E362 (K2K) 12 GeV PS review June 7, 2004

- 1. Physics goal
- 2. Experimental principle
- 3. Status
- 4. Run plan for fiscal 2004
- 5. Activities before T2K

Koichiro Nishikawa for K2K collaboration

Japan

KEK, ICRR, Kobe U, Kyoto U, Niigata U, Okayama U, Tokyo U of Science, Tohoku U

Korea

Chonnam National U, Dongshin U, Korea U, Seoul National U

U.S.A.

Boston U, U of California (Irvine), U of Hawaii (Manoa), M. I.T. S UNY at Stony Brook, U of Washington Poland

Warsaw U, Solton Institute for Nnuclear Study

New members since 2002

Hiroshima U., Osaka U.

Canada

TRIUMF, U. of British Columbia

Europe

U. of Barcelona, U. of Geneva, U. of Rome, Saclay, U. of Valencia, Institute of Nuclear Study-Moscow

Brief history of K2K

• 1995

Proposed to study neutrino oscillation for atmospheric neutrino anomaly.

- 1999
 - Started taking data.
- **2000**
 - Detected the less number of neutrinos than the expectation at a distance of 250 km. Disfavored null oscillation at the 2σ level.
- **2002**
 - Observed indications of neutrino oscillation. The probability of null oscillation is less than 1%.
- 2003
 - installed new detector (SciBar)
- 2004
 - Confirmed neutrino oscillation with both number of events and spectrum distortion
 3
 - Detail will be presented at KEK seminar (June 9) and will be presented

Principle of K2K prob. = $\sin^2 2\theta \cdot \sin^2(\frac{1.27\Delta m^2 L}{L})$ Fixed distance, direction $(E_v \sim 1.3 \text{ GeV}, L=250 \text{ km})$ Ev $(99\% v_{\mu}, \sigma_{\tau} << \sigma_{\mu})$ **Observations** Neutrino Oscillation ($\Delta m^2 = 0.003 eV^2$) Reduction of events probability Spectrum distortion 0.5 0.25 0 1.5 2.5 4.5 05 2 Goal 3 3.5 0 $E_{v}(GeV)$ Does v_{μ} decrease ? Does it depend on E_{v} ? • What is Δm^2 ? (Is it consistent to $\sin^2(1/Ev)$?) 2.5 3.5 4.5 0.5 1.5 $E_{,}(GeV)$ Ev

Setup and Neutrino beam monitoring

K2K thanks to the PS division for great accomplishments

7

Requirement from MC and muon monitor results (segmented ionization ch. + Si pads)

Neutrino (pion) direction has been controlled within 1 mrad

Near Detectors at KEK

At 300 m from target

- 1. neutrino beam profile
 - massive MRD
- 2. ve contamination
- 3. rate in KT
 - same response as SK for each interaction
- 4. spectrum
 - selection of CCQE
- 5. CCQE nonQE NC
 - PID (p _ π,μ)
 - Low energy particles
- 6. neutron backgrounds
 - good timing 9

•Profile width beam stability during spill

•<u>Center of beam</u> within 1 mrad <u>Rate</u> weekly basis

•Stability of E_{μ}, θ_{μ} monthly basis

Number of events

(April 1996 commissioned)

Super-Kamiokande

50,000 ton water Cherenkov detector (22.5 kton fiducial volume) Optically separated INNER and OUTER detector

Selection of SK events : $T_{SK}^{GPS} - T_{acc}^{GPS} - TOF$

K2K-SK events

K2K-all	DATA	MC		
(K2K-I, K2K-II)	(K2K-I, K2K-II)	(K2K-I, K2K-II)		
FC 22.5kt	108	150.9		
	(56, 52)	(79.1, 71.8)		
Iring	66	93.7		
for E _v rec	(32, 34)	(48.6, 45.1)		
μ-like	57	84.8		
	(30, 27)	(44.3, 40.5)		
e-like	9	8.8		
	(2, 7)	(4.3, 4.5)		
Multi Ring	42	57.2		
	(24, 18)	(30.5, 26.7)		

Ref; K2K-I(47.9×10¹⁸POT), K2K-II(41.2×10¹⁸POT)

15

Neutrino spectrum and the far/near ratio

1KT Flux measurement

- The same detector technology as Super-K. (same response for each interaction)
 - Sensitive to low energy neutrinos.

$$N_{SK}^{exp} = N_{KT}^{obs} \bullet \frac{\int \Phi_{SK}(E_{\nu})\sigma(E_{\nu})dE_{\nu}}{\int \Phi_{KT}(E_{\nu})\sigma(E_{\nu})dE_{\nu}} \bullet \frac{M_{SK}}{M_{KT}} \bullet \frac{\varepsilon_{SK}}{\varepsilon_{KT}}$$

=Far/Near Ratio (by MC)~1×10⁻⁶

M: Fiducial mass M_{SK} =22,500ton, M_{KT} =25ton ε: efficiency ε_{SK-I(II)}=77.0(78.2)%, ε_{KT}=74.5%

$$N_{SK}^{expect} = 150.9^{+10.3}_{-9.1}$$
 $N_{SK}^{obs} = 108$

17

Spectrum measurement

NEUT: K2K Neutrino interaction MC

- CC quasi elastic (CCQE)
 - Llewellyn Smith's with $M_A = 1.1 \text{GeV}$
- CC (resonance) single π (CC-1 π)
 - Rein and Sehgal's with M_A=1.1GeV
- DIS
 - GRV94 + JETSET with Bodek and Yang correction.
- CC coherent π
 - Rein&Sehgal with the cross section rescale by J. Marteau
- NC

with Nuclear Effect

Oscillation analysis

1. Obtain Ev flux and spectrum shape just after production $\phi_{KEK}(E_v)$

Events =
$$\sum_{i=QE,nonQE,NC} \sigma_i \times F(E_v) \times \varepsilon_i(E_v)$$
 Int. Model

