Some Beam Physics Aspects of DHRF Upgrade C M Warsop (D J Adams, C R Prior)

• Develop Measurements

Evolution of longitudinal pulse shapes & tomography

• Simulations

1D Longitudinal Tracking Code with Space Charge

• Basic Experiments and Tests

Manipulation late in cycle at high intensity Use of chopped beams Dual Harmonic θ Phasing Errors

• Understand Dual Harmonic Trapping Process

Revisit Theory, Simulation, Experiment

- Energy of loss?
- Achieve successful operation on a real 3D machine
- Details of Lost Beam ~ Limiting Factor? amount, energy, radial motion & destination

ISIS Ring Operation Relation to 50 Hz Main Magnet Field

• Injection

Accumulate 2.8x10¹³ Particles over 130 turns Anti-correlated horizontal and vertical painting

- Trapping Rapid Bunching in ~ 1 ms under space charge Most Losses ≤ 100 MeV
- Acceleration Rapid 70-800 MeV Ramp in 10 ms: RF 140 kV/turn
- Extraction Single turn, Fast kicker (rise time 200 ns)

ISIS Ring Losses

ISIS Synchrotron Parameters

	Present Operation	Upgrade
Energy Range	70 - 800 MeV	
Intensity	2.5x10 ¹³ ppp	3.8x10 ¹³ ppp
Rep Rate	50 Hz	
Mean power	160 kW	240 kW
Mean Current	200 µA	300 µA
Injection	130 turn, charge-exchange	
	paint injected beam of ~ 25 π mm mr	
Acceptances	horizontal: 540 π mm mr with dp/p \pm 0.6%	
	vertical: 430π mm mr	
RF System	Single Harmonic	Dual Harmonic
	h=2	and h=4
f _{RF} sweep	1.3-3.1 MHz	2.6-6.2 MHz
V _{RF} peak	140 kV/turn	80 kV/turn
Extraction	single turn, vertical	
Nominal tunes	$Q_h=4.31, Q_v=3.83$ adjusted with trim quads	

• 240 kW Upgrade	- being installed
ISIS Second Target Station	- approved

• ISIS 1-5 MW Upgrades - under study

ISIS Dual Harmonic RF Law $V(\phi) = \hat{V} \Big[Sin(\phi_s) - \delta \cdot Sin(2\phi_s + \theta) \Big]$

Voltage Levels (δ)

Relative h=2, h=4 phase (θ)

Measured Longitudinal Profiles at High and Low Intensity

Low Intensity Diagnostic Beam

High Intensity Beam

Longitudinal Profile Measurement - Chopped Beam Development of 700 ns chopped beam over 400 turns

Beam Distribution Around Ring

Short pulse length (chopped) beams reveal longitudinal structure not otherwise visible. Here a beam pulse occupying less than one turn is captured partially in the left hand bucket, and more fully in the right hand. Synchrotron dipole oscillations are clear on the left, as are non trapped particles crossing between bunches.

Comparison of Single and Dual Harmonic Longitudinal Bucket Structure

• Short pulse length (chopped) beams may allow detailed study of DHRF bucket structure, by observing motion near the SFP's and separatrices.