Beam-beam simulations for SuperKEKB Phase-3

Demin Zhou

Acknowledgements:
K. Ohmi, Y. Ohnishi, A. Morita

SuperKEKB mini-optics meeting
Dec. 13, 2018, KEK
Outline

➤ Introduction
➤ Tune scan using BBWS
➤ Simulation using BBSS
➤ Summary
1. Introduction

Phase-3 machine parameters (Road map)

- Ref. A. Morita, Talk at SuperKEKB commissioning meeting, Oct. 12, 2018

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1ex</th>
<th>2</th>
<th>2ex</th>
<th>3</th>
<th>3'</th>
<th>3ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₀ (A)</td>
<td>1.0</td>
<td>1.2</td>
<td>1.0</td>
<td>1.4</td>
<td>1.0</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td># bunch</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
<td>1576</td>
</tr>
<tr>
<td>εₓ (nm)</td>
<td>4.6</td>
<td>2.0</td>
<td>4.6</td>
<td>2.0</td>
<td>4.6</td>
<td>2.0</td>
<td>4.6</td>
</tr>
<tr>
<td>εᵧ (pm)</td>
<td>368</td>
<td>160</td>
<td>230</td>
<td>150</td>
<td>138</td>
<td>140</td>
<td>128.8</td>
</tr>
<tr>
<td>βₓ (mm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>βᵧ (mm)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>σₓ (mm)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>νₓ</td>
<td>45.57</td>
<td>44.57</td>
<td>45.57</td>
<td>44.57</td>
<td>45.57</td>
<td>44.57</td>
<td>45.57</td>
</tr>
<tr>
<td>νᵧ</td>
<td>43.61</td>
<td>46.61</td>
<td>43.61</td>
<td>46.61</td>
<td>43.61</td>
<td>46.61</td>
<td>43.61</td>
</tr>
<tr>
<td>νₛ</td>
<td>0.0258</td>
<td>0.0225</td>
<td>0.0258</td>
<td>0.0225</td>
<td>0.0258</td>
<td>0.0225</td>
<td>0.0258</td>
</tr>
<tr>
<td>ξᵧ (Geom.)</td>
<td>0.0272</td>
<td>0.0262</td>
<td>0.0328</td>
<td>0.0331</td>
<td>0.0278</td>
<td>0.0351</td>
<td>0.0351</td>
</tr>
<tr>
<td>L (Geom.)</td>
<td>1.06E+34</td>
<td>1.46E+34</td>
<td>2.08E+34</td>
<td>3.14E+34</td>
<td>4.11E+34</td>
<td>4.00E+34</td>
<td>4.00E+34</td>
</tr>
<tr>
<td>L (BBSS)</td>
<td>1.00E+34</td>
<td>1.30E+34</td>
<td>1.74E+34</td>
<td>2.16E+34</td>
<td>2.52E+34</td>
<td>2.55E+34</td>
<td>2.55E+34</td>
</tr>
</tbody>
</table>
2. BBWS simulation: Tune scan

➢ Parameter set (1)

\[e^+(W)e^-(S) \]

\[\text{Lum. (L/L}_0) \]

\[\pm v_x + 4v_y + 2v_s = N \]

\[\sigma_y / \sigma_{y0} \text{ (RMS)} \]

\[e^+(S)e^-(W) \]

\[\pm v_x + 4v_y + v_s = N \]
2. BBWS simulation: Tune scan

Parameter set (1ex)

\[e^+(W)e^-(S) \]
Lum. \((L/L_0) \)

\[\sigma_y/\sigma_{y0} \text{ (RMS)} \]
2. BBWS simulation: Tune scan

➤ Parameter set (2)

\(e^+(W)e^-(S) \)

Lum. \((L/L_0)\)

\(\sigma_y/\sigma_{y_0} \) (RMS)
2. BBWS simulation: Tune scan

Parameter set (2ex)

\[\frac{e^+(W)e^-(S)}{\text{Lum. (L/L_0)}} \]

\[\frac{\sigma_y}{\sigma_{y0}} \text{ (RMS)} \]

\[\frac{e^+(S)e^-(W)}{\text{Lum. (L/L_0)}} \]

\[\frac{\sigma_y}{\sigma_{y0}} \text{ (RMS)} \]
2. BBWS simulation: Tune scan

Parameter set (3)

\[
\begin{align*}
\sigma_y / \sigma_{y0} \text{ (RMS)} & \\
e^+(W)e^-(S) & \quad \text{Lum. (L/L_0)} & \\
\end{align*}
\]
2. BBWS simulation: Tune scan

➤ Parameter set (3')

\[e^{+}(W)e^{-}(S) \]

\[\text{Lum. (L/L}_0) \]

\[\sigma_y/\sigma_{y0} \text{ (RMS)} \]
2. BBWS simulation: Tune scan

➤ Parameter set (3ex)

\[\sigma_y / \sigma_{y0} \text{ (RMS)} \]

\[\text{e}^+ (W) \text{e}^- (S) \]

\[\text{Lum.} \ (L/L_0) \]

\[\text{e}^+ (S) \text{e}^- (W) \]
2. BBWS simulation: Tune scan

➤ Parameter set (3ex)

\[e^+(W)e^-(S) \]

Lum. \((L/L_0) \)

\[\sigma_y/\sigma_{y0} \text{ (RMS)} \]

\(\nu_x+k^*\nu_s=N \) shifted as expected when changing \(\nu_s \).

BUT resonance lines of \(\pm \nu_x+4\nu_y+C=N \) NOT shifted?
3. BBSS simulation

- All parameter sets: Luminosity
 - Working point: LER (44.57, 46.61), HER (45.57, 43.61)
3. BBSS simulation

➢ All parameter sets: Hor. beam size
 ● Working point: LER (44.57, 46.61), HER (45.57, 43.61)
 ● Typical x-z instability studied by K. Ohmi et al.
3. BBSS simulation

- All parameter sets: Ver. beam size
 - Working point: LER (44.57, 46.61), HER (45.57, 43.61)
3. BBSS simulation

Parameter set (3ex): Equal v_s for e+ and e- beams

- Working point: LER (44.57, 46.61), HER (45.57, 43.61)
- $v_s(e+) = v_s(e-) = 0.0225$
3. BBSS simulation

- Parameter set (3ex): Equal v_s for $e+$ and $e-$ beams
 - Working point: LER (44.57, 46.61), HER (45.57, 43.61)
 - $v_s(e+) = v_s(e-) = 0.0225$
4. Summary

➤ Tune scan using BBWS
 ● Good lum. region around (.57, .61) as Phase-2
 ● The “sweat” area get smaller from Param. set 1 to 3 ex
 ● Near the (.57,.61) working point, the beam-beam resonance $v_x+4v_y+C=N$ is strong. BUT, what is C? NOT correlated to v_s! Correlated to beam-beam tune shift?

➤ Simulations using BBSS
 ● x-z beam-beam instability are not seen in BBWS simulations, but seen in BBSS simulations at (.57, .61)
 ● Cure #1: Squeezing β_x* as suggested by K. Ohmi
 ● Cure #2: Equalizing v_s of e+ and e- beams? Possible? How necessary?
 ● Cure #3: Shifting v_s. $v_x+3v_s=N$ is important? To be checked.

➤ Future work
 ● Optimizations of key parameters: $(I_{bunch}, \beta_{x,y}^*, v_x, v_y)$ for HER and LER => More beam-beam simulations
2. BBWS simulation: Tune scan

Parameter set (3ex): rms σ_x