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Introduc8on:	Fujita-san’s	seminar	in	Jan.	2016	
•  Systema8cs	of	Gamow-Teller	distribu8ons	for	N=Z+2	→	N=Z	nuclei	

–  Using	charge	exchange	reac8on	(3He,	t)	



Observed	GT	strength	
•  Concentra8on	in	the	1+1	level	for	

42Ca	→	42Sc	

–  B(GT;	0+1	→	1+1)	=	2.2		

Y.	Fujita	et	al.,	Phys.	Rev.	Le`.	112,	112502	(2014).	

“low-energy	super	GT	state”	



Ikeda	sum	rule	
•  When	B(GT)	is	defined	as	𝐵(GT↑± ;𝑖→𝑓)= |𝛼↓𝑓 𝐽↓𝑓  |𝜎𝑡↑± | 𝛼↓𝑖 
𝐽↓𝑖  |↑2 /2𝐽↓𝑖 +1 =∑𝜇𝑀↓𝑓 ↑▒|𝛼↓𝑓 𝐽↓𝑓 𝑀↓𝑓 𝜎↓𝜇 𝑡↑±  𝛼↓𝑖 𝐽↓𝑖 𝑀↓𝑖  |
↑2  ,		
∑𝑓↑▒𝐵(GT↑− ;𝑖→𝑓)− 	∑𝑓↑▒𝐵(GT↑+ ;𝑖→𝑓)=3(𝑁−𝑍) 	is	
sa8sfied.	
(with	 𝑡↑− | 𝑛⟩=| 𝑝⟩)

•  If	GT+	transi8on	is	hindered	by	Pauli	blocking,	∑𝑓↑▒𝐵(GT↑− ;𝑖→𝑓) 	
is	close	to	3(𝑁−𝑍).	

–  ∑𝑓↑▒𝐵(GT↑− ;𝑖→𝑓) 	for	42Ca	should		
be	close	to	6,	if	proton	excita8on		
to	the	pf	shell	is	small.	

proton	

neutron	





SU(4)?	single-par8cle	transi8on?	
•  The	situa8on	is	similar	to	what	is	expected	from	the	SU(4)	

symmetry	(no	spin	or	isospin	dependent	forces).	

•  SU(4)	is	strongly	broken	by	the	existence	of	spin-orbit	splifng.	

•  Single-par8cle	structure?	



f7/2→f7/2	
f7/2→f5/2	

ε(f5/2)-ε(f7/2)	

B(GT)	distribu8on	with	pure	configura8ons	

•  Concentra8on	in	a	single	state	
cannot	be	accounted	for	by	a	
simple	shell-model	argument.	

From	the	simple	single-par8cle	picture	

Experimental	strength	

0	 10	



Essen8al	role	of	configura8on	mixing	

Y.	Fujita	et	al.,	Phys.	Rev.	C	91,	064316	(2015)	

•  RPA	calcula8on	
–  Isoscalar	pairing	is	essen8al.	

•  Coherence	in	the	GT	transi8on	is	also	
obtained	by	shell-model	calc.	

•  Why	is	collec8vity	created?	

C.	L.	Bai	et	al.,	Phys.	Rev.	C	90,	054335	(2014).	
Shell-model	analysis	



Two-par8cle	vs.	two-hole	configura8ons	
•  A	ques8on	by	someone	(sorry,	I	do	not	remember	who	raised)	

– What	about	two	hole	systems?	

two	hole：14C	→	14N	
log	A	=	9.1	

p3/2	

p1/2	

two-par8cle：6He	→	6Li	

log	A	=	2.9	

protons	 neutrons	

B(GT)	 Two-par0cle	 Two-hole	
p	 sd	 pf	 p	 sd	

A=6	 A=18	 A=42	 A=14	 A=38	
1+1	 4.7	 3.1	 2.2	 3.5×10-6	 0.060	
1+2	 0.13	 0.10	 2.8	 1.5	



Distribu8on	of	known	log	A	

6He	→	6Li	 14C	→	14N	
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Ques8ons	
•  Why	does	the	“low-energy	super	GT	state”	appear	for	two-par8cle	

configura8ons?	

•  Why	is	the	corresponding	B(GT)	values	for	two-hole	configura8ons	
very	small?	

•  What	does	those	proper8es	tell	us	about	isovector	and	isoscalar	
pairing	proper8es,	since	correlated	two	nucleons	form	a	“Cooper	
pair”?		



