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In a circular machine, where the linear lattice functions (a, ,ß, y) and a phase advance can be defined, one expects the fringe field
effects to be negligible if the change in these functions is small through the element. However, this may not always be the case. In
such situations, it is useful to have a leading order result which is adapted to tracking and analytical analysis . In this paper, we
provide such a result for the quadrupole and we also provide a general formula for the effect of an arbitrary rectilinear multipole.

Starting from the standard multipole expansion for the B field of a 2(n +1)-pole (n >_ 1), we compute the missing terms in the
vector potential expansion consistent with the pure 2(n +1)-pole symmetry. We then compute the leading effects of the fringing fields
of a multipole on the dynamics . Finally, we apply this result to quadrupoles and reproduce the original results of Lee-Whiting,
Matsuda, and Wollnik.

For the quadrupole, we show how to write a symplectic (canonical) integrator for the dynamics which can be used in a standard
circular machine kick code. For higher order multipoles, we display the implicit characteristic function solution as first proposed by
Dragt.

1. Introduction

The field of beam optics is vast and diverse . The mathematical tools and the mathematical requirements
of particle optics simulations are very different in small beam lines and in large circular machines .

One unfortunate result of this diversity is reflected in the lack of cross-referencing between the fields of
electron-microscopy and ion spectroscopy on the one hand, and large circular machine optics on the other .
An even more unfortunate aspect of this alienation is a mutual ignorance of each other's techniques and
methods. In an effort to remedy this situation two international beam optics conferences have been
organized, the first one at Giessen [1] (FRG) and the second one at Albuquerque [2] (NM, USA). In this
paper we will attempt to solve completely a simple problem, blending in the tools of beam optics (Lie
operator methods and characteristic functions) with the concerns of large circular machine theorists
(" symplecticity" and exact energy-dependence) . First, let us contrast these two extreme fields of particle
tracking . What follows may sound like an exaggeration, but is close enough to the truth to have generated
two international conferences .

Typically in ion optics [3] one is interested in gaining a precise knowledge of the optics of a relatively
small set of electric and magnetic elements. As a result, a considerable effort has been put into the
derivation of linear and nonlinear transport matrices for various beam elements .
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In particular, many authors have looked seriously at the effect of fringe fields on the transfer matrices .
In particular, Lee-Whiting [4] has shown that the effect of a quadrupole entrance fringe field is given to
first order by :

àx = (12x 3 + _4xy 2
)ko,

	

(la)

4 PX = [ 1 XYPy - 1 PX
(
x 2 +Y2 ) ] ko,

	

(lb)2

	

_4

ko = B' at the center of the magnet .

	

(lc)
P

Needless to say, opticians interested in spectroscopy did not confine themselves to first order results .
Lee-Whiting, and later Matsuda and Wollnik [5], have derived corrections to eq. (1) which depend on the
higher derivatives in z of the field gradient B' .

This attention to details has to be contrasted to the field of high energy circular machines where
Maxwellian fringe field effects are neglected, with the notable exception of the vertical focussing of a bend,
which is Maxwellian. Moreover, it is customary in the study of large circular machines to use models in
which the dipoles and quadrupoles are simple linear maps . This will seem to be a heresy to the reader
accustomed to ion spectroscopy and electron microscopy. Conversely, the spectroscopist's attention to
field details is often surprising to people designing large machines .

Another issue which distinguishes circular machines from small single pass systems is "symplecticity" .
In ion spectrometers, the tracking procedure provided by nonlinear matrix codes need not satisfy
Liouville's theorem. In fact, in general, if the Taylor series expansion used in these codes is accurate to
some degree k, Liouville's theorem will be satisfied to the same degree k . This can become a problem if a
map is to be iterated a large number of times, as is done in the study of circular machines, because a
spurious growth of phase space may result from a small violation of the symplectic conditions [6] .

