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RESONANCE BASIS MAPS AND nPB
TRACKING FOR DYNAMIC APERTURE

STUDIES *†

Y.T. Yan, J. Irwin, and T. Chen

Stanford Linear Accelerator Center, P.O. Box 4349, Stanford, CA 94309

In this article we outline the procedures we used for dynamic aperture studies of the PEP-II
lattices with resonance basis maps and nPB tracking.

1 INTRODUCTION

Lie Algebraic methodsl  implemented with truncated power series algebra packages2
or libraries,3 have become important in nonlinear single-particle dynamics studies.4
Algorithms for nonlinear normal forms5 and one-turn map tracking, such as kick
factorization  and integrable polynomial factorization,7  have been becoming com-
mon numerical practices. Much progress has been made in the one-turn map track-
ing during the last decade — formerly regarded as “impossible” to a first successful
demonstrations  and then to a more thorough exploration for the kick factorization
and the implicit map.10 In this article, we outline procedures used for PEP-II elec-
tron ring lattice studies using recently developed resonance basis mapsll  and nPB
tracking .12

2 EXTRACTION OF A ONE-TURN TAYLOR MAP

The first step for leading to a resonance basis map is to extract a one-turn (or
one-particular-module) Taylor map.

In a particle tracking code, given the initial phase-space coordinates (numbers)
with respect to the closed orbit at a well chosen observation point in the lattice, one
can advance the particle’s coordinates element-by-element for a beam line or one
turn (or more turns) to get a new set of coordinates (new numbers). Similarly, if
one links the tracking code to a truncated power series algebra library, such as Zlib,3
and properly replaces the statements of the tracking code to their corresponding
truncated power series algebra statements and initializes the particle coordinates as
the identity power series, one can then advance the coefficients of these power series
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element-by-element until one turn is reached to get a one-turn map truncated at a
pre-set order. These power series are actually the final coordinates (after one turn)
as functions, in Taylor series expansions, of the initial coordinates . In our common
practice, we usually consider 2-dimensional maps with a parameter d representing
the momentum deviation dp/p. Thus, mathematically, the Taylor map can be
expressed as

(1)

where O(lV + 1) indicates that the Taylor map is truncated at an order of N,
~ = (% P., Y,PV ) is the global or initial phase-space coordinate vector and ? =
(X, Pz, Y, Pv) is the phase-space coordinate vector after one turn. To include the
synchrotron oscillation for a circular accelerator, we can additionally extract a time-
of-flight Taylor map and then place an RF cavity at the end of the map.

3 SINGLE LIE TRANSFORMATION IN FLOQUET SPACE

Assuming that the Taylor map given by Eq. 1 is symplectic, as it should be since
we would treat the radiation damping and quantum excitation globally with an
externally inserted damped map, one can make a linear Floquet (Courant-Snyder) 13
transformation and then a single Lie transformationl  to obtain

(2)

where ~ (2?, 6) is a polynomial from order 3 to order N + 1 and all nonlinear mapping
is performed by the single Lie generator e’f(z’~):;  R(Z) is a one-turn pure rotational
4-by-4 matrix in the 4-dimensional transverse canonical phase-space, and A(.Z, d)
and its inverse A–l (Z, d) are the 4-by-5 matrices that generate the Floquet trans-
formation. The dispersion, q, and the Courant-Snyder parameters, a, ~, and ~ are
all included in A(.Z, d) and A–l (Z, d). Thus, in the Floquet space the map is given
b y

(3)

4 TRANSFORMATION TO ACTION-ANGLE VARIABLE SPACE

Just as the Cartesian coordinates x,PX, y,pu, the action-angle variables, Jz, J,, (3Z, 0,,
along with the momentum deviation parameter, d, can also form a complete base for
the polynomial j“(Z, @ of the Lie transformation in Eq. 3. Through decomposition
into a complete complex base consisting of the rotational eigen-modes

one can obtain
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where ii and ti are index vectors representing (nx, nu ) and (m., m,) respectively.