Unified	treatment	of	p-p	and	h-h	systems	
•  The	following	two	descrip8ons	are	iden8cal	

–  Par8cle	Hamiltonian	
𝐻=∑𝑖↑▒𝜀↓𝑖 𝑎↓𝑖 ↓↑† 𝑎↓𝑖  + 1/4 ∑𝑖,𝑗,𝑘,𝑙↑▒𝑣↓𝑖𝑗;𝑘𝑙  𝑎↓𝑖 ↓↑† 𝑎↓𝑗 ↓↑† 𝑎↓𝑙 𝑎↓𝑘 	

–  Hole	Hamiltonian	
𝐻=∑𝑖↑▒𝜀 ↓𝑖 𝑏↓𝑖 ↓↑† 𝑏↓𝑖  + 1/4 ∑𝑖,𝑗,𝑘,𝑙↑▒𝑣 ↓𝑖𝑗;𝑘𝑙  𝑏↓𝑖 ↓↑† 𝑏↓𝑗 ↓↑† 𝑏↓𝑙 𝑏↓𝑘 	

when	𝑣↓𝑖𝑗;𝑘𝑙 = 𝑣 ↓𝑖𝑗;𝑘𝑙 	and	 𝜀 ↓𝑖 =𝐸( 𝑖↑−1 )	are	sa8sfied.	
		

	

Two-body	matrix	elements	are	the	same,	but	the	single-par8cle		
energies	are	in	the	reversed	order	for	the	hole-hole	Hamiltonian.	

p3/2	

p1/2	



GT	strength	in	2p	and	2h	conf.:	p-shell	case	
•  As	shown	in	the	last	slide,	both	the	6He	→	6Li	(2p)	and	14C	→	14N	

(2h)	decays	can	be	described	as	two-nucleon	systems	with	the	
same	two-body	matrix	elements.	

•  The	only	difference	between	them	is	the	single-par8cle	splifng	
Δ𝜀↓𝑝 =𝜀( 𝑝↓1/2 ) −𝜀( 𝑝↓3/2 ):	
–  For	the	par8cle	case:	Δ𝜀↓𝑝 =0.1 MeV		

–  For	the	hole	case:	Δ𝜀↓𝑝 =−6.3 MeV	

•  It	is	interes8ng	to	plot	the	Gamow-Teller	matrix	element	𝑀(𝐺𝑇)= 
𝐽↓𝑓 |𝜎𝑡↑− | 𝐽↓𝑖  	as	a	func8on	of	Δ𝜀↓𝑝 	for	given	two-body	
interac8ons	in	order	to	see	the	dependence	on	the	single-par8cle	
energies.	

Taken	from	the		
Cohen-Kurath’s	CKII	interac8on	



(1)	Cohen-Kurath’s	CKII	interac8on	
•  One	of	the	most	popular	empirical	interac8ons	for	the	p	shell.	

–  15	two-body	matrix	elements	are	deduced	by	fifng	energy	levels	of	A=8-16	
nuclei.	



(2)	Pairing	interac8on	
•  Isoscalar-	and	isovector-pairing	interac8ons	are	defined	as	
𝑉↑IVpair = 𝐺↑IV ∑𝜇↑▒𝑃↓𝜇↑†  𝑃↓𝜇 	
𝑉↑ISpair = 𝐺↑IS ∑𝜇↑▒𝐷↓𝜇↑†  𝐷↓𝜇 	
where	𝑃↓𝜇↑† =√1/2 ∑𝑛𝑙↑▒(−1)↑𝑙 √2𝑙+1 [𝑎↓𝑛𝑙↑† × 𝑎↓𝑛𝑙↑† ] ↓
𝑀↓𝐿 =0,𝑀↓𝑆 =0,𝑀↓𝑇 =𝜇↑𝐿=0,𝑆=0,𝑇=1 and	 �
𝐷↓𝜇↑† =√1/2 ∑𝑛𝑙↑▒(−1)↑𝑙 √2𝑙+1 [𝑎↓𝑛𝑙↑† × 𝑎↓𝑛𝑙↑† ] ↓𝑀↓𝐿 =0,
𝑀↓𝑆 =𝜇, 𝑀↓𝑇 =0↑𝐿=0,𝑆=1,𝑇=0 .	

•  Isovector-pair	crea8on	operator	 𝑃↓𝜇↑† 	and	isoscalar-pair	crea8on	
operators	 𝐷↓𝜇↑† 	are	symmetric	in	terms	of	S	and	T.	
	



