TMCBUG2 User's Manual

Ver. 1.0, Apr. 20, 1996
by Yasuo Arai
KEK, National Laboratory for High Energy Physics
1-1 Oho, Tsukuba, Ibaraki 305, JAPAN
araly@kekvax.kek.jp

TMCBUG2 isamonitor program for the 32 channel TMC-VME module, and helps the user
to debug, load program, execute program and supply useful routines. TMCBUG?2 is amodified
version of TMCBUG which was developed for 64ch TMC-VME module, and the TMCBUG has
been developed based on the DSPBUG which is originaly developed by Motolola Inc.
TMCBUG2 istailored to the TMC-VME module. Several commands and functions which is not
necesary to the module are removed to reduce the program size, and several new commands
specific to the module are added. This manual describes the command and functions of the
TMCBUG2. Some sentences for the commands which are exist in DSPBUG are copied from
"DSPBUG V2 Manua" prepared by Motololalnc..

Motolords commentin the "DSPBU G V2 manud" : "Thei nformation in thisdocument has bemn careful ly
checked and is bdieved to be entirely reliebl e Hower e, noregpondhility is assumed for inaccuraci es.
Furthermore, Motorda resarves the right to make changes to any produds heein to improvereli aility,
function, or design. Motoroladoes not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights or the rights of others.
First Edition, Copyright 1987 by MotorolaInc."

CONTENTS
(Some of the chapters are missing since they describe non-supporting functionsin TMCBUG2)

L TMCBUGZ. ...t e e ettt aas 1
0 g1 700 8o 1o o T PRI 1
O = (= P 1
1.3 TOIMINOIOGY ...ttt et eaas 1
1.4 Operating ENVIFONMENTuieiii e e 2

1.4.1 Seria CONroleee i 2
142 POWEIUD. . ettt ettt e et ettt e et et e et ettt 2
1.4.3 MEMOIY ACCESS. ...ttt et ettt eneas 2
144 SEACK USAE ... et 2
1.5 Interrupt Vectors Used By TMCBUG2........ccoviiiiiiiiiiiiieceveeeee 2
1.6 COMMAN SYNMEBX ... ettt eaas 3
1.7 NUMENC INPUE SYNEAX ...ttt eaes 4
1.8 Output Control Ctrl-S/Ctrl-Q, Ctrl-C, Ctrl-Y ..., 4
1.10 1/O POIS ANA DIIVEIS ...ttt eaes 4
0 1@ X 0o 4 1 (o PRI 5

2 TMCBUGZ2 COMMANDS 5
2.1 COomMMANG SYNEAX ... vttt 5
2.5 BRK - Breakpoint Commandcooieiuiiiiiiii e 6
2.6 COP - COPY MEBIMOIY. ...ttt eaens 7
2.8 DHP - DefiN@ HOSEt POIT.o e 7
2.9 DIS- Display User REJISIEIS.ttt 8
2.10 DMP - DUMP MEMOIYttt et ettt et et eenens 8
2.11 DST - Display TheUser Stackoovieiiiiiiiiie e 9
212 DTP-DefineTerminal POrto.oiiiiiiiiiii e 9
2.13 DVD - DeVICEDISPIAY. ...t 10
2.14 EVA - EVAlUSLE EXPrESSION.uiuieieiiie e 10
2.15 FIL - FilE MEMOIY ... 11
2.16 FND - FINd A VAU IN MEMOIYvieiii e 11
2.17 GO - BegiNn EXECULIONuei e 12
2.18 GOB - Begin Execution With Temporary Breakpointcccoenenes 13
2.19 HEL - HElp Command.ooouiiiiiiieie e 13
2.22 JSR - Call A USEr SUDIOULINEt e 14
2.23 LOA - Load OMF Records From The Host Portccovviiiiiiiiinnnnns 15
2.24 MEM - Memory Display/Modifyccouiiiiiiiiiiiiiie e 15
2.25 NBR - Set/Display the Number of Breakpoints to Execute Before Stopping.. 16
2.26 RD - Read Memory Location And Display Changes............c.coevvvieininnne. 16
2.27 REG - MOdify USer REQISIEIS 17
2.28 STK - Edit ThEUSEN SEACK .. .euveieieiiie e 17
2.29 TRA - TraCe INSITUCLIONS. ... et 18
2.30 UPL - Upload Memory TO The HOSt POIt ... 19
2.32 WRT - Write A Value Without Read Verificationcccoviiiiennnnn, 19
2.33 FIF - Read & Display FIFO COMteNtS.........ouviiieiiiiiiiiieieieeeee e 20
2.34 CSR - Display contents of TMC-CSR........oviviiiiiiiiiiieeie e 20
2.35 TMC - Display bit pattern of TMC MemMOrY........cocvvvviiiiiiiiiiiiieieaanes 20

3 USER ACCESSIBLE MONITORUTILITIES. ...t 21
3.1 The TMCBUG2 Utility Table.......ovieieiiii e 21
3.2 DSPBUG - TMCBUG2 Cold SEAIT......vieieieieiieieieee e 22
3.3 CMD - Command Level Entry POINt...........ccooieiiiiiiiiiiieee e 22
3.4 SET TERM - Set The Termina Port AsThe Current /O Port 22
3.5 SET HOST - Set The Host Port AsThe Current I/OPort......................... 22
3.6 DEFINE_TERM - Define Terminal Port...........cccooviiiiiii i 22
3.7 DEFINE_HOST - Define HOSt POIt.oveiiii e 23
3.8 INO - SCaN INPUE DEVICE ... e 23
3.9 IN1-Read INPUE DEVICE.t 23
3.10 IN2 - Input Data, Mask Parity, Top Byte Of AL.......cccovviniiiiiiiiiiiienns 23

3.11 IN3- Input Data, Mask Parity, Top Byte Of Al, Echo Character........... 23

312 INBYTE - INPUL A BYLE.. . et 23
3.13 INADD - INput AN ACIESS.t 23
3.14 INDAT - INPUED@A 24
3.15 INBYTE_NLS- Input A Byte And Ignore Leading Spaces...................... 24
3.16 INADD_NLS- Input An Address And Ignore Leading Spaces................. 24
3.17 INDAT_NLS- Input Data And Ignore Leading Spaces.......................... 24
3.18 OUTO - 8 Bit DAAOUIPUL.veeeveeeeeieeeieeeeeieeeee e e e e e e, 24
3.19 OUT1 - 8 Bit Data Output, Output CONtrol............c.covieieiiiiiiiieinenne. 25
3.20 OUT2 - Mask Parity, Shift Data, Data Output, Output Contral.............. 25
3.21 OUT3 - Output 3 Packed CharaCterS..........covvvieiieiiiiiei i 25
3.22 OUT4 - Output A String Of Packed CharaCters...........cocevvviiiiiiiinnnannnn. 25
3.23 OUTS5 - Output A String Of Packed CharaCters..........ccovvviiiiiiiiiiinnnnnnn. 26
3.24 OUTBYTE - OULPUL A BYTE.t 26
3.25 OUTADD - OULtPUL AN ATAIESS. ... et 26
3.26 OUTDAT - OULPUE DELAL et 26
3.27 OUTINT - Decimal Output Of A Valueooviviiiiiiiiiiiiieieeeas 26
3.28 ININT - Decimal Input Of A ValUue ... 27
329 CRLF-Print A SCR><LF> ..., 27
3.30 PRTSPC - PrNt A SPaCE. ...t 27
3.33 OUTFRAC - Output ValueInDecimalcooiiiiiiiiiiiiiicieeneas 27
3.34 Example Using The TMCBUG2 SUDIOULINES.vvviviiiiiiiinieieieaaes 27
APPENDIX A: KNOWN TMCBUG2 BUGS........cciiiiiiiiiieeeeee e 30
APPENDIX B: CURRENT LISTING OF BUGEQU.ASMciiiiiiiiiiiiiieieeaenen, 30

APPENDIX C: PROGRAM DOWNLOADING PROCEDURE USING AN IBM-PC.... 31

TMCBUG2 manual

1 TMCBUG2

1.1 Introduction

TMCBUG?2 is a standalone debug monitor for the TMC-VME module. TMCBUG2 iswritten
in DSP56002 assembly code and allows the user to develop applications on areal time
system.

1.2 Festures

The TMCBUG2 commands enable the user to:

Load/verify programs.

Modify/display memory.

Modify/display user's registers.

Execute/debug programs.

Set/remove breakpoints

Trace program execution.

Download/upload user data.

© N o o > w N B

Call many monitor utility subroutines.
The TMCBUG2 monitor is designed to allow auser to modify the system to meet specific
hardware/software requirements:

- 1/O device independence for the host and terminal ports.

1.3 Terminology

Throughout this document, several terms have special significance in describing the operation
and use of TMCBUG2:

1. Terminal Port - The RS232C port in the front panel and connected to the SCI port of DSP. A
user is attached to this port.The terminal port controlsinput and displays output associated
with TMCBUG2.