5 RESONANCE BASIS MAP

For convenience, we would separate the terms in Eq. 4 into two groups, one contains
all those terms that are not angle variable dependent (tune shift terms), i.e. mz =
mv = 0, and the other contains the rest of the terms (resonance driving terms) that
all depend on angle variables. Then, after suitable factorization, the Floquet space
map given by Eq. 3 can be written as

(5)

and (7)

(8)

Note that in Eq. 6, the indices ii = (n., nu ) are even numbers and we have repre-
sented R(Z) by its corresponding Lie form
working tunes of the lattice. Also note that each of the coefficients C’iiP is the same
as its corresponding coefficient ajifip  with mz = mg = 0 in Eq. 4 while each of the
coefficients AGfipor BE7tip  is generally different from its corresponding coefficient
ad&p or bafip in Eq. 4 due to factorization.

The physical picture of the Floquet space map represented by Eq. 5 is as follows:
The first Lie transformation with its effective Hamiltonian represented by Eq. 6 per-
forms an amplitude-dependent rotation and is followed by a nonlinear perturbation
driven by the second Lie transformation with its effective Hamiltonian represented
by Eq. 7. These are to be discussed in more detail in later sections.

6 THE GLOBAL LATTICE FILE

Once we obtain the resonance basis map given by Eq. 5, Eq. 6, and Eq. 7, we
would usually write out these coefficients, C’~p, Aii,sp,  and B~Gp along with their
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corresponding indices ii, fi, and p into a file. In the same file, we also write the 4-
by-5 matrix A and its inverse A-l that perform the linear Floquet transformation
as shown in Eq. 2. We may also write, in the same file, the time-of-flight map,
the linear radiation damping map, and related quantum excitation parameters. We
would call this file the Global Lattice file. We can freely change the contents (usually
a very limited key tune shift and/or resonance driving coefficients) and perform nPB
tracking (to be described below) to obtain artificial dynamic apertures for probing
the impact of these selected key terms on the dynamic aperture of the PEP-II
lattices. In this way, we obtain clues toward better design for the real lattice.

7 THE nPB TRACKING

To efficiently evaluate the resonance basis maps given by Eq. 5, we use a newly
developed method which directly performs Poisson bracket expansion of the res-
onance basis Lie generators to a suitable (n) order and so the name of nPB (n
Poisson Bracket ) tracking.12  The Poisson brackets are evaluated using action-angle
variables, but the resulting expressions are written as functions of the Cartesian
coordinates. The Sines, Cosines, and square root that relate the Cartesian coordi-
nates and the Polar (action-angle) coordinates need never be calculated and hence
the fast speed.

To include the synchrotron oscillation and/or radiation damping and quantum
excitation, one can always transform the particle phase-space Cartesian coordinates
back and forth between the Floquet space and the real space with the Floquet
transformation matrices A and A-l given in Eq. 2. In the real space, with the
inclusion of an accurate but concise time-of-flight map, we can insert a suitable RF
cavity to update the momentum deviation parameter, d for each turn of tracking.
The updated momentum deviation parameter, J, is then absorbed into the coef-
ficients of the resonance basis map before direct Poisson expansion calculation of
the resonance basis map. By the same token, radiation damping effects can also
be included with the insertion of a suitable linear damping map and a suitable
randomly generated excitation map.

8 REPLIABILITY AND SPEED OF THE nPB TRACKING

One may be concerned with the fact that the nPB tracking is not 100% accurate
since the map is truncated at a moderate order and not 100% symplectic because
one does not carry the Poisson bracket expansion to the infinite order. However,
for the PEP-II lattice dynamic aperture studies, we only need to track particles for
about 1000 turns since due to synchrotron radiation damping particles surviving
for more than 1000 turns are very unlikely to get lost. From numerous tests we
have concluded that a 10th-order map with 3-Poisson-bracket expansion of the
Lie transformation is accurate and symplectic enough for PEP-II lattice dynamic

‘h-order  map, 3PB trackingaperture studies. It takes about 1 minute with such a 10
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on a RISC workstat ion to obtain a dynamic aperture plot at a given working point,
which would otherwise have taken a few hours with element-by-element tracking.

FIGURE 1: Dynamic aperture vs. tune point in the tune plane for a PEP-II High-Energy Ring
with interlaced sextupoles, ~$ = 2c7w. Some resonance lines are clearly seen in the plot.

