Beam-beam simulations for SuperKEKB Phase-3

Demin Zhou

Acknowledgements:
K. Ohmi, Y. Ohnishi, A. Morita

SuperKEKB mini-optics meeting
Mar. 07, 2019, KEK
Outline

➤ Introduction
➤ Simulation using BBWS and BBSS
➤ Summary
1. Introduction

➤ Phase-3 machine parameters (Road map)

* Ref. A. Morita, Talk at SuperKEKB commissioning meeting, Oct. 12, 2018

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1ex</th>
<th>2</th>
<th>2ex</th>
<th>3</th>
<th>3'</th>
<th>3ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_0) (A)</td>
<td>1.0</td>
<td>1.2</td>
<td>1.0</td>
<td>1.4</td>
<td>1.0</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td># bunch</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
</tr>
<tr>
<td>(\varepsilon_x) (nm)</td>
<td>4.6</td>
<td>2.0</td>
<td>4.6</td>
<td>2.0</td>
<td>4.6</td>
<td>2.0</td>
<td>4.6</td>
</tr>
<tr>
<td>(\varepsilon_y) (pm)</td>
<td>368</td>
<td>160</td>
<td>230</td>
<td>150</td>
<td>138</td>
<td>140</td>
<td>128.8</td>
</tr>
<tr>
<td>(\beta_x) (mm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(\beta_y) (mm)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(\sigma_z) (mm)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>(\nu_x)</td>
<td>45.57</td>
<td>44.57</td>
<td>45.57</td>
<td>44.57</td>
<td>45.57</td>
<td>44.57</td>
<td>45.57</td>
</tr>
<tr>
<td>(\nu_y)</td>
<td>43.61</td>
<td>46.61</td>
<td>43.61</td>
<td>46.61</td>
<td>43.61</td>
<td>46.61</td>
<td>43.61</td>
</tr>
<tr>
<td>(\nu_s)</td>
<td>0.0258</td>
<td>0.0225</td>
<td>0.0258</td>
<td>0.0225</td>
<td>0.0258</td>
<td>0.0225</td>
<td>0.0258</td>
</tr>
<tr>
<td>(\xi_y) (Geom.)</td>
<td>0.0272</td>
<td>0.0262</td>
<td>0.0328</td>
<td>0.0331</td>
<td>0.0278</td>
<td>0.0351</td>
<td>0.0351</td>
</tr>
<tr>
<td>(\lambda) (Geom.)</td>
<td>1.06E+34</td>
<td>1.46E+34</td>
<td>2.08E+34</td>
<td>3.14E+34</td>
<td>4.11E+34</td>
<td>4.00E+34</td>
<td>4.00E+34</td>
</tr>
<tr>
<td>(\lambda) (BBSS)</td>
<td>1.00E+34</td>
<td>1.30E+34</td>
<td>1.74E+34</td>
<td>2.16E+34</td>
<td>2.52E+34</td>
<td>2.55E+34</td>
<td>3.21E+34</td>
</tr>
</tbody>
</table>
2. BBWS simulation: Tune scan

Parameter set (1)

\[\frac{\sigma_y}{\sigma_{y0}} \text{ (RMS)} \]

Talk on Dec. 13, 2018
2. BBSS simulation

➤ All parameter set (1): $\nu_y = \ast .61$

- Scan of ν_x (same fractional part for LER and HER)

Beam sizes for $\nu_s^+ = .0225$, $\nu_s^- = .0258$
2. BBSS simulation

- All parameter set (1): $v_x = * .56$
 - Scan of v_y (same fractional part for LER and HER)
 - Beam very unstable for $v_y < * .53$

Beam sizes for $v_{s+} = .0225$, $v_{s-} = .0258$
2. BBSS simulation

➤ All parameter set (1): $v_x = 0.56$
 - Scan of v_y (same fractional part for LER and HER)
 - Beam very unstable for $v_y < 0.53$

σ_y/σ_{y0} (RMS)

Beam sizes for $v_{s+} = 0.0225$, $v_{s-} = 0.0258$
2. BBSS simulation

➤ All parameter set (1): $\nu_y = * .61$

- Scan of ν_x (same fractional part for LER and HER)

Change parameters:
$\beta_{x+}^* = 0.1 \text{ m} \to 0.23 \text{ m} \text{ (equalize } \sigma_y^*)$
$\varepsilon_y = 0.368 \text{ nm} \to 0.16 \text{ m} \text{ (equalize } \sigma_x^*)$

Beam sizes for $\nu_{s+} = .0225$, $\nu_{s-} = .0258$
2. BBWS simulation: Tune scan

- Parameter set (3ex)

e+(W)e-(S)

Lum. (L/L₀)

σ_y/σ_y0 (RMS)

Talk on Dec. 13, 2018
2. BBSS simulation

- All parameter set (3ex): $v_y=*.61$
 - Scan of v_x (same fractional part for LER and HER)

Beam sizes for $v_{s+}=.0225$, $v_{s-}=.0258$
2. BBSS simulation

- All parameter set (3ex): $\nu_y = * .61$
 - Synchro-beta resonances are wider in BBSS simulation than in those in BBWS?
 - The luminosity slope (black arrow) can be explained in BBWS sim.

Beam sizes for $\nu_{s+} = .0225, \nu_{s-} = .0258$
3. Summary

➤ On parameter set (1)
 ● e- beam is weaker than e+ beam
 ● Beam-beam instabilities seen in BBWS simulations are always seen in BBSS simulations (It should be true)
 ● Beam-beam instabilities only seen in BBSS simulations can be questionable (numerical noise or true physics?):
 * \(v_x - 3v_s = N/2, \ v_x - 4v_s = N/2 \)
 * Need to be benchmarked (using another code), or to be checked through beam experiments

➤ On parameter set (3ex)
 ● Agreement found in BBWS and BBSS simulations
 ● Resonances of \(v_x - 3v_s = N/2, \ v_x - 4v_s = N/2 \) to be understood (through benchmark simulation or experiments)