 $\sigma(CCQE)$, $\sigma(1\pi)$, NC ratios known to ~30% 1KT to predict N_{SK}

- 2. Extrapolate from near to far without oscillation $\phi_{SK}(E_{v})$
- 3. $\phi_{SK}(E_{\nu}) \otimes Oscillation (sin^2 2\theta, \Delta m^2) \otimes Int. Model$

PredictionSK observation
$$N_{SK}(exp't)$$
 : Expected no. of SK events $N_{SK}(obs)$ $S_{SK}(E_{rec})$: 1R μ Erecdistribution(shape) $IR\mu$ E_{rec} distribution

Maximum Likelihood Fit in $(\sin^2 2\theta, \Delta m^2)$

QE and nQE seperation in SciFi

SciFi 2 track $cos(\Delta \Theta_P)$ distribution

SciBar neutrino interaction study.

- Full Active Fine-Grained detector.
 - Sensitive to a low momentum track.
 - Identify CCQE events and other interactions (non-QE) separately.

Used data for $\phi_{near}(Ev)$

<u>KT</u>

Fully Contained Fiducial Volume (FCFV) events

• No. of events (Evis>100MeV)

(1)Single µ–like events

SciFi (2) 1-track μ events (3) 2-track QE-like events (4) 2-track nonQE-like events

<u>SciBar</u> (5) 1-track m events (6) 2-track QE-like events (7) 2-track nonQE-like events

norm. (N_{SK}) from KT & 7 sets of (p_{μ} , θ_{μ}) distributions

• ν flux $\phi_{near}(E\nu)$ (8 bins)

• v interaction model (nQE/QE ratio as parameter)

Flux measurementminary

 χ^2 =638.1 for 609 *d.o.f*

- $\Phi 1$ (Ev < 500) = 0.78 ± 0.36
- $\Phi 2$ ($500 \le Ev < 750$) = 1.01 ± 0.09
- $-\Phi 3 (750 \le Ev \le 1000) = 1.12 \pm 0.07$
- $\Phi 4 (1500 \le Ev < 2000) = 0.90 \pm 0.04$
- $\Phi 5 (2000 \le Ev < 2500) = 1.07 \pm 0.06$
- $\Phi 5 (2500 \le Ev < 3000) = 1.33 \pm 0.17$
- $-\Phi 6 (3000 \le Ev) = 1.04 \pm 0.18$
- $nQE/QE = 1.02 \pm 0.10$

The nQE/QE error is assigned based on the variation by the fit condition.

- $\forall \theta > 10^{\circ} \text{ cut:} \quad nQE/QE = 0.95 \pm 0.04$
- standard(CC-1π low q² corr.): nQE/QE=1.02 ±0.03
- No coherent: π=nQE/QE=1.06 ±0.03

SciBar (with measured flux) (also for KT,SciFi)

28

deg.

Observed spectrum shape and null oscillation prediction

Other Physics in K2K (based on K2K-I data)

Near future

- 1. Systematic errors
 - Far Near ratio +5.6 -7.3%
 - π production measurements should be available soon
 - N_{SK} from 1kton detector 5% (fiducial)

Run plan for 2004

• More data in SciBar (Proton ID, low-E track)

~20,000 total events (1,500 CCQE <1 GeV) ~4 months

Determine neutrino interaction model

- Can use 2 ring events in SK(in addition to 1Rµ like events) almost double the statistics
- SciBar can determine normalization with small fid. error, and spectrum
- Low energy neutrino interaction studies
 - determine background in low E^{rec}

—

• Anti neutrino (engineering run)

Spectrum measurement at low energy w/ exclusive reconstruction

More data in SciBar

A hint of K2K forward µ defplie.

K2K observed forward $\boldsymbol{\mu}$ deficit.

- A source is non-QE events.
- For CC-1 π ,
 - Suppression of $\sim q^2/0.1$ [GeV²] at $q^2 < 0.1$ [GeV²] may exist.
- For CC-coherent π,
 - The coherent π may not exist.
- We do not identify which process causes the effect. The MC CC-1π (coherent π) model is corrected phenomelogically.
 Oscillation analysis is inconsitive to the

Oscillation analysis is insensitive to the choice.

Anti-neutrinos

• <u>On paper</u>, just flipping the polarity of horn.

Need actual testing

- Geomagnetic effect to the beam
- Scibar
 - ~400 int / 10days / 10ton
- MRD
 - $\sim 15,000$ int/ 10days/ 419 ton
 - Error in
 - Beam center: 7cm
 - width : 10cm

Activities before T2K

Fiscal yr	2004	2005	2006	2007	2008
K2K data taking					
Full paper on oscillation incl. ve					
Analysis of neutrino interactions					
SK full rebuild					
SK analysis tool					
T2K construction					
and commissioning					
?					37

Summary

- K2K Oscillation analysis on June 99 ~Feb 04 data
- 1. Long baseline experimental method is working well
- 2. We observed v_{μ} deficiency and spectrum distortion over 250 km flight length
- 3. $\sin^2 2\theta$, Δm^2 are consistent with atmospheric neutrino results For detail please attend the KEK seminar day after tomorrow
- In 2004, at least 6 months run can improve the quality of K2K
- More data in SciBar (at least four more months) can further improve statistical significance of K2K results
- More measurement of low energy neutrino interactions can be done