M(GT)	with	the	pairing	interac8on	

•  M(GT):	Enhanced	for	small	Δ𝜀↓𝑝 	and	no	vanishing	for	Δ𝜀↓𝑝 <0.	
–  Larger	than	single-par8cle	limits	on	the	both	sides	

•  Strengths	of	GIS	and	GIV	are	determined	so	as	to	reproduce	the	
mean	square	(J,T)=(1,0)	and	(0,1)	matrix	elements	of	CKII.		

									p3/2	limit:	
√10/3 ≈1.83		

p1/2	limit:	
√2/3 ≈0.82		



Coherence	of	the	GT	matrix	element	
•  When	two-nucleon	wave	func8ons	are	decomposed	into	basis	

states	as	| 0↓𝑘↑+ ⟩=∑𝑎𝑏↑▒𝛼↓𝑎𝑏↑IV (𝑘) | 𝑎𝑏 𝐽=0 𝑇=1⟩	and	| 
1↓𝑘↑+ ⟩=∑𝑎𝑏↑▒𝛼↓𝑎𝑏↑I𝑆 (𝑘) | 𝑎𝑏 𝐽=1 𝑇=0⟩,	the	Gamow-Teller	
matrix	element	is	wri`en	as	
𝑀(𝐺𝑇;1↓𝑘↑+ )=∑𝑎𝑏𝑐𝑑↑▒𝑚↓𝑎𝑏𝑐𝑑 ( 1↓𝑘↑+ ) 	
where	𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )= 𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)𝛼↓𝑐𝑑↑IV (1)𝑎𝑏 𝐽=1 
𝑇=0|𝜎𝑡↑− | 𝑐𝑑 𝐽=0 𝑇=1 .	

•  Signs	of	𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )	
–  Construc8ve	or	destruc8ve	interference—essen8al	for	determining	large	or	

small	B(GT)	
	



Signs	of	𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ ):	CKII	

•  Destruc8ve	interference	for	Δ𝜀↓𝑝 =−5 MeV.	

𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )= 𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)𝛼↓𝑐𝑑↑IV (1)𝑎𝑏 𝐽=1 𝑇=0|𝜎𝑡↑− | 𝑐𝑑 𝐽=0 
𝑇=1 .	

Δ𝜀↓𝑝 =5 MeV	 Δ𝜀↓𝑝 =−5 MeV	



Signs	of	𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ ):	pairing	

•  It	looks	that	the	pairing	interac8on	always	gives	a	construc8ve	
interference,	but	realis8c	interac8ons	do	not.	

𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )= 𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)𝛼↓𝑐𝑑↑IV (1)𝑎𝑏 𝐽=1 𝑇=0|𝜎𝑡↑− | 𝑐𝑑 𝐽=0 
𝑇=1 .	

Δ𝜀↓𝑝 =5 MeV	 Δ𝜀↓𝑝 =−5 MeV	



Theorem	for	the	signs	of	𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )		

When	the	(J,T)=(0,1)	and	(1,0)	two-body	matrix	elements	are	
given	by	the	isovector-	and	isoscalar-pairing	interac8ons	with	

nega8ve	GIV	and	GIS,	respec8vely,	all	the	signs	of	𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )	in	
two-nucleon	systems	are	the	same	for	any	valence	shell	

(including	mul8-j	shell)	and	for	any	single-par8cle	splifng.	

𝐻↑pair =∑𝑖↑▒𝜀↓𝑖 𝑎↓𝑖 ↓↑† 𝑎↓𝑖  + 𝑉↑pair 	

𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )= 𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)𝛼↓𝑐𝑑↑IV (1)𝑎𝑏 𝐽=1 𝑇=0|𝜎𝑡↑− | 𝑐𝑑 𝐽=0 𝑇=1 ≥0	