2. Host Port - Eight bit VME registers which are connected to the Host Interface of the DSP. A
VME host computer is attached to this port. The host port transfers programs or data between
the DSP56002 memory and a host computer.

3. Host Interface - Thisreferstothe 8 bit paralel /O interface on the DSP56002.
TMCBUG2 may be controlled through the DSP56002 host interface.

5. Numbers prefixed with a dollar sign are hexidecimal constants.

6. <CR> refersto acarriage return, ASCII code $0D.

-1-

TMCBUG2 manual

7. <SP> refersto a space, ASCII code $20.
8. DELETE refersto adelete or RUBOUT, ASCII code $7F.

9. Special control characters are generated by holding down the CONTROL key (sometimes
shown as CTRL) on the keyboard and simultaneously pressing akey. These sequences are
indicated by Ctrl-?where ?is the key code. For example, Ctrl-S indicates depressing the
control key and simultaneously depressing the S key.

1.4 Operating Environment

1.4.1 Seria Control
TMCBUG2 requires an I/O device to enter TMCBUG2 commands and display output. The
debug switch on the board configure itself at power up to operate on one of two devices:

1. The SCI on the DSP56002. The SCI isinitialized to 9600 baud.
2. The DSP56002 host interface.

The VME-TMC is controlled by a serial type of device (terminal or IBM-PC) or by memory
mapped |1/O when using the host interface.

1.4.2 Powerup

TMCBUG2 boots from one external 8Kx8 EPROM located at $4000-$FFFF in program
memory. Located in the low bytes, the EPROMs hold the TMCBUG?2, anintelligent loader
and several utility programs. A minimum of 3.5K of RAM (24 bits wide) isrequired at $1300 to
hold TMCBUG2 for execution.

When the boot takes place, aloader transfers TMCBUG2 from the EPROMSs to the program
RAMs and begins execution at starting address in the TMCBUG2. TheTMCBUG2
initialization message displays the highest memory address required by TMCBUG2. Any
memory $80 - $1300 and beyond the end address is available to the user.

1.4.3 Memory Access

TMCBUG2 accesses external X and P memory spaces with no wait states, and Y and 10
spaces with one wait states. Since TMCBUG2 hasno knowledge of the access time of the
user supplied external memory, TMCBUG2 accesses all external memory with the maximum
number of wait states. The bus control register (BCR) in the user register display is not used
until acontext switch is performed by using aJSR or GO command.

When TMCBUG?2 is switching its context between the monitor mode and the user mode, the
user's BCR is restored which may prevent TMCBUG2 access to its own memory to
complete the context switch.

1.4.4 Stack Usage

The software interrupt (SWI) is reserved for TMCBUG2 to implement breakpoints. When
the GO command begins program execution, the user must reserve one location on the
DSP56002 system stack for breakpoints. The breakpoint causes a software interrupt and
pushes the return address and status register on the stack.

When using the JSR command, the user must reserve at least one stack location since
TMCBUG2 pushes on areturn address for the user's RTS from the subroutine. If the user has
breakpointsin the subroutine, two stack locations must be reserved for TMCBUG2 since a
SWI aso pushes another address on the stack.

TMCBUG2 manual

1.5 Interrupt Vectors Used By TMCBUG2
TMCBUG2 uses three interrupt vectors:

1. Stack Error - The stack error vector (P:$0002) isinitialized by TMCBUG2 at powerup
pointing to a TMCBUG2 routine. The routine reports the stack error and returns control to
TMCBUG2. If astack error occurs, the stack pointer is saved. Examination of the stack
pointer indicates if the error isdue to pushing afull stack or pulling an empty stack. The user
may change the stack error vector at any time.

If the stack pointer has the stack error (SE) bit set, the user must reset the stack pointer (using
the REG command) before TMCBUG?2 allows execution of the user program.

2. Trace - Thetrace vector (P:$0004) isused by TMCBUG2 to implement tracing and
transfer of control commands. This vector is constantly being changed by TMCBUG2
depending onthe current user state. Since thisvector is constantly being changed, it should
not be used by the user.

3. SWI - The software interrupt vector (P:$0006) is used by TMCBUG2 to implement
breakpoints. If breakpoints are not being used, the user may write this vector and perform a
SWI operation.

If the user does not write anew SWI vector but executes a SWI, the registers are saved and
control returnsto TMCBUG2. TMCBUG2 natifies the user that an unexpected SWI has been
encountered. This may be used to save the current user state and return to TMCBUG2 for
debugging.

Other interrupt vectors are in program RAM and may be used at any time by the user program.

1.6 Command Syntax

All TMCBUG2 commands are one to three alphabetic characterslong and may be entered
in upper case or lower case. The delimiter characters for commands are the space and carriage
return. TMCBUG2 takes different actions depending on the the command delimiter. Typicaly,
if more parameters are needed for the command, a space is the delimiter before each
parameter. If no parametersare needed, a carriage return executes the command. For
example if the command DTP (define terminal port) is entered at the command level followed
by <CR>, the command displays the current driver for the terminal port. If a<SP>isthe
delimiter, the command parser accepts a parameter (number) as the new value for the terminal
driver.

During command input, errors are corrected using the DELETE (RUBOUT) key. When
TMCBUG2 deletes an error (assumed to be on avideo type of terminal) it backspaces over
the error character, blanksit out and positions the cursor next to the previous character that was
valid. When three characters have been input, no more alphabetic characters are accepted. At
this point, only a delete or delimiter may be entered.

The command level parses commands alphabetically and executesthe first command with
sufficient distinguishing characters. For example, assume the user typed "B" at the command
level. Several commands begin with "B":BDA, BDB, BDS and BRK. Since "B" matchs BDA
first, the BDA command is executed.If "BR" is entered at the command level, the first
command that matchsis BRK.

A special command at the command level is the decimal point "." command. This does not
require adelimiter and traces one instruction immediately (see TRA command).

Some commands alow the Ctrl-Y or Ctrl-C characterto terminate the TMCBUG2
command.(Although both Ctrl-Y and Ctrl-C are used for command termination, Ctrl-Y is

-3-

TMCBUG2 manual

used throughout this document).This is to allow the user to return to the command level if a
command is started that doesnot normally terminate. For example, if the LOA command is
entered to load an OMF file but the host is not ready to send data, then the LOA command
waits indefinitely. The LOA command may be terminated with Ctrl-Y or Ctrl-C to return to the
command level.

1.7 Numeric Input Syntax

Several commands require numeric input for their parameters. All TMCBUG2 input/output
uses hexidecima numbers.

TMCBUG2 accepts character input up to the amount of characters required for each data type.
At thispoint TMCBUG2 does not allow any more charactersto be input and waits for a
delimiter or a DELETE character.The delimiter characters for numeric input are the space,
carriage return and the up arrow (). For example, for an eight bit value, TMCBUG2 dlows
up to 2 hex charactersto beinput. If the input is an address, then up to 4 ASCII hex characters
may be input (all addresses are assumed to be 16 bits). Fewer characters may be input and
leading zeros are not needed. The number "001A" is accepted the same as"1A" for an address.

The parsing is similar to the command level when aDELETE key is entered.When the
numeric field is full, the only characters allowed arethe DELETE or a delimiter.When a
delimiter is entered, the numeric value input is complete.

If aCtrl-C or Ctrl-Y character is typed when TMCBUG?2 isexpecting numeric input,
TMCBUG?2 returns to the command level without executing the command. Thisisamethod of
aborting the command.If a non-hex character is entered when numeric entry is required,
TMCBUG2 outputs an error message and returns to the command level without processing the
requested command.

On commands that require two addresses to specify a range of addresses (such as FIL or
FND), the delimiter for the first address echos asadash (-). Thisisto remind the user that the
second address specifies the end of the range and the first address is the start of the range.

1.8 Output Control Ctrl-S/Ctrl-Q, Ctrl-C, Ctrl-Y

The TMCBUG?2 output follows the Ctrl-S/Ctrl-Q (stop/start) flow control protocol used by DEC
and other terminal manufacturers. If TMCBUG2 is outputting a considerable amount of data
(such ason the DMP command), it ispossible for TMCBUG?2 to transmit faster than the
terminal can receive the data. Most terminals respond with a Ctrl-S (stop) character to stop
the flow of characters TMCBUG2 monitors the input while outputting strings and numeric
fields and stopsits output if a Ctrl-Sisreceived. When theterminal can accept more
characters, aCtrl-Q (start) command resumes outputting data. The user may also stop the
output if needed by typing Ctrl-S and restart display scrolling using Ctrl-Q.

If a Ctrl-C or Ctrl-Y character is received when TMCBUG2 is outputting data, TMCBUG2
returns to the command level. Thisis used to terminate commands that print large amounts of
data such as the DMP command.

Any character received during output other than Ctrl-C, Ctrl-Y, Ctrl-Q and Ctrl-Sisignored.

