Impedance issues in KEKB and SuperKEKB

Demin Zhou
Division VI, Acc. Lab, KEK

TWIICE 2 workshop, Abingdon, Oxfordshire, UK
Feb. 08, 2016
Outline

➤ Introduction
 ● KEKB and SuperKEKB

➤ Impedance model and Single-bunch effects
 ● Impedance calculations, impedance budget, ...
 ● Bunch lengthening, MWI, beam tilt, TMCI, ...

➤ Coherent synchrotron radiation (CSR)
 ● Its role in KEK’s projects
 ● Code developments and impedance calculations
 ● CSR driven MWI
 ● CSR field dynamics

➤ Summary
1. Introduction

<table>
<thead>
<tr>
<th></th>
<th>LER</th>
<th>HER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SKEKB</td>
<td>KEKB*</td>
</tr>
<tr>
<td>E (GeV)</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>I_b (mA)</td>
<td>1.44</td>
<td>1.03</td>
</tr>
<tr>
<td>ε_x (nm)</td>
<td>3.2</td>
<td>18</td>
</tr>
<tr>
<td>ε_y (pm)</td>
<td>8.64</td>
<td>180</td>
</tr>
<tr>
<td>α_p (10^{-4})</td>
<td>3.25</td>
<td>3.31</td>
</tr>
<tr>
<td>σ_δ (10^{-4})</td>
<td>8.08</td>
<td>7.73</td>
</tr>
<tr>
<td>σ_z (mm)</td>
<td>5</td>
<td>4.6</td>
</tr>
</tbody>
</table>

[Image of the KEKB accelerator complex with labels for LER and HER.]
2. Impedance model: KEKB

- Y. Cai’s model for KEKB
 - VFP solver
 - 3-parameter broadband resonator model
 - Fit the measured bunch lengthening and profile
 - Determine the MWI threshold and compare with physics data

Y. Cai et al., PRST-AB 12, 061002 (2009)
2. Impedance model: KEKB

➤ Pseudo-Green function wake calculation

- Geometric wakes, resistive wall, CSR, CWR

<table>
<thead>
<tr>
<th>Component</th>
<th>Number</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARES cavity</td>
<td>20</td>
<td>GdfidL</td>
</tr>
<tr>
<td>Movable mask</td>
<td>16</td>
<td>GdfidL</td>
</tr>
<tr>
<td>SR mask (arc/wiggler)</td>
<td>1000 (905/95)</td>
<td>GdfidL</td>
</tr>
<tr>
<td>Bellows</td>
<td>1000</td>
<td>GdfidL</td>
</tr>
<tr>
<td>Flange gap</td>
<td>2000</td>
<td>GdfidL</td>
</tr>
<tr>
<td>BPM</td>
<td>440</td>
<td>MAFIA</td>
</tr>
<tr>
<td>Pumping port</td>
<td>3000</td>
<td>GdfidL</td>
</tr>
<tr>
<td>Crab cavity</td>
<td>1</td>
<td>ABCI</td>
</tr>
<tr>
<td>FB kicker/BPM</td>
<td>1/40</td>
<td>GdfidL</td>
</tr>
<tr>
<td>Tapers</td>
<td>4/2/2/2</td>
<td>GdfidL</td>
</tr>
<tr>
<td>ARES/CRAB/ABORT/INJECTION IR(IP/QCSL/QCSR)</td>
<td>6(2/2/2)</td>
<td>GdfidL</td>
</tr>
<tr>
<td>Gate valves f94/f150/94x150</td>
<td>26/13/2</td>
<td>GdfidL</td>
</tr>
</tbody>
</table>

D. Zhou et al., ICAP09, TH2IOpk02
2. Impedance model: KEKB

Simulations using Pseudo-Green function wake

- Estimate loss factors and compare with measurements and prediction of broadband resonator model

![Graph showing loss factor vs. bunch length](image)

- Measurement: $k_r = 892 \sigma^{2.67}$
- Calculated wake: $k_r = 475 \sigma^{1.63}$
- Resonator model: $k_r = 2983 \sigma^{3.1}$

