


Anode current monitor 2RF Sys 5, 2A/Volt, 7kV peak on gaps. With and without beam 2.2e13ppp. 30 May 2005 Higher bandwidth ALC in use. LR σ =2200 μ Sm/cm

Anode current monitor 2RF Sys 5, 2A/Volt, 10kV peak on gaps Central pulse with Beam ~1.5 e 13 ppp. Friday 9 Sep 2005. LR σ =230 μ Sm/cm

Liquid Resistor Values

Tube radius 1cm
Tube lengths ~25 cm (2 tubes in parallel)

@ σ=2200 μSm/cm R=1.81 k Ω @ σ=230 μSm/cm R=17.31 k Ω

With 1 LR on each gap Impedance due to LRs is $0.9k\Omega$ and $8.6k\Omega$

Cavity Q and Impedance

APS current of 10A suggests Ia = 31 A ptp at Vptp of 14kV i.e. a cavity impedance of 450 Ω including the LRs or a cavity impedance of 900 Ω without the LRs giving a Q of ~ 900/23 = 38

APS current of 6A suggests Ia = 19 A ptp at Vptp of 20kV i.e. a cavity impedance of 1.1 k Ω including the LRs or a cavity impedance of 1.3 k Ω without the LRs giving a Q of ~ 1300/23 = 56

Low power measurements of Q have shown values up to 170.

Cavity BW to phase and amplitude modulations = $\sim F_0/2Q$ i.e. a min value of 7.6 kHz.

An appropriate vale for the LRs could be 0.5 x the current value ie a conductivity of $400-500~\mu Sm/cm$, giving an individual value of 8- $10k\Omega$.

Beam Pulse Harmonic Content

Harm No	1	2	3	4	5
Amplitude	1	0.79	0.58	0.32	0.11

Pulse shape measured at 9.0ms