1.10 1/O Ports And Drivers
Two generic driver routines are available in TMCBUG2. Each device on the board isidentified

by aunique driver number and a three character name. The name isto help the user
remember the device associated with the device number. The current devices are defined below:

-4-

TMCBUG2 manual

1. $000000 SCI - Thisisthe Serial Communications Interface (SCI) on the DSP56002. This
driver initializes the SCI to 9600 baud.

2. $000001 HST - This is the host interfaceonthe DSP56002.

It is possible to control TMCBUG2 from any device. The default configuration is the terminal
port assigned to driver 1 (SCI) and the host port assigned to driver 2 (HST).

1.11 1/O Control

Thel/Oiscontrolled by setting a variable called IODEV. This variable contains the driver
number to perform 1/0 on. Any 1/O performed references IODEV to find out what device isto
be used and the appropriate driver islooked up in IOTBL and dispatched to. Two other
variables, TDEV and HDEV hold the driver numbers for theterminal port and the host port
respectively. If I/O isdesired on the host port, the driver value from HDEV is copied to
IODEV and any 1/0 subroutine called uses the host port. TMCBUG2 is constantly switching the
value of IODEV depending onif it is reading/writing from the terminal port or host port.

1.12 Powerup Options

2 TMCBUG2 COMMANDS
2.1 Command Syntax

TMCBUG2 contains a powerful set of commandsto allow the user flexibility in debugging
and developing DSP56002 code. TMCBUG2 is at the command level when the prompt
"TMCBG2>" isprinted. Entering a <CR> at the command level (no command) reprompts the
user for acommand.

Thenotation to indicate parameters for the commands is described below:

1. <prm> - A parameter enclosed in angle brackets<> indicates arequired value for the
command.

2. [optl,opt2,...] - Optional parameters are enclosed in square brackets [] and indicate a
list of optional parameters for the command. One of thelisted parameters may be selected or
no parameter may be selected.

3. <[optl,opt2,..]> - Thisindicates alist of options where one option must be supplied. These
options are enclosed in angle and square brackets <[]>.

The <SP> and <CR> are the only delimiters that are allowed for commands. The <SP>, <CR>
and " are the delimiters for numeric parameters. In commands that require arange to be entered,
adash ("-") echos between addresses specifying the range even though the addresses are
delimited with a space or carriage return.

All command names and parameters may be entered in upper or lower case.

TMCBUG2 manual

Command Overview:

Execution Control:

GO [ADDR] Begin execution

JSR[ADDR] Call asubroutine

GOB [BREAKPOINT] Set temporary breakpoint and

begin execution at current PC

Debugging:

BRK <[SR,-,<CR>]> Breakpoints

NBR [NUMBER OF BREAKPOINTS] Number of breakpoints to execute
before stopping

TRA [N INSTRUCTIONS] Trace

Program/Data Transfers:

LOA Load OMF records

UPL <[P, X,Y]>:<ADD1> <ADD2> <[O,D]> Upload memory to the host

Device Configuration:

DHP [DEVICE] Define host port device
DTP[DEVICE] Define terminal port device
Display:

DIS Display registers
DMP<[P,X,Y]>:<ADD1> [ADDZ2] Dump memory

DST Display Stack

DVD Device display

FND <[P,X,Y]>:<ADD1> <ADD2> <VALUE>[MASK] Find valuein memory

RD <[P, X,Y]>:<ADDR> Read memory location
Modify:

COP<[P,X,Y]>:<ADD1> <ADD2> <[P,X,Y]>:<ADDR> Copy memory

FIL <[P,X,Y]>:<ADD1> <ADD2> [VALUE] Fill memory

MEM <[P,X,Y]>:<ADDR> Memory examine/modify
REG Register examine/modify
STK Stack examine/modify
WRT <[P,X,Y]>:<ADDR> <VALUE> [REPEAT] Write without verify
Miscellaneous:

EVA <ARG1> <[+,-,* /]> <ARG2> Evaluate expression

HEL Help

CSR Display contents of TMC CSR
register

T™MC Display contents of TMC internal
memory

ROM <program> Call second ROM program

2.5 BRK - Breakpoint Command

BRK <[-,SR,<CR>]>

The BRK command is to set/remove/display breakpoints. The BRK command isfollowed by an
option character:

1. - (Dash) - Thisremoves all breakpoints.

2. S- Thissets breakpoints. After "S" is entered, TMCBUG2 prompts for the breakpoint to be
set with ">",

-6-

TMCBUG2 manual

3. R-This removes breakpoints. After "R" is entered, TMCBUG2 prompts for the breakpoint
to be removed with ">".

4. <CR> - Thisdisplays the current breakpoint list.

A total of ten breakpoints are possible. By default, TMCBUG2 stops execution after the first
breakpoint is encountered. The NBR command is used to set a different number of
breakpoints to be executed before stopping.

Examples:

(remove all breakpoints)

TMCBG2>BRK -

0000 0000 0000 0000 0000 OO0 0000 0000 0000 0000
(set abreakpoint at $1234)

TMCBG2>BRK S>1234

1234 0000 0000 0000 0000 0000 0000 OO0 0000 0000
(set abreakpoint at SABCD)

TMCBG2>BRK S>ABCD

1234 ABCD 0000 0000 0000 0000 0000 0000 0000 0000
(remove breakpoint from $1234)

TMCBG2>BRK R >1234

0000 ABCD 0000 0000 0000 0000 0000 0000 0000 0000

2.6 COP - Copy Memory
COP<[P,X,Y]>:<ADD1> <ADD2> <[P, X,Y]>:<DEST>

The COP command moves memory starting at ADD1 through ADD2 to address DEST.A read
verify isperformed after the write operation.

Examples:

TMCBG2>COP P:E000-E105 X:0

ERR 0100 (thissectionis ROM or no memory)
ERR 0101

ERR 0102

ERR 0103

ERR 0104

ERR 0105

TMCBG2>

2.8 DHP - Define Host Port

DHP [DRVR #]

TMCBUG2 manual

The DHP command defines the driver for the host port. The host port is used to upload
memory from the prototype board or to download programs. If the command is delimited
with a<CR>,the current number for the host port driver isdisplayed. If thecommand is
delimited with a <SP>, the command accepts a new value for the host port driver and
displays the new host port driver number. If no host computer is available, the user can assign
the host port number to be the same as the terminal port. This allows the user to upload memory
and download OMF records from the terminal port.

The DHP command also displays a threecharactername representing the device. Thisname
issetin IOTBL. A list of devicesis generated by using the DVD command.

Examples:

(display host port number)
TMCBG2>DHP

000002 DRB

(change host port driver to be the DSP SCI)
TMCBG2>DHP 3

000003 SCI

TMCBG2>

2.9 DIS- Display User Registers

DIS

The DIS command displays the user registers. The old register values are saved when a GO,
JSR or TRA command is executed. After control is passed back to TMCBUG2 by aRTS (if the
JSR commandis used), a breakpoint or hardware abort, the registersthat have changed are
flagged with an asterisk.

Examples:

(display user registers)
TMCBG2>DIS

X1= 000000 X0= 000000 R7=0000 N7=0000 M7= 0000

Y 1= 000000 Y 0= 000000 R6=0000 N6=0000 M6= 0000

A2= 00A1= 000000 AO= 000000 R5=0000 N5=0000 M5= 0000
B2= 00B1= 000000 BO= 000000 R4= 0000 N4=0000 M4= 0000
R3=*F123 N3=0000 M3= 0000

PC=*F001 SR=0354 OMR= 02R2=*E000 N2=0000 M2= 0000
LA= 0000 LC=0000SP=00R1=0000 N1=0000 M1= 0000
BCR= 0004 IPR=000000 RO=0000 NO= 0000 MO= 0000

In the above example, registers R2, R3 and the PC were changed
due to the user program.

TMCBUG2 manual

2.10 DMP - Dump Memory

DMP <[P,X,Y]>:<ADD1> [ADD2]

The DMP command displays memory in ahorizontal format.The DMP command rounds the
first addressto the lowest 8 word block and then dumps enough lines to include the datafor the
second address.

If the first addressis delimited by a <CR> then the DMP command dumps four lines of
memory (32 words). Ctrl-S/Ctrl-Q, Ctrl-C, Ctrl-Y output control is observed during data
output (see the section Output Control).

Examples:

(dump P memory)

TMCBG2>DMP P:E003-E00B

P:E000 000000 000000 000000 000000 000000 000000 000000 000000

P:E008 000000 000000 000000 000000 000000 000000 OO0 000000
TMCBG2>DMP P:E015(delimit with a <CR>)

P:E010 512314 321334 402010 1BFDA1 A8B9D9 FFOOFF AB123A 123412
P:E018 001104 402010 1BFDA1 A8B9D9 FFOOFF AB123A 123412 AABBDD
P:E020 402010 1BFDA1 A8B9D9 FFOOFF AB123A 123412 78A91B B18D11
P:E028 1BFDA1 A8B9D9 FFOOFF AB123A 123412 402010 1BBB1B DADDAD
TMCBG2>

2.11 DST - Display The User Stack

DST

The DST command displays the datain the user stack according to the user stack pointer. If
the SE bit is set in the user stack pointer, an error is generated and the stack is not displayed.