𝑉↑pair =𝐺↑IV ∑𝜇↑▒𝑃↓𝜇↑†  𝑃↓𝜇 + 𝐺↑IS ∑𝜇↑▒𝐷↓𝜇↑†  𝐷↓𝜇 	



Proof	of	the	theorem	(1)	
•  Write	down	j-j	coupled	two-body	matrix	elements:	
𝑎𝑏 𝐽=0 𝑇=1𝑉↑pair  𝑐𝑑 𝐽=0 𝑇=1 = 𝐺↑IV 𝜒↓𝑎𝑏↑IV 𝜒↓𝑐𝑑↑IV 	
𝑎𝑏 𝐽=1 𝑇=0𝑉↑pair  𝑐𝑑 𝐽=1 𝑇=0 = 𝐺↑I𝑆 𝜒↓𝑎𝑏↑IS 𝜒↓𝑐𝑑↑IS 	
with	
𝜒↓𝑎𝑏↑IV = (−1)↑𝑙↓𝑎  √𝑗↓𝑎 +1/2 𝛿↓𝑎𝑏 	
𝜒↓𝑎𝑏↑IS =√2/1+ 𝛿↓𝑎𝑏   (−1)↑𝑗↓𝑎 −1/2 √(2𝑗↓𝑎 +1)(2𝑗↓𝑏 +1) 
{█1/2&𝑗↓𝑎 &𝑙↓𝑎 @𝑗↓𝑏 &1/2&1 }𝛿↓𝑛↓𝑎 𝑛↓𝑏  𝛿↓𝑙↓𝑎 𝑙↓𝑏  	

•  One	can	easily	show	that	the	sign	of	𝜒↓𝑎𝑏↑IV 	is	(−1)↑𝑙↓𝑎  	and	that	
that	of	𝜒↓𝑎𝑏↑IS 	is	(−1)↑𝑗↓𝑏 −1/2 	by	using	the	exact	form	of	
{█1/2&𝑗↓𝑎 &𝑙↓𝑎 @𝑗↓𝑏 &1/2&1 }.	

•  When	the	conven8ons	of	| 𝑎𝑏 𝐽=0 𝑇=1⟩ = (−1)↑𝑙↓𝑎  | 𝑎𝑏 𝐽=0 𝑇=1⟩	
and	 | 𝑎𝑏 𝐽=1 𝑇=0⟩ = (−1)↑𝑗↓𝑏 −1/2 | 𝑎𝑏 𝐽=1 𝑇=0⟩	are	taken,	all	the	
two-body	matrix	elements	are	non	posi8ve.	



Proof	of	the	theorem	(2)	
•  Matrix	element	of	the	Hamiltonian	
𝐻↓𝑖𝑗↑pair = 𝛿↓𝑖𝑗 ( 𝜀↓𝑎(𝑖) + 𝜀↓𝑏(𝑖) )+ 𝑉↓𝑖𝑗↑pair 	

•  All	the	off-diagonal	matrix	elements	are	non	posi8ve	when	the	
present	phase	conven8on.	

•  From	a	version	of	the	Perron-Frobenius	theorem,	the	components	
of	the	lowest	eigenvector	are	completely	of	the	same	sign.	

For	a	matrix	[█ℎ↓11 &⋯&ℎ↓1𝑛 @⋮&⋱&⋮@ℎ↓𝑛1 &⋯&ℎ↓𝑛𝑛  ]	with	 ℎ↓𝑖𝑗 ≤0	(𝑖≠𝑗),	the	lowest		
eigenvector	𝑣↓1  =[█𝛼↓1 @⋮@𝛼↓𝑛  ]	sa8sfies	 𝛼↓𝑖 ≥0	for	any	𝑖.	



Proof	of	the	theorem	(3)	
•  Gamow-Teller	matrix	elements	for	two-nucleon	configura8ons	

	
	

Condon-Shortley	
conven8on	

	
	

present	
conven8on	

Completely	the	same	sign!	



Proof	of	the	theorem	(4)	
•  We	go	back	to	𝑀(𝐺𝑇;1↓𝑘↑+ )=∑𝑎𝑏𝑐𝑑↑▒𝑚↓𝑎𝑏𝑐𝑑 ( 1↓𝑘↑+ ) 	with	 
𝑚↓𝑎𝑏𝑐𝑑 (1↓𝑘↑+ )= 𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)𝛼↓𝑐𝑑↑IV (1)𝑎𝑏 𝐽=1 𝑇=0|𝜎
𝑡↑− | 𝑐𝑑 𝐽=0 𝑇=1 .		

•  All	of	𝛼↓𝑎𝑏↑I𝑆 ↑∗ (1),	 𝛼↓𝑐𝑑↑IV (1),	and	 𝑎𝑏 𝐽=1 𝑇=0|𝜎𝑡↑− | 𝑐𝑑 𝐽=0 
𝑇=1 	have	fixed	signs	when	the	phase	conven8ons	of	| 𝑎𝑏 𝐽=0 
𝑇=1⟩ = (−1)↑𝑙↓𝑎  | 𝑎𝑏 𝐽=0 𝑇=1⟩	and	 | 𝑎𝑏 𝐽=1 𝑇=0⟩ = (−1)↑𝑗↓𝑏 
−1/2 | 𝑎𝑏 𝐽=1 𝑇=0⟩	are	taken.	Therefore,	the	signs	of	𝑚↓𝑎𝑏𝑐𝑑 (
1↓1↑+ )	are	the	same	for	all	possible	(𝑎,𝑏,𝑐,𝑑).	