Circular machine scientists have unconsciously solved this problem by using linear maps and multipole
kicks in their tracking programs . These elements produce automatically symplectic maps. In fact, these
methods are under the more general topic of symplectic integration . Finally, it can be said that one can
"symplectify" a Taylor series code using Lie operators as shown by Dragt in his code MARYLIE [7] .
Because one can compute a Lie polynomial representation from a nonlinear matrix, it is also true that one
may produce symplectic tracking with a standard matrix code.

In this paper, we will generalize the result of Lee-Whiting to a rectilinear multipole of arbitrary degree.
In the spirit of large machine physicists, we will keep the 8-dependence (8 = (p - po)/po) of the map
exact . We will derive our results using the powerful tools of Lie operators and Hamiltonian mechanics [8] .
For the case of the quadrupole, we will provide an explicit symplectic formula for eq . (1) which includes
the effects on the time of flight . For the other multipoles, a symplectic tracking procedure can easily be
derived using the Lie operator and a first order equivalent characteristic function .

Purposely, this paper looks at a simple unsolved problem from a very wide angle . As a result, we will
probably disturb the ion spectrometer specialist, as well as the large machine optician, by our use of a large
spectrum of techniques . But we believe that the accelerator-spectrometer-microscopy theorists and
designers would benefit from a greater exposure to all the various techniques of beam optics .

Finally, the reader will notice that we neglected the case of bending magnets . Bending magnets are more
subtle. However, from the point of view of the spectrometer scientists, nothing needs to be added . On the
other hand, a lot of misconceptions inundate the field of large machine physics . This topic is covered in a
Superconducting Super Collider (SSC) technical report [9] .

2 . Derivation of a potential 0� + 1 (r, 4o, z) for a z-dependent 2(n + 1)-pole

In this paper, we found it easy to work directly with the Hamiltonian and the formulae connecting H
with the Lie generators of the motion through the fringing fields. This allows for a simpler treatment and
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understanding of all the discontinuities which arise in the hard edge limit. For example, it will be clear
from our treatment that if the leading effect of the body of a 2(n + 1)-pole is of order n, a finite fringe
field effect occurs at the order n + 2.

For a Hamiltonian treatment, we must derive an expansion of the vector potential which is based on the
axial field gradients and obeys Maxwell's equations. To get this vector potential, it is convenient to
rederive a famous formula for the scalar potential O(B = 70) [10] .

Consider a field represented by the expansion :

If Bo is some function of z, the longitudinal variable, Maxwell's equation is violated . We will derive the
corrections on B needed to satisfy Maxwell's equations.

Assuming that B= Re vO, then the following must be true in a current free region :

p20=0.

Furthermore, since [72 , a/ao] vanishes, we can diagonalize 72 and a/ao simultaneously . In other words,
we can look at an individual multipole alone.

Assume that 0n+1(r, $, z) has the form:

Then, according to Laplace's equations in cylindrical coordinates, we must have :

or,
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Here the primes indicate a derivative with respect to z. We get from eq. (8b) a recursion formula for the
A,n's.

00

By +iBX=Bo Y_ (1a,+bn )(x+iy)n (2)
n=l

We can write a vector potential for this field :

AZ = -ReIBo
Y1 n+1

(1an+bn)(x+iy)n+11
.

(3)

Let us rewrite eq . (2) in polar coordinates:

By + iBx = Bo ~', C. r" e ~̀, (4a)
n=1

x=rcos 4),
(4b)

y = r sin (p,

Cn =ian +bn . (5)