Examples:

TMCBG2>DST (display the user's stack)
SSH SSL

01 0121 5512(bottom of stack)

02 5919 5291

03 0501 5929

04 0101 2223(top of stack, SP=4)
TMCBG2>

2.12 DTP - Define Terminal Port

DTP[DRVR #]

TMCBUG2 manual

The DTP command defines the driver for the terminal port.If the command is delimited with a
<CR>, the command displays the current number for the terminal port driver. If the command
is delimited with a<SP>, anew value for the terminal port driver isinput. For example, if the
user is operating with aterminal on DUART-A, the user can change TMCBUG2 to operate
from the host interface by changing the terminal port driver to 4.

The DTP command also displays a threecharactername representing the device. Thisname
issetin IOTBL. A list of devicesis generated with the DVD command.

Examples:

(display host port number)
TMCBG2>DHP

000001 DRA

(change host port driver to be the DSP host
interface (or host interface if enabled))
TMCBG2>DHP 4

000004 HST

TMCBG2>

2.13 DVD - Device Display
DVD

The DVD command liststhe driversand their names that are currently in the devicetable
IOTBL. Following each device driver number, athree character nameis printed.The three
character name is an abbreviation of the device name. The nameisto aid the user in
remembering the physical device associated with the device number.

Examples:

(display host port number)

TMCBG2>DVD

000000 NUL (Null Device)

000001 DRA (DUART-A)

000002 DRB (DUART-B)

000003 SCI (SCI on the DSP56002)

000004 HST (8 bit parallel host interface on the DSP56002)
TMCBG2>

2.14 EVA - Evaluate Expression

EVA <AAAAAA><[+,-*/.]><BBBBBB>

-10-

TMCBUG2 manual

The EVA command implements afour function calculator.The operation is performed on the
two operands AAAAAA and BBBBBB. Both operands are considered to be two's complement
fractional numbers.

The divide operation is a 24 bit two's complement signed division as shown in the
DSP56002 Digital Signal Processor User's Manual in the section describing the DIV instruction.

The decimal point command converts the hex fraction to adecimal number.

Examples:

(add two numbers)

TMCBG2>EVA 123456 + 010203=133659
(subtract two numbers)

TMCBG2>EVA 123456 - 010203=113253
(multiply two numbers)

TMCBG2>EVA 123456 * 010203=0024B1 EA9204
(divide two numbers)

TMCBG2>EVA 002222 / 123456=00EFFF
(convert number to decimal)
TMCBG2>EVA 873410 . -.94372367
TMCBG2>

2.15 FIL - Fill Memory

FIL <[X,Y,P]>:<ADD1> <ADD2> [NNNNNN]

The FIL command fills X, Y or P memory from ADD1 through ADD2 with the value of
SNNNNNN. A verify is performed after the data has been written to the memory location and if
there isan error writing the address, an error message is printed. Errors occur if thereis ROM
or no memory at the specified address.

If <ADD2> isddimited with a<CR>, then a default value of
zero is used for SNNNNNN.

Examples:

(fill X memory from $5 through $1A with $1A2B3C)
TMCBG2>FIL X:5-1A 1A2B3C

(fill'Y memory from 0 through $105 with $123456)
TMCBG2>FIL Y:0-105 123456

ERR 100(this section of Y memory is ROM)

ERR 101

ERR 102

ERR 103

ERR 104

ERR 105

TMCBG2>FIL Y:0-1F (fill Y with zeros)
TMCBG2>

-11-

TMCBUG2 manual

2.16 FND - Find A Vaue In Memory

FND <[P,X,Y]>:<ADD1> <ADD2> <VALUE> [MASK]

The FND command searchs for VALUE from ADD1 through ADD2. The optional mask
performs alogical AND to mask the data after it isread from memory. If VALUE isdelimited
with <SP> then the MASK is entered, otherwise the default value of $FFFFFF (match al bits) is
used. The MASK isused asa wildcard specifier to search for a particular bit or fieldsin
memory.

Examples:

TMCBG2>FND P:E000-F000 AF080(Search for IMP instruction)
E000 OAF080

E002 OAF080

E004 OAF080

E006 OAF080

TMCBG2>FND X:0-FF 1300 FFFFOO(search for 0013xx)
0003 001315

0005 001319

0006 001320

0009 001355

TMCBG2>

2.17 GO - Begin Execution

GO [ADDR]

The GO command begins execution of the user program.If no addressis given, execution
begins at the address specified by the user program counter. If an addressis given, execution
begins at the specified address.

If the current program counter (or address in the command) is pointing to a breakpoint,
TMCBUG?2 traces 1 instruction to move past the breakpoint and then begins

execution.Execution of the user's program continues until the specified number of breakpoints
have been executed (see NBR command) or a hardware abort is generated. The hardware abort
is software disabled when the prototype board is in the monitor mode. When the GO command
terminates due to abreakpoint or hardware abort, a register dump.

If no breakpoints are set, TMCBUG2 prints a warning message indicating that no
breakpoints are set and then begins execution of the user program. If the SE bitis set in the
stack pointer, TMCBUG?2 prints out an error message and does not begin execution. The user
must change the stack pointer and remove the SE bit (by using the REG command) before
execution of the user program is allowed.

Examples:

TMCBG2>GO EO000 (begin execution at $E000)
BREAKPOINT

-12-

TMCBUG2 manual

X1= 000000 X0=*123456 R7=0000 N7=0000 M7= 0000

Y 1= 000000 YO0=*9A9A9A R6= 0000 N6=0000 M6= 0000

A2= 00A1= 000000 AO= 000000 R5=0000 N5=0000 M5= 0000
B2=*00B1=*000000 BO=*000000 R4= 0000 N4=0000 M4= 0000
R3=0000 N3=0000 M3= 0000

PC=*F000 SR=0354 OMR=02R2= 0000 N2=0000 M2= 0000
LA= 0000 LC=0000SP=00R1=0000 N1=0000 M1= 0000
BCR= 0004 IPR=000000 RO=0000 NO=0000 MO= 0000

TMCBG2>

The PC in theregister display isthe location of the next
instruction to be executed. The instruction at $F000 has not
been executed.

2.18 GOB - Begin Execution With Temporary Breakpoint

GO [BREAKPOINT]

The GOB command sets a temporary breakpoint and begins execution of the user program
at the current user PC. If no breakpoint is given, no breakpoint is set and execution begins at
the address specified by the user program counter. After any breakpoint is encountered, the
temporary breakpoint isremoved. The GOB command is useful when it isdesired to step
through programsin large blocks without having to set abreakpoint, execute the program
and then remove the breakpoint.

Execution of the user's program continues until the specified number of breakpoints have been
executed (see NBR command) or a hardware abort is generated.

If the SE hit is set in the stack pointer, TMCBUG2 prints out an error message and does not
begin execution. The user must change the stack pointer and remove the SE bit (by using the
REG command) before execution of the user program is allowed.

Examples:

TMCBG2>REG(display current user PC)
PC=E000
SR=0254(Ctrl-Y)
TMCBG2>GOB E010 (begin execution at $E000)
BREAKPOINT
X1= 000000 X0=*123456 R7=0000 N7=0000 M7= 0000
Y 1= 000000 Y0=*9A9A9A R6=0000 N6= 0000 M6= 0000
A2= 00A1= 000000 A0= 000000 R5=0000 N5=0000 M5= 0000
B2=*00B1=* 000000 BO=*000000 R4= 0000 N4= 0000 M4= 0000
R3= 0000 N3=0000 M3=0000

=*E010 SR=0354 OMR=02R2= 0000 N2=0000 M2= 0000
LA=0000 LC= 0000SP=00R1=0000 N1=0000 M1= 0000
BCR= 0004 IPR= 000000 RO=0000 NO=0000 MO= 0000

TMCBG2>

2.19 HEL - Help Command

-13-

TMCBUG2 manual

HEL

The HEL command displays the commands currently in the command table followed by a one
line description of the command. Thefirst 3 characters of each line is the commandname.
Ctrl-S/ICtrl-Q, Ctrl-C, Ctrl-Y output control is observed during data output (see the section
Output Control).

Examples:

TMCBG2>HEL

BDA [BAUD] SET BAUD RATE FOR DUART-A

BDB [BAUD] SET BAUD RATE FOR DUART-B

BDS[BAUD] SET BAUD RATE FOR SCI

BRK <[SR,-,<CR>]> SET/REMOVE/REMOVE ALL/DISPLAY BREAKPOINTS
COP <[P,X,Y]>:<ADD1><ADD2> <[P,X,Y]>:<DEST> COPY MEMORY

TMCBG2>

2.22 JSR - Call A User Subroutine

JSR [ADDR]

The JSR command callsa user subroutine TMCBUG?2 transfers control to the user
subroutine and control is returned to TMCBUG2 when the user executesa RTS or a breakpoint.
If no addressis given, the address of the routine is taken from the user program counter.If an
address is given, the user program counter is changed to the new address and execution is
started.