•  This	is	the	origin	of	the	coherence	(“low-energy	super	GT	state”)	
obtained	for	two-par8cle	configura8ons.	



(rough)	Proof	of	the	Perron-Frobenius	theorem	
•  Consider	a	real-symmetric	matrix	with	𝐻=( ℎ↓𝑖𝑗 )	with	∀ ℎ↓𝑖𝑗 ≤0	

(𝑖≠𝑗)	and	let	𝑣↓1  =(𝛼↓1 , …, 𝛼↓𝑛 )	be	the	lowest	eigenvector.			
•  Since	 𝑣↓1  	is	the	lowest	eigenvector,	there	is	no	vector	that	

sa8sfies	 𝑣𝐻�𝑣 < 𝑣↓1  𝐻� 𝑣↓1  .	
•  If	 𝑣↓1  	contains	posi8ve	and	nega8ve	components,	one	can	

generally	assume	 𝛼↓1 ≥0,	…,	𝛼↓𝑘 ≥0,	 𝛼↓𝑘+1 <0,	…,	𝛼↓𝑛 <0.	Let	 
𝑣↓1 ′  be	(𝛼↓1 , … 𝛼↓𝑘 , − 𝛼↓𝑘+1 , −𝛼↓𝑛 ).		

•  Since	 𝑣↓1  𝐻� 𝑣↓1  =∑𝑖𝑗↑▒𝛼↓𝑖  ℎ↓𝑖𝑗 𝛼↓𝑗 ,	one	gets	𝑣↓1  𝐻� 𝑣↓1  − 
𝑣↓1 ′ 𝐻� 𝑣↓1 ′ =∑𝑖≤𝑘, 𝑗>𝑘↑▒2 𝛼↓𝑖 ℎ↓𝑖𝑗 𝛼↓𝑗 >0.	This	contradicts	
that	𝑣↓1  	is	the	lowest	eigenvector.	



Graphical	image	of	the	P-F	theorem	
•  Represent	an	off-diagonal	matrix	element	ℎ↓𝑖𝑗 	

as	a	bond	that	connects	the	site	𝑖	and	𝑗.	
•  For	each	site	𝑖,	a	posi8ve	(nega8ve)	𝛼↓𝑖 	is	

represented	as	an	upward	(downward)	arrow.	

•  The	right	figure	shows	favored	signs,	which	are	
analogous	to	ferromagne8sm	and	
an8ferromagne8sm.	

•  The	situa8on	of	P-F	theorem	is	like	parallel	spin	
alignment	in	ferromagne8sm	that	makes	
energy	stable.	

⊝	
𝑖	 𝑗	

⊕	
𝑖	 𝑗	

⊝	

⊝	

⊝	

⊝	
⊝	

⊝	



Going	back	to	physics	
•  The	coherence	of	GT	matrix	elements	is	due	to	the	“alignment”	of	

all	the	two-nucleon	configura8ons,	where	alignment	stands	for	that	
coefficients	of	basis	vectors	are	of	the	same	sign.	

•  Since	this	is	independent	of	single-par8cle	energies,	such	an	
“aligned”	state	must	be	most	stable	also	for	two-hole	
configura8ons.	

•  The	actual	situa8on	is	different.	This	means	that	some	of	the	off-
diagonal	matrix	elements	in	the	(J,T)=(1,0)	and/or	(0,1)	channels	
are	opposite.	



Realis8c	(J,T)=(0,1)	and	(1,0)	matrix	elements	
•  Ques8ons	

–  Isovector	or	isoscalar?	
–  Which	matrix	elements	are	different?	

–  Any	rule	about	the	different	signs?	

