates of the closed orbit at the RP are written.
Here, the source of the closed orbit is only the radiation
damping. Once the closed orbit is found, it calculates the
symplectic revolution matrix Mp(sp) defined on it, Eq.
(61). To evaluate the numerical errors, 8AD shows—JMo JMO, which indicates how Mo is symplectic. This
part is omitted here. Some important parameters are
shown also.

TABLE U. The equilibrium envelope 8 in diagonalizing and physical bases. The numbers in brackets denote multiplicative
powers of 10.

X P„
Equilibrium beam matrix

Y Py P,
X
P„
Y

Py
z
P,

1.497[—09]
—5.363[—13]

1.511[—12]
3.686[—12]

—1.315[—13]
7.326[ —13]

1.497[—09]
—3.547[ —12]

1.469[—12]
4.058[—14]
1.484[ —12)

1.673[—11]
1.608[—14]

—3.199[—16]
1.040[ —13]

1.672[—11]
3.601[—16]
2.836[—13]

1.014[—05]—4.363[—11] 1.014[—05]

P ~So

Py ~Po
Z

dP /Po

Emittance X
Emittance Z
Bunch length
Beam size g

1.020[ —08]
2.357[ —12]
4.774[ —10]—4.530[—11j
1.561[—08]
6.503[—08]

=1.49667[—9] m
=1.01382[—5] m
=6.784275 74 mm
=0.101 129 54 mm

2.727[—10]—1.782[—11]—2.804[ —11]
—9.112[—11]

2.109[—10]

Emittance Y
Energy spread
Beam tilt
Beam size g

1.253[ —10]—1.014[—12]
1.856[ —11]
1.016[—10]

=1.6728[ —11] m
=0.001 496 50
= —0.047 22090 rad
=0.01013798 mm

Py ~So

5.974[—12]
1.861[—13]—7.592[—12]

4.603[—05]
5.418[—07] 2.240[ —06)



KAZUHITO OHMI, KOHJI HIRATA, AND KATSUNOBU OIDE

cospl sinpl|Mob '=diag —sinp~ cospi (Al)

In Table II, the eigenvalues and eigenvectors of Mo are
shown. The latter forms the transformation matrix to the
real normal base X&=EX, where 8 is defined in such a
way that E

0

0 5

The 8 is just the real representation of Vo, Eq. (78), and
is related to Vo by a complex symplectic similarity trans-
formation. SAD shows 8 ' which is composed of the
eigen vectors.

The revolution matrix M(so) is shown in the form of
M —Mo =DOMo, both in physical and diagonalizing
bases. They are shown in Table III. As is clear from this
example, the damping does not occur in the directions of
the principal modes: it mixes the modes. Also the eigen-
values of M give the damping rates a' s, Eq. (86), the real
tune, Eq. (87), and the damping partition numbers.

The integrated diffusion matrix B(so), Eq. (31), and its
normal base representation BE =@BE' are shown in

Table IV. From the latter, it should be noted that BE can
have rather large off-diagonal elements. It also mixes the
modes.

Then the equilibrium envelope R is determined based
on Eq. (58). It is shown both in the normal base
(Rx =ARE') and the physical base. See Table V. The
diagonal terms of the normal bases give the emittances e.

The equilibrium envelope in the normal base, RE, is al-
most diagonalized but not completely so. For example,
the (3,1) component is smaller than (1,1) but is not much
smaller than (3,3). In fact,

~R p~= /RE'R RRE—
is almost as large as one-fourth of e~. In this optics, we
cannot say that the envelope is well approximated by
three emittances with enough accuracy. This tendency is
enhanced near resonance [4].

The envelope formalism is not influenced by the reso-
nance at all, provided all the eigenvalues of M are less
than unity in absolute value. The equilibrium envelope,
obtained by Eqs. (54) or (58), is always applicable. If the
tune difference between two normal modes is smaller
than the damping rate a, the off-diagonal elements of the
envelope in the normal mode R~ are not reduced to be
O(a). For example, if ~p„—p„~a, the (1,3) and (2,4)
components of R z will remain large.