After the user RTSis executed, the program counter in the user registersis the starting address
of the subroutine if no breakpoints were encountered. If a breakpoint was encountered during
subroutine execution, the program counter is the first instruction following the last breakpoint
executed.This occurs because the address of the program counter isnot meaningful after the
user RTSis executed.

If no breakpoints are set, TMCBUG?2 prints out awarning message indicating that no
breakpoints are set and then begins execution of the user program. If the SE bitis set in the
stack pointer, TMCBUG?2 prints out an error message and does not begin execution. The user
must change the stack pointer and remove the SE bit (by using the REG command) before
execution of the user program is allowed.

Examples:
TMCBG2>JSR E000(the user calls a subroutine at address $E000)
USER RTS(the user RTS is executed)

X1= 000000 X0= 000000 R7=0000 N7=0000 M7= 0000
Y 1= 000000 Y 0= 000000 R6=0000 N6=0000 M6= 0000

-14 -

TMCBUG2 manual

A2= 00A1= 000000 AO= 000000 R5=0000 N5=0000 M5= 0000
B2= 00B1= 000000 BO= 000000 R4= 0000 N4=0000 M4= 0000
R3=*F123 N3=0000 M3= 0000

PC=*F001 SR=0354 OMR= 02R2=*E000 N2=0000 M2= 0000
LA= 0000 LC=0000SP=00R1=0000 N1=0000 M1= 0000
BCR= 0004 IPR=000000 RO=0000 NO= 0000 MO= 0000

TMCBG2>

2.23 LOA - Load OMF Records From The Host Port

LOA
The LOA command first sends a <CR> to the host port and then loads object module format
(OMF) records from the host port. TMCBUG2 echosaP, X or Y to the terminal port

corresponding to the memory spaceina” DATA" or"_BLOCKKDATA" record.
The host port is assigned as same as the terminal port at power up.

If it isdesired to download OMF records from the terminal port, assign the same device driver
number to the host port asis assigned to the terminal port using the DHP command.See
Appendix C for the procedure to load aprogram using an IBM-PC.

If the command is accidentally entered or the host port is not sending data, the command is
terminated by typing Ctrl-Y.

Examples:

TMCBG2>L OA (the user starts the load)
XY PPP(the user had asegment in X, Y and 3 P segments)
TMCBG2>(done)

2.24 MEM - Memory Display/Modify

MEM <[P,X,Y]>:<ADDR>

The MEM command allows memory to be displayed/modified onelocation at a time. After
the MEM command is given, the memory space, memory address, and the datain decimal and
hex aredisplayed.At this point, several subcommands are available:

1. <CR> - (carriage return) Display the next memory location.

2. <SP> - (space) Change the current memory location.A greater than sign (>) prompts for
the new value. If no valueis entered, the memory location is not changed.

3. - (up arrow) Display the previous memory location.

4. Ctrl-Y, Ctrl-C - Exit the memory change mode.

-15-

TMCBUG2 manual

If the input hex value during a change operation is delimited with an up arrow ("), the memory
location is changed and the previous memory location is displayed.

Examples:

TMCBG2>MEM X:0(display data at X:0000)

X:0000 +.00784313 010101 (the user enters a <CR>)

X:0001 +.03136254 040404 (the user enters a <CR>)

X:0002 +.03136254 040404 (the user enters a <CR>)

X:0003 +.03136254 040404 (the user enters a <CR>)

X:0004 +.03921568 050505 >123456 (enter a space to change the value)
X:0005 +.04705882 060606 (enter ™ to go to the previous location)
X:0004 +.14222216 123456 (a Ctrl-Y is entered)

TMCBG2>

2.25 NBR - Set/Display the Number of Breakpoints to Execute Before Stopping

NBR [# of breakpoints]

The NBR command sets/displays the total number of breakpoints to execute before stopping.
By default, this number is set to one. If thisvalueis changed with the NBR command, for
example to three, then execution stops after three breakpoints have been executed. Thisisvery
useful whenitis desirable to stop aprogram in aloop after many passes. If the command is
terminated with a carriage return, the current number isdisplayed.If the command is
terminated with a space, a new value is entered.

Examples:

TMCBG2>NBR (display the number of breakpoints to execute)
NUM BRKS= 0001

TMCBG2>NBR 3 (set the number of breakpoints to execute to 3)
NUM BRKS=0003

TMCBG2>

2.26 RD - Read Memory Location And Display Changes
RD <[P,X,Y]>:<ADDR>

The RD command reads the data at address ADDR and displays any changes. It is assumed that
theinitial value is zero. Every time the memory location changes value, the new vaue is
displayed. Thisisuseful for monitoring a status register, a PIA input port or a serial receive
register to aid program and hardware debugging.Ctrl-Y terminates this command and returns
to the command level.

-16 -

TMCBUG2 manual

Examples:

TMCBG2>RD X:FFF4 (monitor data at the serial receive register)
X:FFF4 000041 (the character A is received)

X:FFF4 000042(the character B is received)

Citrl-Y (the user terminates and returnsto TMCBUG?2)

TMCBG2>

2.27 REG - Modify User Registers

REG

The REG command allows the user to modify the registers of the current user state.Once the
command is entered, the first register is displayed with itsvalue. At this point several
subcommands are available:

1. <CR> - (carriage return) Display the next register.

2. <SP> - (space) Changethe current register.A greater than sign (>) promptsfor the new
value. If novalueisentered, the register is not changed.

3. M- (up arrow) Display the previous register.
4. Citrl-Y, Ctrl-C - Exit the register change mode.

If the input hex value during a change operation is delimited with an up arrow (%), the register is
changed and the previous register is displayed.

Examples:

TMCBG2>REG (enter register change mode)
PC=EQ00 (enter a space)

SR=0254 >0255 (enter a space to change the register,
delimit with ” to go to the PC)

PC=EQ00 (enter Ctrl-Y to exit)

TMCBG2>

2.28 STK - Edit The User Stack

STK

The STK command edits the user stack. After the command is entered, the following options
are available:

1. <CR> - (carriage return) Display the next stack location.

2. <SP> - (space) Change the current stack location.A greater than sign (>) promptsfor the
new value. If novalueis entered, the stack location is not changed.

-17 -

TMCBUG2 manual

3. - (up arrow) Display the previous stack location.
4. Ctrl-Y, Ctrl-C - Exit the stack change mode.

If the input hex value during a change operation is delimited with an up arrow ("), the stack
location is changed and the previous stack location is displayed.

If the SE hitissetin the user stack pointer, an error message is generated.

Examples:

TMCBG2>STK (enter stack edit mode)

01 SSH = 0512 (enter 3 carriage returns)

01 SSL = 0352

02 SSH =FB12

02 SSL = 0354 >0355 (enter a space and change the value)
03 SSH = F121 (user enters” to go to the previous)

02 SSL = 0355 (user enters Cirl-Y to exit)

TMCBG2>

2.29 TRA - Trace Instructions

TRA [N]

The TRA command allows single step execution of the user program.The execution begins
from the program counter specified in the user registers. If Nis not given, TMCBUG2 traces
oneinstruction. Tracing continues until the number of instructionsis traced or a breakpoint is
encountered.After tracing is complete, the user registers are displayed. After each instruction is
traced, the current program counter isdisplayed.This program counter is the address of the
next instruction to be executed. Tracing may be aborted by typing Ctrl-Y during tracing.

A short form of the trace command isto use a period (.) at the command level. Thisis
equivalent to "TRA" or "TRA 1".

Examples:

TMCBG2>.(trace 1 instruction)
TR 6005

X1= 000000 X0= 000000 R7=0000 N7=0000 M7= 0000

Y 1= 000000 Y 0= 000000 R6=0000 N6=0000 M6= 0000

A2= 00A1= 000000 AO= 000000 R5=0000 N5=0000 M5= 0000
B2= 00B1= 000000 BO= 000000 R4= 0000 N4=0000 M4= 0000
R3=0000 N3=0000 M3= 0000

PC=*6005 SR= 0354 OMR=02R2=0000 N2=0000 M2= 0000
LA= 0000 LC=0000SP=00R1=0000 N1=0000 M1= 0000
BCR= 0000 IPR=0000R0= 0000 NO=0000 MO= 0000
TMCBG2>TRA 4

TR 6006

TR 6007

TR 6008

-18-

TMCBUG2 manual

TR 6009

X1= 000000 X0= 000000 R7=0000 N7=0000 M7= 0000

Y 1= 000000 Y 0= 000000 R6= 0000 N6=0000 M6= 0000

A2= 00A1=*550000 A0= 000000 R5=0000 N5= 0000 M5= 0000
B2= 00B1=*880000 BO= 000000 R4= 0000 N4= 0000 M4= 0000
R3=0000 N3=0000 M3= 0000

PC=*6009 SR= 0354 OMR=02R2=0000 N2=0000 M2= 0000
LA= 0000 LC=0000SP=00R1=0000 N1= 0000 M1= 0000

RO= 0000 NO= 0000 MO= 0000

BCR= 0000 IPR=0000R0= 0000 NO=0000 MO= 0000
TMCBG2>

It should be noted that the addressinthe"TR AAAA" message refers to the address of the
instruction that execution stopped at. Theinstruction at this addressis not executed. If
execution isto continue, thisis the address of the next instruction to be executed. In the
example above, the addressin the "TR 6005" message indicates that execution has stopped at
$6005 but the instruction at P:$6005 has not been executed.