T. Ieiri and H. Koiso, 14th SAST 2003
2. Impedance model: KEKB

- Simulations using Pseudo-Green function wake
 - Use VFP solver to simulate bunch lengthening and MWI
 - CSR plays a role but seems not serious
 - Missing impedance sources? CSR/CWR/RW not well modelled in MWI simulations? NOT clear yet

![Graph showing σ_z vs. l_b and σ_p vs. l_b](image-url)
2. Impedance model: SuperKEKB

➢ Upgrade LER
 ● \(\phi94\text{mm} \Rightarrow \phi90\text{mm} \text{ w/ antechamber} \)
 ● New Ecloud suppression devices
 ● Bellows: Finger-type => Comb-type
 ● Movable masks => PEP-II type collimators

➢ HER almost no changes

LER typical (~90%)
 Aluminum w/ antechamber

HER typical (~70%)
 Copper w/o antechamber

Y. Suetsugu and K. Shibata
2. Impedance model: SuperKEKB: LER

Bellows

Comb-type: Unique for SuperKEKB

MO-type flange

Pumping port

ARES RF cavity

T. Abe and K. Shibata
2. Impedance model: SuperKEKB: LER: Bellows

• Bellows chamber with comb-type RF shield will be used in SKEKB.
 – There is no radial step on the inner surface.
 (There is a small step (~1 mm) in a conventional bellows chamber.)
 – RF is shielded by nested comb teeth.
 length: 10 mm
 radial thickness: 10 mm
2. Impedance model: SuperKEKB: LER: Bellows

- **Loss factor** ($\sigma_z = 6$ mm)
 \[k = 2.2 \times 10^{-3} \text{ V/pC} \]
 - 1000 pieces in one ring
 \[k_{\text{total}} = 2.2 \text{ V/pC} \]

- **Impedance**
 It was found that there are trapped modes at 7.5 GHz and 25 GHz (over cut-off frequency (2.5GHz)). Effects of these trapped modes on the beams will be investigated.

K. Shibata
2. Impedance model: SuperKEKB: LER

Collimator (PEP-II type)

BPM

SR mask

T. Ishibashi, M. Tobiyama, and K. Shibata
2. Impedance model: SuperKEKB: LER

Clearing electrode

Grooved surfaces

From T. Ishibashi

Tested in KEKB

Ref. Y. Suetsugu et al., NIMA 598 (2009)

Ref. Y. Suetsugu et al., NIMA 604 (2009)
2. Impedance model: SuperKEKB: HER

SCC (ABCI)

Movable mask (KEKB type)

Bellows

ARES RF cavity

T. Abe, Y. Morita, and K. Shibata
2. Impedance model: SuperKEKB: HER

Pumping port

Flange

BPM

SR mask

K. Shibata and M. Tobiyama
2. Impedance model: SuperKEKB: LER

Pseudo-Green wake function

- $\sigma_z=0.5\text{mm}$
- CSR and CWR: CSRZ code with rectangular chamber
2. Impedance model: SuperKEKB: HER

- Pseudo-Green wake function
 - $\sigma_z = 0.5\,\text{mm}$
 - CSR: CSRZ code with rectangular chamber
 - CWR not considered yet
2. Impedance model: SuperKEKB: Budget

- Impedance budget with $\sigma_z = 5/4.9\text{mm}$:
 - Loss factors, resistance and inductance are calculated at nominal bunch lengths with input of Pseudo-Green function wakes.