In the above model, we surveyed emittances in a region

D.D
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I I
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FIG. 1. Behaviors of emittances near difference resonances
calculated by the envelope formalism (by sAD). (a) Horizontal-
vertical coupling (v -v~ ). (b) Same as (a) but with skew quad-
rupole magnets three times stronger.

of p„—p~ ~

-0. The desired tunes were achieved by the
'

linear matching but with keeping the strength of the in-
serted skew quadrupole magnets constant. The emit-
tances e„and e, (the diagonal parts of Rv) and ~R~'~ are
plotted as functions of

~

v„—v„~ in Fig. 1(a). The physical
tunes cannot become identical so that there are no data
for v„=v„. The minimum tune difference is of the order
of the damping rate a. The ~R„'~ becomes of the same
order as the emittances. The envelope matrix for this
case is shown in Table VI.

If the coupling source (the strength of the inserted
skew quadrupoles) becomes stronger, the above effect be-
comes less remarkable. In fact, it seems that the
minimum tune difference is larger for larger coupling
strength. In Eq. (66), the BVJ is not much affected by the
insertions. The denominator for R v',

1 —exp[i(p„—p, „)—(a„+a,, )],

TABLE VI. The equilibrium envelope in the diagonalizing base, RE, corresponding to the case
where the tune difference is the minimum. The numbers in brackets denote multiplicative powers of 10.

X P„
Equilibrium beam matrix

Y P P,

X
P
Y

P
z
P,

7.914[—10]
—1.661 [ —13]

2.621[—10]
2.041[—10]

—1.008[ —13]
5.507[ —13]

7.914[—10]
—2.043[ —10]

2.621[—10]
2.808[ —14]
9.598[—13 ]

7.223 [ —10]
—1.067[ —14]
—6.710[—14]

9.023[ —13]

7.222[ —10]
5.899[ —14]
9.011[—13]

1.014[—05]
—2.186[—11] 1.014[—05]
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determines it. Therefore, for larger values of the cou-
pling strength, the maximum value of the ~R P as a func-

tion of the tune difference becomes smaller. Figure 1(b) is
the same as Fig. 1(a) but with three times stronger insert-
ed skew quadrupole magnets. The ~RV'~ is smaller than

[1]R. H. Helm, M. J. Lee, P. L. Morton, and M. Sands, IEEE
Trans. Nucl. Sci. NS-20, 900 (1973).

[2] It is not evident whether Eq. (1) has a solution in general.
The so-called dynamic aperture will bring a fraction of the
particles far away from the origin and such particles never
return. Also a chaotic region may make g a fractal func-
tion. We do not expect to have f„as a usual function.
Such cases are beyond the scope of this paper.

[3] A computer code sAD, Strategic Accelerator Design, has
been built and used in KEK. For example, see K. Hirata,
Proceedings of the 2nd International Committee for Future
Accelerators Beam Dynamics Workshop, Lugano, 1988,
edited by E. Keil and J. Hagel, CERN Report No. 88-04
(CERN, Geneva, 1988).

[4] F. Ruggiero, E. Picasso, and L. Radicati, Ann. Phys.
(N.Y.) 197, 396 (1990).

[5] We have developed the envelope formalism and have in-
stalled it into s~ before Ref. [4]. We, however, did not
publish it except for a brief discussion in Ref. [3]. The
stress of the present paper is on the practical usefulness of
the envelope formalism, while the authors of Ref. [4] are
more interested in general formalism.

[6] K. Hirata, Nucl. Instrum. Methods Phys. Res. A 269, 7
(1988).

[7] K. Oide, Phys. Rev. Lett. 61, 1713 (1988); K. Hirata, B.
Zotter, and K. Oide, Phys. Lett. B224, 437 (1989).

[8] F. Ruggiero and B. Zotter, CERN Report No.
CERN/LEP- TH/88-33, 1988 (unpublished).

[9) For example, A. Hofmann and J. M. Jowett, CERN Re-
port No. CERN/ISR-TH/81-23, 1981 (unpublished).

[10]In the general approach, we employ a line (straight or
curved) from the entrance face to the exit face. For sim-

plicity we use a line crossing both faces with a right angle.
There is no need for this line to be a trajectory which
obeys the equation of motion of a certain particle. The
length of this line defines the so-called time variable s.
There can be many ways to define coordinates around this
line. One example: we define two transverse unit vectors
e„and e~ perpendicular to each other and parallel to the
entrance face. We bring it to the exit face by the parallel
transport along the reference line [12]. By this, the coor-
dinates x and y are defined. Another example: we can
define coordinates by Frenet-Serret construction based on
the reference line. These coordinates can be chosen with
respect to the easiness of integration of equations of
motion.