If we correctly assume that A" +1 is the first nonzero coefficient, we get for

~~~
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1 = (21)th derivative in z .

	

(10b)

Consider the r" +1 terms in eq . (4a), and match them to eq . (2) :

- iBOCn
i(n + 1)An+ 1 = BOCn ,	An+1=

	

n + 1

	

'
	(11)

Hence, we get for Y'n+l (r, z) :

9',+1(r, z) _
-1Cn

~ (-
00

	

1)1
Bo21 1 (n +1)1 r 21+n_

	

+1,
n+1 1-o 2211!(1+n+1)! '

3. Derivation of a proper vector potential

For n >_ 1 (quadrupole and higher), we will assume that only the Ar and AZ components are needed . We
must have:
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Indeed eqs . (13a) and (13b) are automatically satisfied by eqs . (14), and eq . (13c) follows from Laplace's
equation. From now on, one must always remember that the real part of A must be put into the
Hamiltonian .

4. Computation of the fringe field effects in the limit of a hard edge

For a rectilinear system, we can write the Hamiltonian as follows [111 . :

H=- (1 + S)2- (PX - Äx)2- (Pv - Av )2- `4= - PT Ifl,

where Â, is just :

(15)

(16)

BZ
+1__ _ =

r ô$Ar TZ ~n+1, (13a)

1 a a
Br=

n+1r ao Az = ar on+1 , (13b)

2A"+1 aA" +1 1 a
BO = ôz - ôr = r T,0 0`1 '

(13c)

It is easy to check that Ar +1 and An +1 are given by :

An+1 lr 4n+1= ei(n+1)¢ (14a)n+1 az

An+1 -ir a4'n+1= ei(n+1)O, (14b)n+1 ar
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Here (x, y) are the usual transverse variables and (pX , py ) are the momenta scaled by po . The pair T and
pr are the differential time c(T - TO ), and the differential energy (Eo - E)/poc, respectively . The quantity
/3 is the design velocity over the speed of light .

At the entrance of a magnet, the function Bo(z) has the form :

Bo ( z) = BB(z),

	

(17)

where B(z) is the usual unit step function, and B is the constant mid-magnet strength of Bo(z) . Let us
expand A; +1 and AzA"" beyond their usual ideal expansion using eq.(14) :
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We notice that in the Hamiltonian H, the correction introduced by Maxwell's equations is of degree n + 3,
while the original multipole is of degree n + 1 . In fact, let us expand H in powers of r and p to order
n+3;
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(19e)

the hard edge limit B' and B" become the Dirac delta function and its derivative. We must handle theIn
computation with care . We split the Hamiltonian H of eq. (19b) in three parts :

H = D + BVo + OT, + B"V2

	

(20a)

Let us solve for the map .~ff(E), which brings the particle between -e and e in the limit of e going to zero
and to first order in V. According to a standard result of map theory [7] :

-ff(e) = exp ( :f:) exp ( : - 2ED :) + O(V2), (21a)

!9 (z)=exp ( : -(z+e)D:), (21b)
E

f = - f -9(z)V dz,
-E

(21c)

f: g = [ f =, g ] Poisson bracket . (21d)



In the limit of E going to zero, 2 becomes the identity map, and the terms in 9 and B' can be evaluated
immediately :

We were allowed to ignore the "real part" until eqs. (24), since all calculations were linear in the multipole
strength . Of course, for the exit face, one need only to switch the sign of f.
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fa = lim - 9(z)BVp dz) =0, (22a)
E-0

E

f1 = lim
C-0(

-f -9(z)B'V1 = -V1 .
E

dz) (22b)

For the term in B", we integrate by parts :
EE E

f2 (E)
d

_ - f e(z)0"V2
dz =

--9(z)6'V2 +
e B'V2 dz,

E -E f E dz (z)]

lim f2(E) d
= lim = =dz e(z)V2 lime (z) :-D:Y2 [Y2 , D] . (23)

E-.0 E-O Z=0 E-0 Z=0

The final map is just :

(24a)
f= Re(-V1 + [V2 , D]), (24b)

en -àV1 = -exp(i(n + 1)0) 2prr n+ 2 , (24c)
(1 + s)(n + 1)

V2 exp(i(n + 1) 0) (24d)
(n+1) 4(n+2)

pr +pm2/r2D=
2(1 *+ s)

(24e)

5. Application to quadrupoles

Consider the case of n = 1. Let us compute V1 first,

BV1 C1= - exp(i2o) (1+8)4 pr3 > (25a)