| Component | LER $k_{||}$ | LER R | LER L | HER $k_{||}$ | HER R | HER L |
|-----------------|--------------|---------|---------|--------------|---------|---------|
| ARES cavity | 8.9 | 524 | - | 3.3 | 190 | - |
| SC cavity | - | - | - | 7.8 | 454 | - |
| Collimator | 1.1 | 62.4 | 13.0 | 5.3 | 309 | 10.8 |
| Res. wall | 3.9 | 231 | 5.7 | 5.9 | 340 | 8.2 |
| Bellows | 2.7 | 159 | 5.1 | 4.6 | 265 | 16.0 |
| Flange | 0.2 | 13.7 | 4.1 | 0.6 | 34.1 | 19.3 |
| Pump. port | 0.0 | 0.0 | 0.0 | 0.6 | 34.1 | 19.3 |
| SR mask | 0.0 | 0.0 | 0.0 | 0.4 | 21.4 | 6.6 |
| IR duct | 0.0 | 2.2 | 0.5 | 0.0 | 2.2 | 0.5 |
| BPM | 0.1 | 8.2 | 0.6 | 0.0 | 0.0 | 0.0 |
| FB kicker | 0.4 | 26.3 | 0.0 | 0.5 | 26.2 | 0.0 |
| FB BPM | 0.0 | 1.1 | 0.0 | 0.0 | 1.1 | 0.0 |
| Long. kicker | 1.8 | 105 | 1.2 | - | - | - |
| Groove pipe | 0.1 | 5.7 | 0.9 | - | - | - |
| Electrode | 0.0 | 2.2 | 2.3 | - | - | - |
| **Total** | **19.2** | **1141**| **33.4**| **29.0** | **1677**| **62.1**|

Table 2: Key parameters of SuperKEKB main rings for MWI simulations.

Ref. D. Zhou et al., IPAC14, TUPRI021
2. Impedance model: Budget

➤ **Compare LER of KEKB and SuperKEKB**

<table>
<thead>
<tr>
<th>Component</th>
<th>Super-LER</th>
<th>KEKB-LER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$k_{</td>
<td></td>
</tr>
<tr>
<td>ARES cavity</td>
<td>8.9</td>
<td>524</td>
</tr>
<tr>
<td>Crab cavity</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Collimator</td>
<td>1.1</td>
<td>62.4</td>
</tr>
<tr>
<td>Res. wall</td>
<td>3.9</td>
<td>231</td>
</tr>
<tr>
<td>Bellows</td>
<td>2.7</td>
<td>159</td>
</tr>
<tr>
<td>Flange</td>
<td>0.2</td>
<td>13.7</td>
</tr>
<tr>
<td>Pump. port</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SR mask</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>IR duct</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>BPM</td>
<td>0.1</td>
<td>8.2</td>
</tr>
<tr>
<td>FB kicker</td>
<td>0.4</td>
<td>26.3</td>
</tr>
<tr>
<td>FB BPM</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Gate valve</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Taper</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Long. kicker</td>
<td>1.8</td>
<td>105</td>
</tr>
<tr>
<td>Groove pipe</td>
<td>0.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Electrode</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>19.2</td>
<td>1142</td>
</tr>
</tbody>
</table>
2. Impedance model: SuperKEKB: LER: MWI

- Simulations with input of Pseudo-Green wake:
 - Use Warnock-Cai’s VFP solver
 - Collimators are important sources in bunch lengthening
 - Simulated $\sigma_z \approx 5.9\,\text{mm}$ @Design bunch current
 - Simulated MWI threshold is around $NP_{\text{th}} = 1.2E11$
 - Interplay between CSR and conventional wakes?
2. Impedance model: SuperKEKB: HER: MWI

- Simulations with input of Pseudo-Green wake:
 - Use Warnock-Cai’s VFP solver
 - Simulated $\sigma_z \approx 5.8\text{mm}$ @Design bunch current
 - Simulated MWI threshold is around $NP_{th}=1.7\times10^{11}$
 - CSR and CWR are likely to be not important.
2. Impedance model: Transverse: Beam tilt

 setBackgroundColor

Transverse beam tilt:

- To be a concern in low emittance rings
- Asymmetric protrusion (if exists)

\[
\Delta \epsilon_y = \frac{1}{4 \sin^2(\pi \nu_y)} \beta_y \theta_{\text{rms}}^2
\]

\[
\theta_{\text{rms}} = \frac{N e^2}{\gamma m_0 c^2} \sqrt{\langle (W_y - \langle W_y \rangle)^2 \rangle}
\]

\[
\langle W_y \rangle = \int_{-\infty}^{\infty} W_y(s) \lambda(s) ds
\]