2.30 UPL - Upload Memory To The Host Port

UPL <[P,X,Y]>:<ADD1> <ADD2> <[O,D]>

The UPL command allows memory to be uploaded to a host computer via the host
port. Two different formats are available.

The O specifies OMF records to be sent. Thefirst recordisa” DATA" record followed by the
datain ASCII hexidecimal for each memory location on aseparateline. Thedata
transmissionisterminatedwiththe” END"record. Ctrl-S/Ctrl-Q, Ctrl-C, Ctrl-Y output control
is observed during data output to the host (see the section Output Control). The D specifies
dataformat which is the same as OMF format without the” DATA" and"_END" records.

Examples:

TMCBG2>HST (connect to the host computer, assume a VAX)
$ CREATE DATA.MEM (create a ASCII datafile)
Ctrl-A(return to TMCBUG2)

TMCBG2>UPL X:50-70 O(upload memory from $50 to $70
to the host in OMF format)

TMCBG2>HST (connect to the host computer)

Ctrl-Z(exit the create command)

$(VAX/VMS prompt)

2.32 WRT - Write A Value Without Read Verification
WRT <[P,X,Y]>:<ADDR> <NNNNNN> [REPEAT]

The WRT command writes a value to a memory location without aread verification.This is
useful for writing write-only registers such as transmit data registers, D/A converters or for
hardware debugging. If the value NNNNNN is delimited with a <SP>, then the repeat count is

-19-

TMCBUG2 manual

entered. The repeat count specifies how many timesto write the value to memory. If the value
NNNNNN isdelimited with <CR>, the repeat count isinfinite and the value is written to
memory continuously until a Ctrl-C or Ctrl-Y isentered.

Examples:

(write the letter A to the serial transmit register)
TMCBG2>WRT X:FFF441 1

TMCBG2>WRT Y:FF14 99 (write 99 to Y :FF14 continuously)
Ctrl-Y (exit the command)

TMCBG2>

2.34 CSR - Display contents of TMC-CSR
CSR

The CSR command is a specific command in the TMC-VME board. The command shows the
contents of all CSR registersin the TMC chips.

Examples:

TMCB&>CSR
Chip 0 1
CSRO: 00 00 O
CSR1: 00 00 O
CSR2: 00 00 O
CSR3: 00 00 O

2.35 TMC - Display hit pattern of TMC memory
T™MC

The TMC command is a specific command in the TMC-VME board. The command asks
channnel number, and shows the contents of the TMC chip.

Examples:

TMCBG2>TMC

tmcread:

Channel No. (0-31)?2

Rising Edge

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 85 01 00 00 00 00 00 00 00 00 00 00 00 00 00

Falling Edge
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-20-

TMCBUG2 manual

00 00 00 86 01 00 00 00 00 00 00 00 00 00 00 00
2.35 ROM - call second ROM program

3 USER ACCESSIBLE MONITOR UTILITIES

TMCBUG2 has ajump table at the beginning to allow user accessto subroutines.The entry
point of these subroutines are defined by module "BUGEQU.ASM" and should be included at
the beginning of any user program that requires accessto TMCBUG2's utilities. All access to
TMCBUG?2 utilities are hrough subroutine calls to the symbols defined in BUGEQU.

3.1 The TMCBUG?2 Utility Table

The following descriptions of the subroutineutilities reference the subroutines symbolically.
All symbols are defined in upper case so all references to the subroutines shouldbe in upper
case. Alternatively, the "opt ic" assembler directive may be used to inhibit case sensitivity.

Most utilities are called as subroutines. The user sets up the registers required by the
subroutine and then performs a JSR to the address specified by BUGEQU. The first instruction
in the subroutine isaJMP to the desired code module. The TMCBUG?2 utility ends with an
RTSinstruction which returns to the user application.

An exampleis shown below. Thisexample reads 6 ASCII hex characters and outputs the
value followed by a carriage return and line feed.

ORG P:$6000
INCLUDE' BUGEQU'

START
JSR INDAT GET DATA
JSR OUTDAT ;OUTPUT DATA
JSR CRLF ;OUTPUT CR,LF
JMP START
END

All of the subroutines save all the user's registers when called. Only if avalueisto be passed
back to the user is aregister changed.

3.2 DSPBUG - TMCBUG?2 Cold Start

This entry point resets TMCBUG2 to its initial powerup condition. Thisissimilar to hitting
the RESET switch on the DSP56002. This puts TMCBUG2 through its powerup sequence
which includes clearing the breakpoint table, initializing the 10, setting default values for the
ports, etc. Thiscommand does not perform a hardware reset on the DSP56002 or the 10. It does
perform asoftware reset on the IO. It does not check the setting of debug switch, so not
change the terminal and host port assignment.

It should noted that this is not a subroutine and no return to the user's program is possible. A

JMP instruction can be used to transfer program control to this entry point. A JSR may also be
used since the stack is reset.

-21-

TMCBUG2 manual

3.3 CMD - Command Level Entry Point

This entry point returns control to the TMCBUG2 command level and the TMCBUG2
prompt appears. It should be noted that the stack pointer is reset at the command level. All
user registers are destroyed and all address modifier registers are set for linear arithmetic.

This entry point should not be used by programsto returnto TMCBUG?2 if breakpoints are
being used. If thisentry point is used to return control to TMCBUG2 from a user program and
breakpoints are being used, the SWIs are not removed from the user's program.

It should noted that this is not a subroutine and no return to the user's program is possible. A

JMP instruction can be used to transfer program control to this entry point. A JSR may also be
used since the stack is reset.

3.4 SET _TERM - Set The Terminal Port As The Current I/O Port

This subroutine sets the terminal port as the current 1/0O device. Thiscopiesthevaluein
TDEV to IODEV.

3.5 SET HOST - Set The Host Port As The Current 1/0 Port

This subroutine sets the host port as the current 1/0O device. This copiesthe valuein HDEV to
IODEV.

3.6 DEFINE_TERM - Define Terminal Port
This subroutine takes the integer valuein B1 and savesit in TDEV as the current driver

number for the terminal port. TMCBUG2 then executes the initialization routine for the
device.

3.7 DEFINE_HOST - Define Host Port

This subroutine takes the integer valuein B1 and savesit in HDEV as the current driver
number for the host port. TMCBUG2 then executes the intialization routine for the device.

3.8 INO - Scan Input Device

This subroutine scans the input device pointed to by IODEV and returns the Z bit in the status
register equal to 1if thereisno data. If thereisdata pending, theZ bit is cleared and the 8 bit
dataisreturned in the lower byte of A1. The upper two bytes of Al are zeroed.

JSR INO ;SCAN INPUT DEVICE
JEQ _NODATA ;JUMPIF NO DATA
MOVE AX:0 ' SAVE INPUT DATA

-22 -

TMCBUG2 manual

3.9 IN1 - Read Input Device

This subroutine scans the input device pointed to by IODEV and waits for data to be available.
When this routine returns, the 8 bit dataisin the lower byte of A1.The upper two bytesof Al
are zeroed.

3.10 IN2 - Input Data, Mask Parity, Top Byte Of Al

This subroutine scans the input device pointed to by IODEV and waits for data to be available.
When datais read, the parity is masked (bit 7 set to zero) and the data is shifted into the top byte
of A1l. Thelower two bytes of Al are zeroed.

3.11 IN3- Input Data, Mask Parity, Top Byte Of Al, Echo Character

This subroutine scans the input device pointed to by IODEV and waits for data to be
available. When dataisread, it is echoed to the device pointed to by IODEV, parity is masked
off and the datais returned in the top byte of A1. Thelower two bytes of Al are zeroed.

3.12 INBYTE - Input A Byte

This subroutine reads the device pointed to by IODEV, inputs 2 ASCII hex characters and
converts them to an 8 bit value. The valueisreturned in the lower byte of B1 with the upper
two bytes zeroed.The input string must be terminated with a delimiter (<CR>, <SP> or ™).
The delimiter isreturned in thetop byte of A1 with the lower two bytes zeroed . The number
of charactersinput isreturned in R7.