and V2,

V2 = -exp(i2o) 11Br', (25b)

[V2, a V2 Pr aV2 Pm
2' D] =

ar 1+s
+

ô0 r2 (1+s) (25c)

3
exp(i2tp) C3B

p+ - 1 exp(i2~) r2p.,s 6(1+ )
Finally, f is just :

r 3 2f=Relexp(i21 ) 1 pr AP_(1 s) ( 12 -1r 6 ) (26)
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We will discover that the expression for the skew quadrupole fringe field is simpler than its normal
counterpart. Let us compute them using the expressions :

The normal part of f in eq . (28) is not easy to evaluate to all orders because none of the terms are kicks.
To first order, one regains out of f Lee-Whiting's expression (eq. (1)) . However, the skew term is very
simple to evaluate in a symplectic manner . We first factorize old as follows :

,#= exp( :f:)=exp( :a 1
P8 :)

exp
(
:a y3PX +O(a2 ),

	

(29a)

a = ghal .

	

(29b)
6po

Notice that both factors in eq. (29a) are kicks! For example,
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Clearly the factor x3py produces a map similar to eqs. (30) with x and y interchanged.
How do we represent a normal quadrupole fringe field using the result of eq . (30)? Obviously, we need

only to rotate the skew quadrupole by ±45° to obtain the normal result.
In fact, one needs to rotate the beam by -45 ° , followed by the kick of eq . (30) and finally one

"de"-rotates by 45* . With this prescription, a l is identified to b l . In other words, we have :
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É. Forest, J. Milutinoetc / Leading order hard edge fringe field effects

	

481

6. Higher order multipoles

To get the higher order result, we apply eq . (25c) to the general expressions for Y2 . One gets the result :

The expression (32b) for the polynomial f will not in general be a sum of kicks . In general they will
look like the normal quadrupole term of eq . (28) . It is possible, however, to transform f by a succession of
linear transformations and turn the evaluation of exp( : f:) into a product of kicks. Unfortunately, the
general theory for this has not been worked out. In fact, it will eventually involve a Clebsch-Gordan series
for the symplectic group [12] . The minor miracle of the skew quadrupole does not happen for the fields
above the quadrupoles .

Nevertheless, following a procedure used by Dragt [6] one can generate a symplectic map using the
generating function F, defined by the relation

F= xpX+YPy + rP, -f(x, PX, Y, Py , P7) .

Using F we can generate a set of implicit equations which can be solved simply on the computer :
aF _aF

X= ôD-'

	

PX= ax'

T

	

M
=

	

Pr ,	Pr=P .	(34)

It is simple to check that the "bar" variables reproduce the action of exp ( : f:) to first order in f.
In the absence of a general kick decomposition for f, eq . (34) is the only simple symplectic

representation available . We hope that this will eventually change!

7. Conclusion

We can derive a symplectic representation of the first order fringe field of a quadrupole by realizing
that a canonical integrator is easy to derive in the case of a skew quadrupole. The general quadrupole
result is obtained by a rotation . (Similarity transformation .) This can be implemented easily in a large
machine tracking code while preserving the canonical nature of the six-dimensional flow .
We also provided a general solution for arbitrary multipoles . Our Lie operator representation allows for

a possible "symplectification" of the tracking procedure in which our formula may be used and therefore
suits well the case of circular machines .
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f =- xetexplikn+1)(p14(n+2)(1+g) [rn+2Pr+ 1(n+1 )r"
+iP4. l }~ (32a)

f
__

[
(cb� -san )rn + i

(xPX+YPy ) - (sbn+can) n
+ 3 rn+i (XPY -YPX)], (32b)

4(n+2)(1+S)

where c = cos[(n + 1)0] and s = sin[(n + 1)0] . (32c)
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