<table>
<thead>
<tr>
<th>TABLE II. Emittance increase in LER of SUPERKEKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugation depth h (cm)</td>
</tr>
<tr>
<td>θ_{rms} (nrad)</td>
</tr>
<tr>
<td>$\Delta \epsilon$ (pm)</td>
</tr>
</tbody>
</table>

2. Impedance model: Transverse: Beam tilt

- **Transverse beam tilt:**
 - Symmetric 3D structure (like collimator) with orbit offset
 - D02V1 in LER as an example: d=-2/2mm, $\beta_y=104.6$ m
 - COD DY < 0.2 mm required

\[
\Delta \epsilon_y = \frac{1}{4 \sin^2 (\pi \nu_y)} \beta_y \theta_{\text{rms}}^2
\]

\[
\theta_{\text{rms}} = \frac{N e^2 \Delta y}{\gamma m_0 c^2} \sqrt{\langle (W'_y - \langle W'_y \rangle)^2 \rangle}
\]
2. Impedance model: Transverse: TMCI: LER

- **TMCI in LER**
 - We estimated the threshold of the Transverse Mode Coupling Instability using actual β value at location of each collimator with $\sigma_z = 6$ mm.
 - D02V1 is the main impedance source because it would be used with the narrow aperture ($d = \pm 2$ mm).
 - The threshold is about 1.71 mA/bunch (Design value: 1.44 mA/bunch) in the latest collimator design.

<table>
<thead>
<tr>
<th></th>
<th>All Closed</th>
<th>Actual apertures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>1.41</td>
<td>13.15</td>
</tr>
<tr>
<td>Vertical</td>
<td>1.32</td>
<td>1.71</td>
</tr>
</tbody>
</table>

$I_{thresh} = \frac{C_1 f_s E/e}{\sum_i \beta_i \kappa_{\perp_i} \sigma_z}$

- C_1: constant ≈ 8
- f_s: synchrotron frequency
- E: beam energy
- β: beta function
- κ_{\perp_i}: kick factor

Collimator Aperture List (mm)

<table>
<thead>
<tr>
<th>Collimator</th>
<th>Aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>D06H1</td>
<td>-16.0/+17.0</td>
</tr>
<tr>
<td>D06H2</td>
<td>-16.0/+16.0</td>
</tr>
<tr>
<td>D06H3</td>
<td>-16.0/+15.0</td>
</tr>
<tr>
<td>D06H4</td>
<td>-13.0/+13.0</td>
</tr>
<tr>
<td>D03H1</td>
<td>-21.0/+20.0</td>
</tr>
<tr>
<td>D03H2</td>
<td>-18.0/+20.0</td>
</tr>
<tr>
<td>D03V1</td>
<td>-9.0/+9.0</td>
</tr>
<tr>
<td>D03V2</td>
<td>-9.0/+9.0</td>
</tr>
<tr>
<td>D02H1</td>
<td>-10.6/+12.0</td>
</tr>
<tr>
<td>D02H2</td>
<td>-16.0/+20.0</td>
</tr>
<tr>
<td>D02H3</td>
<td>-18.0/+21.0</td>
</tr>
<tr>
<td>D02H4</td>
<td>-13.0/+9.0</td>
</tr>
<tr>
<td>D02V1</td>
<td>-2.0/+2.0</td>
</tr>
</tbody>
</table>
3. CSR: SuperKEKB design

➤ High-current scheme
- CSR driven MWI in LER was very serious

N (design)	11.7	10^{10}
σ_{z0}	3	mm
$\sigma_{\varepsilon 0}$	7.1	10^{-4}
ν_z	-0.022	

K. Oide, et al., MO3RAI01, PAC’09 (2009)
3. CSR: SuperKEKB design

Simple estimation of CSR instability threshold [Stupakov and Heifets (2002)] ...

\[I_b > \frac{\pi^{1/6}}{\sqrt{2}} \frac{e c}{r_0 \rho^{1/3}} \gamma \alpha_p \delta_0^2 \sigma_z \frac{1}{\lambda^{2/3}} \]

SuperKEKB LER (High-current scheme)