3.13 INADD - Input An Address

This subroutine reads the device pointed to by IODEV, inputs 4 ASCII hex characters and
converts them to a 16 bit value. The value isreturned in the lower two bytes of B1 with the
upper byte zeroed.The input string must be terminated with adelimiter (<CR>, <SP> or).
The delimiter isreturned in the top byte of A1 with the lower two bytes zeroed. The number of
charactersinput is returned in R7.

3.14 INDAT - Input Data
This subroutine reads the device pointed to by IODEV, inputs 6 ASCII hex characters and
convertsthem to a 24 bit value. Thevalueisreturned in B1. Theinput string must be

terminated with adelimiter (<CR>, <SP> or #). The delimiter isreturned in the top byte of A1
with the lower two bytes zeroed.The number of characters input isreturned in R7.

3.15 INBYTE_NLS- Input A Byte And Ignore Leading Spaces

-23-

TMCBUG2 manual

This subroutine reads the device pointed to by IODEV, inputs 2 ASCII hex characters and
converts them to an 8 bit value. The value isreturned in the lower byte of B1 with the upper
two bytes zeroed.The input string must be terminated with a delimiter (<CR>, <SP> or ™).
The delimiter isreturned in the top byte of A1 with the lower two bytes zeroed. The number of
charactersinput isreturned in R7.

This subroutineisidentical in operation to INBYTE except this subroutine ignores any
leading spaces before the hex characters. The spacesthat are ignored are not echoed. Once hex
characters are detected, the space acts as a delimiter.

3.16 INADD_NLS - Input An Address And Ignore L eading Spaces

This subroutine reads the device pointed to by IODEV, inputs 4 ASCII hex characters and
converts them to a 16 bit value. The value isreturned in the lower two bytes of B1 with the
upper byte zeroed.The input string must be terminated with adelimiter (<CR>, <SP> or).
The delimiter isreturned in the top byte of A1 with the lower two bytes zeroed. The number of
charactersinput is returned in R7.

This subroutine isidentical in operation to INADD except this subroutineignoresanyleading
spaces before the hex characters. The spaces that are ignored are not echoed. Once hex
characters are detected, the space acts as a delimiter.

3.17 INDAT_NLS- Input Data And Ignore Leading Spaces

This subroutine reads the device pointed to by IODEV, inputs 6 ASCII hex characters and
convertsthem to a 24 bit value. Thevalueisreturnedin B1. Theinput string must be
terminated with adelimiter (<CR>, <SP> or #). The delimiter isreturned in the top byte of A1
with the lower two bytes zeroed.The number of charactersinput isreturned in R7.

This subroutineisidentical in operation to INDAT except this subroutine ignores any leading

spaces before the hex characters. The spaces that are ignored are not echoed. Once hex
characters are detected, the space acts as a delimiter.

3.18 OUTO - 8 Bit Data Output
This subroutine outputs the 8 bit data from the lower byte of A1 to the I/O device pointed to

by IODEV. This subroutine waits until the device isready to send. The upper two bytesof A1l
are ignored.

3.19 OUT1 - 8 Bit Data Output, Output Control

This subroutine outputs 8 bit data from the lower byte of Al to the 1/O device pointed to by
IODEV. Cirl-S/Ctrl-Q, Ctrl-C, Ctrl-Y output control is observed during data output (see the
section Output Control).

3.20 OUT2 - Mask Parity, Shift Data, Data Output, Output Control

-24-

TMCBUG2 manual

This subroutine masks the parity of the top bytein A1, shiftsthe data to the lower byte of A1
and outputs the data to the device pointed to by 10ODEV.Ctrl-S/Ctrl-Q, Ctrl-C, Ctrl-Y output
control is observed during data output (see the section Output Control). The output routine waits
until the deviceisready to send the data.

3.21 OUT3 - Output 3 Packed Characters

This subroutine outputs 3 packed binary charactersfrom A1 to the 1/0 device pointed to by
IODEV. Thefirst character output isin the high byte of A1, the second character output isin
the middle byte of A1 and the last byte output isin the low byte of Al. Ctrl-S/Ctrl-Q, Ctrl-C,
Ctrl-Y output control is observed during data output (see the section Output Control). The
output routine waits until the deviceis ready to send the data.The parity isnot masked for the
data output.

MOVE #ABC'A ;LOAD "ABC" INTO A
JSR OUT3 ;O0UTPUT "ABC"

3.22 OUT4 - Output A String Of Packed Characters

This subroutine outputs a string of packed characters to the device pointed to by IODEV.
Addressregister RO initially points to the location of the packed string in P memory space.
Register NO is the number of words to output and MO is set for linear addressing. The packed
string has 3 characters per 24 bit word.The first character output is the high byte, the second is
the middle byte and the third isthe low byte. Data packing of ASCII charactersis performed
by the DC assembly directive as shown below:

ORG P:$6000
M1

DC 'THISISA TEST' ; MESSAGE TEXT
M1L EQU *-M1 ; MESSAGE LENGTH

An example program to output this text:

MOVE #M1,R0 ;POINT TO MESSAGE
MOVE #M1L,NO ;MESSAGE LENGTH
J SR ouT4 ;OUTPUT STRING

Register RO is left pointing to the memory location after the last word in the string.

3.23 OUTS5 - Output A String Of Packed Characters

This subroutine outputs a string of packed characters to the device pointed to by IODEV.
Address register RO initially points to the beginning location of the packed string in P memory
space and the string ends with a value of zero. Register MO is set for linear arithmetic. The
packed string has 3 characters per 24 bit word. The first character output is the high byte, the
second is the middle byte and the thirdis the low byte.Data packing of ASCII characters is
performed by the DC assembly directive as shown below:

ORG P:$6000

M1
DC 'THISISA TEST',0 ; MESSAGE TEXT

-25-

TMCBUG2 manual

An example program to output this text:

MOVE #M1,R0 ;POINT TO MESSAGE
JSR OUTS ;OUTPUT STRING

Register RO is left pointing to the memory location after the zero value in the string.

3.24 OUTBYTE - Output A Byte
This subroutine outputs a byte as 2 ASCII hex characters from the lower byte of B1 to the

device pointed to by IODEV. Ctrl-S/Ctrl-Q, Citrl-C, Cirl-Y output control is observed during
data output (see the section Output Control).

3.25 OUTADD - Output An Address
This subroutine outputsa 16 bit address as 4 ASCII hex characters from the lower two

bytes of B1 to the device pointed to by IODEV.Ctrl-S/Ctrl-Q, Ctrl-C, Ctrl-Y output control is
observed during data output (see the section Output Control).

3.26 OUTDAT - Output Data
This subroutine outputs a 24 bit datavalue as 6 ASCII hex characters from Bl to the

device pointed to by IODEV. Ctrl-S/Ctrl-Q, Ctrl-C, Ctrl-Y output control is observed
during data output (see the section Output Control).

3.27 OUTINT - Decimal Output Of A Value
This subroutine outputs a 16 bit valuein B1 as an ASCII decimal number to the device

pointed to by IODEV. Ctrl-S/Ctrl-Q, Citrl-C, Ctrl-Y output control is observed during data
output (see the section Output Control).

3.28 ININT - Decimal Input Of A Value

This subroutine reads the device pointed to by IODEV, inputs 6 decimal digits and convert them
to a 56 bit value. The binaly valueisreturned in B. The input string must be terminated with a
delimiter (<CR>, <SP> or). The delimiter is returned in the top byte of A1 with the lower two
bytes zeroed.The number of charactersinput isreturned in R7.

3.29 CRLF - Print A <CR><LF>

This subroutine outputs a carriage return and then a line feed to the device pointed to by IODEV.

3.30 PRTSPC - Print A Space

This subroutine outputs a space to the device pointed to by IODEV.

- 26 -

TMCBUG2 manual

3.33 OUTFRAC - Output Value In Decimal

This subroutine outputs the value in B1 as a signed decimal fraction.The output includes a
leading sign and decimal point. For example, if B1 hasthe value $CC0000, then the output of
OUTFRAC would be " -.40625000".

3.34 Example Using The TMCBUG?2 Subroutines

This section provides an example using the TMCBUG2 subroutines. The problem considered
here is a DSP56002 program that requires a block of data from the host. The system
configuration consists of a separate terminal, host computer and TM C-VME module connected
with seria lines. The host runs a FORTRAN program to get the datafrom afile and the data
issent to TMCBUG?2.

The FORTRAN program to send the datais shown below:

CHARACTER*1 DUMMY

OPEN (UNIT=1,FILE=TEST.DAT',STATUS="OLD")
10 CONTINUE

READ(5,15) DUMMY IWAIT FOR <CR> TO COME
15 FORMAT(A)

READ(L,*,ERR=999) NUMBER !INPUT DATA FROM FILE

WRITE(6,20) NUMBER IWRITE OUT TO TERMINAL (TMCBUG2)
20 FORMAT(+Z8,") IPREFIX CHAR, DATA,DELIMITER

GOTO 10 ICONTINUE LOOPING UNTIL OUT OF DATA
999 CLOSE (UNIT=1)

END

TheZ8isa format field to write the integer value in hexidecimal. This program operates as
follows:

1. A file"test.dat" is opened to obtain data.

2. The program reads aone character variable into DUMMY . Thisisto make the program
wait until TMCBUG2 requests the data. A <CR> satisfies this read statement.