9 SWAMP PLOTS

Since the nPb tracking is very fast, one can easily get dynamic apertures for different
working points throughout the tune plane by incrementing the working tunes IJZ
and ILV, while keeping all other terms in the resonance basis map fixed. This is
equivalent to inserting an exactly matched linear trombone to switch the working
tunes in the element-by-element tracking without further changing the lattice. We
have generally found such swamp plots very informative. They have played an
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essential role in evaluating and improving the PEP-II B-factory lattices. A typical
PEP-II lattice swamp plots is shown in Fig. 1.

10 DIMENSIONLESS SCALING TRANSFORMATION

Up to this stage, the effective Hamiltonians, h~, h~, and the action coordinates,
JX, Ju, all have a dimension the same as the emittance while OZ, (3V,  and d arc
dimensionless. Therefore it is very difficult to compare the coefficients, CfiP, AfirfiP,
and BMf,, among different orders since they would have different dimensions. In
order to identify the key terms so as to probe their impact on the lattice nonlinear
behavior, we would perform a scaling transformation such that

where CZ is the horizontal emittance, which in PEP-II is 48 nm-rad for the High-
Energy Ring (HER) and 64 nm-rad for the the Low-Energy Ring (LER). Dropping
the dimensionless symbol j the dimensionless resonance basis map would be still
given by Eq. 5, Eq. 6, Eq. 7, and Eq. 8 but each of the altered coefficients is now
dimensionless.

11 TUNE SHIFT WITH AMPLITUDE

The effective Hamiltonian hT given by Eq. 6 performs amplitude dependent rota-
tions. The horizontal (x) and the vertical (y) tunes, as polynomial functions of the
dimensionless invariants Jx and Jv and the dimensionless chromatic amplitude d,
can be calculated by the Hamilton’s equations. They are given by

and

To make fair comparisons of tune shift terms (and resonance terms – to be discussed)
of different orders, we usually calculate the maximum of each term along the 10a
(10 times the nominal beam size) ellipse given by

where TZ = ~, and ry = w are radii in the two-dimensional phase-space
planes. Note that we set Cg = $ ct in consideration of a required vertical aper-
ture that is sufficient for injection and for vertical blow-up from the beam-beam
interaction.
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In many occasions, we would also carry out the tune-shift-with-amplitude calcu-
lation using nonlinear normal forms in order to provide better accuracy.

FIGURE 2: Normalized tune shift and resonance coefficients plotted in log scale horizontally.
The vertical axis shows corresponding indices (m., mv,  n=, nv ) for resonances and orders. The
corresponding chromatic indices, p’s, are not explicitly shown in the axis but are indicated with
line patterns (p = 0: did, 1: dashes, 2: dots, 3: dotdashes, etc.
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12 NORMALIZED RESONANCE BASIS COEFFICIENTS

The terms in the effective Hamiltonian hR given by Eq. 7 and Eq. 8 perform angle-
and amplitude-dependent nonlinear perturbations. These are the resonance driving
terms. To fairly compare their driving strengths among different orders, we prefer
to measure each of the phase-space step-sizes they would drive at a given turn,
which is given by

where A8Z, A(3V, ATZ, and ArV can be estimated for each term by taking its Poisson
bracket with respect to the action-angle coordinates, Jz, Jv, 19Z, 8V. Again, we would
compute the maximum value of lA~ for each term along the 100 ellipse. lA~ = 1
means that the corresponding resonance can at most cause a phase-space motion
of la in one turn for a particle on the 10a boundary. These maxima are what we
call the normalized resonance basis coefficients. They can be plotted for a better
identification of key terms as shown in Fig. 2 for an LER bare lattice.

13 SUMMARY

The mapping procedures described above have been frequently used for PEP-II
lattice studies. By plotting the normalized resonance basis map coefficients, we can
identify important tune shift and resonance terms that could degrade the dynamic
aperture of the PER-II HER or LER lattices. We can confirm and understand
their individual impacts on the dynamic aperture by modifying the global lattice
and performing nPB tracking, and attempt to improve the lattices accordingly.
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