SuperKEKB DR (Version 1.140)

Shielding threshold:

\[\lambda_c = 2 \sqrt{b^3 / R} \]

J. Byrd, et al., PRL 89, 22, Nov. 2002

3. CSR: SuperKEKB

➤ **DR design**
- **Optics**: CSR-optimized
- **Vacuum chamber and RF system**

➤ **Collaboration**
- **SLAC**: Y. Cai, G. Stupakov, L. Wang et al.
- **CERN**: F. Zimmermann

➤ **Intensive CSR impedance calculations**
- **Benchmark**: 5 codes (Agoh, Oide, Zhou, Stupakov, L. Wang)
- **Single-bend and multi-bend**
- **Rectangular and arbitrary cross-section of chamber**

➤ **Intensive simulations of MWI**
- **Macro-particle tracking**: SAD
- **Vlasov solver**: SAD, Warnock-Cai’s code
3. CSR: SuperKEKB

- Y. Cai’s theory on CSR effects in rectangular chamber
 - Steady-state CSR model
 - Square chamber lowers MWI threshold [Surprise!]
 - Chamber aspect ratio >2 preferred

\[N_{th} = \frac{C I_A}{c e} \frac{\alpha_p \gamma \sigma_\delta^2}{\sigma_z} \frac{\sigma_z^{4/3}}{R^{1/3}} \xi_{th} \]

\[I_A = 4\pi \varepsilon_0 \frac{m_e c^3}{e} \quad \chi = \sigma_z \sqrt{\frac{R}{b^3}} \]

Parallel plates:
\[\xi_{th} = 0.5 + 0.34\chi \]

Rectangular chamber:
\[\xi = \xi_{th}(\chi, A = \frac{a}{b}, \frac{1}{\omega_s \tau_d}) \]

Ref. Y. Cai, PRST-AB 17, 020702 (2014)
3. CSR: SuperKEKB

➤ Y. Cai’s theory on CSR effects in *rectangular chamber*

<table>
<thead>
<tr>
<th></th>
<th>DR</th>
<th>LER</th>
<th>HER</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (GeV)</td>
<td>1.1</td>
<td>4</td>
<td>7.007</td>
</tr>
<tr>
<td>$N_P (10^{10})$</td>
<td>5</td>
<td>9.04</td>
<td>6.53</td>
</tr>
<tr>
<td>b (mm)</td>
<td>24</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>a (mm)</td>
<td>34</td>
<td>90</td>
<td>104</td>
</tr>
<tr>
<td>R (m)</td>
<td>2.7/3</td>
<td>74.7</td>
<td>106</td>
</tr>
<tr>
<td>χ</td>
<td>1.49</td>
<td>1.67</td>
<td>2.16</td>
</tr>
<tr>
<td>$\alpha_p (10^{-4})$</td>
<td>141</td>
<td>3.25</td>
<td>4.55</td>
</tr>
<tr>
<td>$\sigma_\delta (10^{-4})$</td>
<td>5.5</td>
<td>8.08</td>
<td>6.37</td>
</tr>
<tr>
<td>σ_z (mm)</td>
<td>6.6</td>
<td>7.8</td>
<td>11</td>
</tr>
<tr>
<td>ξ_{th}^{old}</td>
<td>1.49</td>
<td>1.67</td>
<td>2.16</td>
</tr>
<tr>
<td>$N_{th}^{old} (10^{10})$</td>
<td>4.4</td>
<td>5.2</td>
<td>7.6</td>
</tr>
<tr>
<td>ξ_{th}^{new}</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$N_{th}^{new} (10^{10})$</td>
<td>1.5</td>
<td>1.6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Ref. Y. Cai, PRST-AB 17, 020702 (2014)
3. CSR: Field dynamics

Parabolic equation (PE) in Frenet-Serret coordinate system:

\[
\frac{\partial \vec{E}_\perp}{\partial s} = \frac{i}{2k} \left[\nabla^2 \vec{E}_\perp - \frac{1}{\varepsilon_0} \nabla \rho_0 + 2k^2 \left(\frac{x}{R(s)} - \frac{1}{2\gamma^2} \right) \vec{E}_\perp \right]
\]