[11]There are components of q transverse to K. This effect
(opening angle) has been discussed in Ref. [20] and in T.
Raubenheimer, Part. Accel. 36, 75 (1991). Since this effect
is tiny in most cases, we ignore it. The envelope formal-
ism, however, can treat this effect in a straightforward
manner [K.Hirata, SLAC-Report No. AAS-Note 80, 1993
(unpublished)].

[12) K. Yokoya, KEK Internal Report No. 85-7, 1985 (unpub-
lished).

[13]S. O. Rice, Bell Syst. Tech. J. 23, 282 (1944).
[14] M. Sands, Stanford Linear Accelerator Center Report No.

SLAC/AP-47, 1985 (unpublished).

that for Fig. 1(a).
The assumption that the envelope is dominated by

three emittances, implicitly used by the users of the radi-
ation integrals, fails particularly when the coupling is
weak and the physical tune difference becomes small.

[15]J. M. Jowett, in Proceedings, Joint US CER-N School on
Particle Accelerators, Santa Margherita di Pula, Sardinia,
1985, edited by J. M. Jowett, M. Month, and S. Turner,
Lecture Notes in Physics Vol. 247 (Springer-Verlag, Ber-
lin, 1986), p. 343.

[16]K. Hirata, CERN Report No. CERN/LEP-TH/89-03,
1989 (unpublished).

[17]K. Hirata and K. Yokoya, Part. Accel. 39, 147 (1992).
[18]T. O. Raubenheimer, KEK Report No. 92-7, 1992 (unpub-

lished).
[19]Yu. P. Virchenko and Yu. N. Grigor'ev, Ann. Phys.

(N.Y.) 209, 1 (1991).
[20] M. Sands, Stanford Linear Accelerator Center Report No.

SLAC-121, 1970 (unpublished).
[21]This is a common notation in differential geometry. See

the discussion on the fiber bundle description in Ref. [22].
[22] E. Forest and K. Hirata, KEK Report No. 92-12, 1992

(unpublished).
[23] G. Guignard, CERN Report No. CERN-76-06, 1976 (un-

published); LEP Note No. 154, 1979 (unpublished).
[24] K. Hirata and F. Ruggiero, Part. Accel. 28, 137 (1990).
[25] K. W. Robinson, Phys. Rev. 111,373 (1958).
[26] K. Hirata, Part. Accel. 41, 93 (1993).
[27] Accelerator Design of the EEE 8 Factory, edited by S.

Kurokawa, K. Satoh, and E. Kikutani, KEK Report No.
90-24 (KEK, Ibaraki, 1991).

[28] G. Guignard and Y. Marti, CERN Report No.
CERN/ISR-BOM-TH/81-32, 1981 (unpublished).

[29] A. Chao, J. Appl. Phys. 50, 595 (1979). The approach in
this paper can be understood as an intermediate between
those in our Secs. II and III. Roughly speaking, it is
closer to the envelope approach in that one tracks three
emittances and finds their equilibrium values afterwards.
On the other hand, it is closer to the radiation-integral ap-
proach in that only three emittances are concerned: one
needs to know the principal modes in advance.

[30] D. P. Barber, K. Heinemann, H. Mais, and G. Ripken,
DESY Report No. DESY91-146, 1991 (unpublished).

[31]For example, G. Ripken, DESY Report No. DESY Rl-
70/4, 1970 (in German, unpublished).

[32] E. D. Courant and H. S. Snyder, Ann. Phys. (N.Y.) 3, 1

(1958).
[33] L. Teng, Report No. FN-229, 1971 (unpublished); D. Ed-

wards and L. Teng, IEEE Trans. Nucl. Sci. NS-20, 885
(1973).

[34] K. Yokoya (private communication).
[35]K. Hirata and F. Ruggiero, CERN Report, LEP Note No.

611, 1988 (unpublished).
[36]K. L. Brown, F. Rothacker, D. C. Carey, and Ch. Iselin,

SLAC Report No. SLAC-91, Rev. 2, UC-28 (I/A) (1977)
(unpublished).

[37] R. V. Servranckx, K. L. Brown, L. Schachinger, and D.
Douglas, SLAC Report No. 285 UC-28 (A) (1985) (unpub-
lished).

[38] S. Kamada and K. Ohmi, in Proceedings of Workshop on
4th Generation Light Sources, February, 1992, edited by M.
Cornacchia and H. Winick, SSRL Report No. SSRL-
92/02 106 (1992) (unpublished).