3. After TMCBUG2 sends the <CR> to indicate that it is ready to receive, the FORTRAN
program reads the integer datafrom the input file and printsit. Since the host port of
TMCBUG?2 is connected to the host computer, TMCBUG2 reads the characters printed.

A plussign (+) isasynchronization character. After the plussign, TMCBUG2 knows the next
character is the beginning of the numeric field.

A space is printed after the hex digits to be the delimiter for the TMCBUG2 input
subroutine.

4. The program continues reading until the end of file isdetected.

The program for the TMC_VME module using TMCBUG2 subroutines is shown below:

PAGE 132,60,1,1
INCLUDE 'BUGEQU'

-27-

TMCBUG2 manual

ORG P:$1000
;SUBROUTI NE TO READ A DATA VALUE FROM THE HOST

GET
JSR SET_HOST ;SET HOST PORT FOR I/O
MOVE #$0D,A ;GET <CR>
JSR OouT?2 ;SEND IT TO THE HOST

WT

JSR IN2 ;GET CHARACTER FROM HOST
MOVE #+'X0 ;GET PREFIX CODE
CMP X0,A ;SEE |IF PREFIX CODE
INE _ WT ;WAIT FOR PREFIX CODE
JSR INDAT_NLS ;GET DATA, IGNORE LEADING SPACES
JSR SET_TERM ;SET THE TERMINAL FOR I/O
RTS

;SUBROUTINE TO READ A BLOCK OF DATA FROM THE HOST
;AND TRANSFER IT TO X MEMORY

GET_BLOCK
MOVE #0,R1 :PLACE TO PUT BLOCK
DO #20, G 'INPUT 20 DATA VALUES
JSR GET ‘GET THE INPUT DATA VALUE
MOVE B,X:(R1)+ SAVE IN X MEMORY
G
RTS

Two subroutines are presented.The first subroutine GET performs the following operations:
1. The host port is set asthe device for I/O.

2. A <CR>issent to the host port.This character isreceived by the FORTRAN program on
the host and indicates that TMCBUG?2 is ready to receive data.

3. A single character isreceived from the host.If thischaracter isnot aplussign (+), then more
charactersareread. The plussign synchronizes communications.When the plus sign is
detected, it is assumed that the next character is the beginning of the numeric field.

4. Six hex characters arereadusingthel NDAT_NLS subroutine.This subroutine ignores
leading blanks and then reads the hex data from the host. The host sends a space as the
delimiter for the number.

5. Theterminal port is set asthe |/O port.

Theroutine GET returns asingle 24 bit valuein B1 each timeitiscalled.

The second routine GET_BLOCK calls GET several times and stores ablock datain
memory using aloop.

4 POWERUP BOOTING
The DSP56002 performs a double bootstrap before TMCBUG2 execution begins.
1. Thefirst bootstrap is started by the DSP56002 when it comes out of reset in mode 1.

-28-

TMCBUG2 manual

2. The DSP56002 special bootstrap ROM loads a program from the lower byte at P:$C000,
assembles 3 bytesinto a 24 bit instruction word and transfers it into programRAM
startingatlocation P:$0000. The DSP56002 then performs a jump to location $0000 and
begins execution. Thefirst program loaded isand an intelligent loader (I-loader) which loads
TMCBUG2 and a user utility table which has jJump address of user accessible subroutines. The
I-loader occupies the lower byte EPROM from locations $C000-$CO7F.

3. Thel-loader begins reading from the lower byte of the EPROM at location $C800.This
isthe low byte of thefirst word of TMCBUG2. The I-loader reads 3 (8 bit) bytesat a time
(low, middle and high) and assembles them by shifting into a 24 bit instruction word.

The I-loader transfers each program word to RAM beginning at location P:$1300.

4. After both EPROMSs have been read, the I-loader transfers control to the beginning of
TMCBUG2.

-29.-

TMCBUG2 manual

APPENDIX A: KNOWN TMCBUG2 BUGS.

APPENDIX B: CURRENT LISTING OF BUGEQU.ASM

; THISISTHE TMCBUG2 UTILITY DEFINITION TABLE. GOOD PROGRAMMING

; PRACTICE WILL REFERENCE THE TMCBUG2 UTILITIES THROUGH THIS EQUATE
; TABLE TO PROVIDE UPWARD COMPATIBILITY WITH CHANGESIN THE

; MONITOR DEFINITION.

; TMCBUG2 Jump Address

DSPBUG EQU $40 ;MONITOR COLD RESET

CMD EQU $42 ;MONITORWARM START

INO EQU $44 ;SCAN INPUT DEVICE

IN1 EQU $46 ;8BIT DATA INPUT TOAL(LOWERBYTE)
IN2 EQU $48 ;INPUT CH, MASK PARITY, TOPBYTE OF Al
IN3 EQU $4A ;IN3+ECHO CHARACTER

INBYTE EQU 3$4C ;INPUT A 2NIBBLEBYTE

INADD EQU $4E ;INPUT A 4NIBBLE ADDRESSINTOB1
INDAT EQU $50 ;INPUT A 6 NIBBLEDATA VALUEINTOB1

INBYTE_NLS EQU $52 ;INPUT A 2NIBBLEBYTE
INADD_NLS EQU $54 ;INPUT A 4NIBBLE ADDRESSINTO B1
INDAT_NLS EQU $56 ;INPUT A 6 NIBBLE DATA VALUEINTOB1

OuUTO EQU $58 ;8BIT OUTPUT FROM A1 (LOWER BYTE) NO CTRL/S/Q
OUT1 EQU $5A :8BIT DATA OUTPUT FROM A1 (LOWER BYTE)

OUT?2 EQU $5C :MASK PARITY, OUTPUT CH FROM TOPBYTE OF Al
OUT3 EQU $5E :OUTPUT 3 PACKED CHARACTERSIN A1

OUT4 EQU $60 :OUTPUT NOPACKED CHARSPOINTED TOBY RO
OUT5 EQU $62 :OUTPUT CHARSPOINTED TOBY ROENDING WITH 0
OUTBYTEEQU $64 ;OUTPUT 2 NIBBLE BYTE FROM B1 IN HEX

OUTADD EQU $66 :OUTPUT A ADDRESSFROM B1 IN HEX

OUTDAT EQU $68 :OUTPUT A DATA VALUE FROM B1IN HEX

OUTINT EQU $6A :OUTPUT 16 BITSFROM B1 ASDECIMAL INTEGER
CRLF EQU $6C ;OUTPUT <CR><LF>

PRTSPC EQU $6E :OUTPUT A SPACE

OUTFRACEQU $70 ;OUTPUT B ASA FRACTION

ININT EQU $72 :INPUT 6DIGITSASDECIMAL INTEGE

SET_TERM EQU $74 ;SET TERMINAL ASI/ODEVICE

SET_HOST EQU $76 ;SET HOST ASI/ODEVICE

DEFINE_TERM EQU $78 ;SET TERMINAL WITH DEV IN B AND INIT DEV
DEFINE_HOST EQU $7A ;SET HOST WITH DEV IN B AND INIT DEV

-30-

TMCBUG2 manual

APPENDIX C: PROGRAM DOWNLOADING PROCEDURE USING AN IBM-PC

This appendix describes a procedure to download OMF records produced by the DSP56002
Assembler to the TMC-VME attached to an IBM-PC on aseria port. It is assumed that the
IBM-PC has acommunications program such as KERMIT and a seria port.

The following description explains how to load an OMF file on an IBM-PC to a prototype board
using KERMIT:

C:\DSP> CD \KERMIT (change directory from DSP to KERMIT)
C\KERMIT> KERMIT (invoke the communications programn KERMIT)
IBM-PC Kermit-MSV2.28

Type ?for help

Kermit-MS> SET SPEED 9600 (set serial port to 9600 baud)
Kermit-MS> CONNECT (connect to serial port of prototype)
[Connecting to host, type Control-] C to return to PC]

TMCBG2> DHP(display host port)

000000 SCI (current host port is SCI)

TMCBG2>LOA (invoke load command)

Ctrl-] C (exit KERMIT transparent mode)

Kermit-MS> EXIT (exit KERMIT)

CA\KERMIT> COPY \DSP\TEST.LOD COM1 (send fileto seria port)
1 File(s) Copied

C\KERMIT> KERMIT (invoke kermit)

IBM-PC Kermit-MSV2.28

Type ?for help

Kermit-MS> CONNECT (connect to prototype board)

[Connecting to host, type Control-] C to return to PC]

TMCBG2>

It is assumed that once the baud rate of the serial port isset with KERMIT that it does not
change unless the IBM-PC is powered down or reset.

-31-