Longitudinal field and impedance:

\[
E_s = \frac{i}{k} \left(\nabla \cdot \vec{E}_\perp - \mu_0 c J_s \right) \quad Z(k) = -\frac{1}{q} \int_0^\infty E_s(x_c, y_c) ds
\]

Contributors:
➤ G. Stupakov and I.A. Kotelnikov (Mode expansion, PRST-AB 2003, 2009)
➤ D.R. Gillingham and T.M. Antonsen (Time-domain PE, PRST-AB 2007)
➤ K. Oide (Mesh + Eigen solver, PAC 2009)
➤ D. Zhou (Mesh + Finite difference, JJAP 2012)
➤ L. Wang (Mesh + Finite element, 2012)
➤ D.A. Bizzozero (Mesh + Discontinuous Galerkin method, PRL 2015)
➤ R. Warnock
3. CSR: Field dynamics

CSRZ code: Uniform rectangular cross-section

Field separation:

\[\vec{E}_\perp = \vec{E}_\perp^r + \vec{E}_\perp^b \]
\[\frac{\partial \vec{E}_\perp^r}{\partial s} = \frac{i}{2k} \left[\nabla^2 \vec{E}_\perp^r + 2k^2 \left(\frac{x}{R(s)} - \frac{1}{2\gamma^2} \right) (\vec{E}_\perp^r + \vec{E}_\perp^b) \right] \]

The curvature is variable (Single dipole, soft fringe, a series of dipoles, wiggler, etc.):

Single dipole

Wiggler - “Wiggling pipe”
3. CSR: Field dynamics: Eigenmodes

Resonance poles = Eigen modes
a/b=60/30 mm, L_{bend}=8 m, R=5 m

\[E_x(x, y) = E_{x0} \Lambda i \left(k_y^2 \kappa^2 - x/\kappa \right) \sin \left[k_y(y + b/2) \right] \]

Freq. & index
\[k = 4930 \text{ m}^{-1} \]
\[(m, p) = (3, 1) \]

Im. \(E_x^r \):

Re. \(E_x^r \):

Mode pattern:

Overtaking fields

G. Stupakov and I. Kotelnikov, PRST-AB 6, 034401 (2003).
3. CSR: Field dynamics: Eigenmodes

Arbitrary cross-section: Finite element technique + parabolic equation (L. Wang)

![Graphs showing field dynamics](image-url)
3. CSR: Field dynamics: Optical model

Outer-wall reflection can be well approximated by optical model [Derbenev (1995), Carr (2001), Sagan (2009), Oide (2010)]

Critical length (Catch-up distance):

\[L_c = 2R\theta_c \approx 2\sqrt{2Rx_b} \]

\[\theta_c = \arccos \left(\frac{R}{R + x_b} \right) \approx \sqrt{2x_b/R} \]

Path difference:

\[\Delta s = 2R(\tan(\theta_c) - \theta_c) \approx \frac{4}{3} \sqrt{\frac{2x^3}{R}} \]

Condition of neglecting outer wall:

\[\Delta s \gg \sigma_z \]

D. Sagan et al., PRST-AB 12, 040703 (2009).
K. Oide, Talk at CSR mini-workshop, Nov. 08, 2010.
3. CSR: Field dynamics: Multi-bend interference

➤ SuperKEKB DR

- CSR impedance: Forest of “narrow-band” spikes
- Multi-bend interference: Modify the measured power spectrum in CSR

DR layout

Bend:
- $\rho_{\text{bend}} \approx 2.7/-3$ m
- $L_{\text{bend}} \approx 0.7/0.3$ m
- $a/b \approx 24/34$ mm
- $L_{\text{drift}} \approx 0.9$ m

Impedance
3. CSR: Field dynamics: Waveguide modes

R. Warnock’s idea: Similarity of steady-state CSR and whispering gallery modes

Ref. R. Warnock, in ICFA beam dynamics Newsletter 63 (2014)
3. CSR: Field dynamics: Measurements

CSR measurements at NSLS VUV ring

Observation of coherent synchrotron radiation from the NSLS VUV ring

G.L. Carra, S.L. Kramera, J.B. Murphya, R.P.S.M. Lobob, D.B. Tannerb

Microbunching@Streak Camera

S. Kramer, EPAC 2002
3. CSR: Field dynamics: Measurements

CSR measurements at NSLS VUV ring
\[\frac{a}{b} = 80/42 \text{ mm}, \quad L_{\text{bend}} = 1.5 \text{ m}, \quad R = 1.91 \text{ m} \]

Chamber cross section

Model for calculation

Excellent agreements in peak positions and widths.
The discrepancy in amplitude at low- and high-frequency parts is attributed to the transfer function of the detection system.

Blue solid: SR impedance
Red dashed: Measured ISR spectrum
(Data provided by S.L. Kramer)
3. CSR: Field dynamics: Measurements

➤ High-resolution CSR measurements at CLS
Since the interesting wavelength of CSR is much smaller than the chamber geometry (\(\lambda << b\)), we can safely do ray-tracing for even complicated geometry.

3. CSR: Field dynamics: Measurements

Figure 10: Vacuum chamber of CLS at dipole where IR is extracted

R. Warnock
3. CSR: Field dynamics: Measurements

➤ High-resolution CSR measurements at CLS

FIG. 4 (color online). rf diode measurements in the time domain (oscilloscope traces) with a 50–75 GHz detector. Diode mounting and polarization: 1—backward horizontal; 2—backward vertical; 3—forward horizontal (with adjustment of time base). For clarity the curves have been separated vertically.

FIG. 5 (color online). Simulated E_x^2 at backward port vs ct, after a low pass filter to account for detector response. The origin of time t is when the bunch is 5 cm before the entrance to the bend. Only the lowest mode in y is included.

B.E. Billinghurst et al., PRL 114, 204801 (2015)
4. Summary

➤ Impedance model and single-bunch effects
 • Pseudo-Green function wakes obtained for KEKB and SuperKEKB rings
 • Sources of bunch lengthening and MWI in KEKB are not well understood yet
 • Beam tilt and TMCI are potentially important in SuperKEKB

➤ CSR
 • CSR effect is still a concern in SuperKEKB
 • CSR calculations based on parabolic equations well investigated
 • CSR fields calculation/measurement with 3D chamber is a very interesting subject to be investigated
4. Summary

➤ Impedance model and single-bunch effects
 ● Pseudo-Green function wakes obtained for KEKB and SuperKEKB rings
 ● Sources of bunch lengthening and MWI in KEKB are not well understood yet
 ● Beam tilt and TMCI are potentially important in SuperKEKB

➤ CSR
 ● CSR effect is still a concern in SuperKEKB
 ● CSR calculations based on parabolic equations well investigated
 ● CSR fields calculation/measurement with 3D chamber is a very interesting subject to be investigated

➤ SuperKEKB started beam commissioning on Feb. 1st
 ● Beam measurements to be delivered
 ● Welcome to follow the experiences of SuperKEKB
Thanks for your attention!
2. Impedance model: KEKB: LER

➤ Use Zotter’s equation

\[
\left(\frac{\sigma_z}{\sigma_{z0}} \right)^3 - \frac{\sigma_z}{\sigma_{z0}} - \frac{\alpha I_b \text{Im} \left\{ \frac{Z_{ij}}{n} \right\}_{eff}}{\sqrt{2\pi}(E/e)\nu_{s0}^2} \left(\frac{R}{\sigma_{z0}} \right)^3 = 0
\]

Ref. J. Corbett, TUPP028, EPAC08

\[
L_{\parallel \text{eff}} \approx 34\text{nH}
\]
3. CSR: SuperKEKB: Damping ring

➤ Findings: Multi-bunch instability

• Long-range CSR wake extend to distance of \(~0.1\ m\)

• Not considered in CSR impedance calculation: Resistive wall and chamber discontinuities

• Likely no multi-bunch CSR instability

\[\sigma_z = 0.2\text{mm} \]

Freq. < 1.4THz

L. Wang and D. Zhou