•  Examining	off-diagonal	matrix	elements	in	realis8c	interac8ons	
–  Empirical	and	microscopic	(G	matrix)	

–  Phase	conven8ons	of	| 𝑎𝑏 𝐽=0 𝑇=1⟩ = (−1)↑𝑙↓𝑎  | 𝑎𝑏 𝐽=0 𝑇=1⟩	and	 | 𝑎𝑏 𝐽=1 
𝑇=0⟩ = (−1)↑𝑗↓𝑏 −1/2 | 𝑎𝑏 𝐽=1 𝑇=0⟩	

CKII	 Kuo	p	

-1.56	 -1.75	

-3.55	 -5.06	

+1.70	 +2.31	

CKII	 Kuo	p	

-4.86	 -3.96	

(J,T)=(0,1)	off-diagonal	 (J,T)=(1,0)	off-diagonal	



sd	shell	

USD	 Kuo	sd	

-0.72	 -1.62	

-2.54	 -3.17	

+0.57	 +0.04	

+1.10	 +0.24	

-1.18	 -0.60	

-1.71	 -1.91	

-2.10	 -1.71	

+0.40	 +0.80	

-0.03	 +0.21	

-1.25	 -0.31	

USD	 Kuo	sd	

-3.19	 -3.79	

-1.32	 -0.97	

-1.08	 -0.74	

(J,T)=(0,1)	off-diagonal	 (J,T)=(1,0)	off-diagonal	

Some	isoscalar	matrix	elements		
have	the	opposite	sign.	



Pairing	vs.	realis8c	interac8ons:	p-shell	case	

•  Same	signs	for	isovector	matrix	elements.	

•  Opposite	sign	for	 𝑝↓3/2 𝑝↓1/2  𝑉� 𝑝↓1/2 𝑝↓1/2  	in	the	(J,T)=(1,0)	
channel.	This	causes	“frustra8on”,	which	cannot	uniquely	
determine	the	signs.	The	actual	signs	depend	on	the	diagonal	
matrix	elements.	
–  Two-par8cle	config.:	coherent	due	to	the	dominance	of	𝑣↓1 	and	 𝑣↓2 	
–  Two-hole	config.:	non	coherent	due	to	dominance	of	𝑣↓2 	and	 𝑣↓3 .	



Origin	of	difference	in	sign	
•  We	consider	the	matrix	elements	of	the	delta	interac8on	as	a	short-

range	central	interac8on.	

•  The	j-j	coupled	matrix	elements	are	wri`en	as		
𝑎𝑏𝐽𝑇 𝛿(𝑟) 𝑐𝑑𝐽𝑇 = 𝐶↓0 ∑𝐿𝑆 (𝐿+𝑆+𝑇=odd)↑▒𝜂↓𝑎𝑏 (𝐿𝑆𝐽)𝜂↓𝑐𝑑 (𝐿𝑆𝐽) 	
with	 𝜂↓𝑎𝑏 (𝐿𝑆𝐽)=√1− (−1)↑𝑆+𝑇 /1+ 𝛿↓𝑎𝑏   𝛾↓𝐿𝑆↑(𝐽) (𝑎,𝑏)(−1)↑
𝑛↓𝑎 + 𝑛↓𝑏  √(2𝑙↓𝑎 +1)(2𝑙↓𝑏 +1) (█𝐿&𝑙↓𝑎 &𝑙↓𝑏 @0&0&0 )	and	 
𝛾↓𝐿𝑆↑(𝐽) (𝑎,𝑏)=√(2𝑗↓𝑎 +1)(2𝑗↓𝑏 +1 )(2𝐿+1)(2𝑆+1) {█𝑙↓𝑎 
&1/2&𝑗↓𝑎 @𝑙↓𝑏 &1/2&𝑗↓𝑏 @𝐿&𝑆&𝐽 }.	

•  𝐶↓0 	depends	on	(𝑛↓𝑎 , 𝑙↓𝑎 )	etc.,	but	we	assume	a	constant	𝐶↓0 	
which	is	called	the	surface	delta	interac8on.	

•  In	this	case,	the	𝐿=0	contribu8ons	are	exactly	the	same	as	the	
pairing	matrix	elements.	



L=0	and	2	contribu8ons	
•  𝑎𝑏𝐽𝑇 𝑉↑SDI  𝑐𝑑𝐽𝑇 =𝐶↓0 ∑𝐿𝑆 (𝐿+𝑆+𝑇=odd)↑▒𝜂↓𝑎𝑏 (𝐿𝑆𝐽)𝜂↓𝑐𝑑 

(𝐿𝑆𝐽) 		
•  Restric8ons

–  𝐽 = 𝐿 + 𝑆 ;	𝑆=0	or	1.	

–  𝐿	is	only	even	when	one	considers	a	single-major	shell,	since	𝜂↓𝑎𝑏 
(𝐿𝑆𝐽)∝(█𝐿&𝑙↓𝑎 &𝑙↓𝑏 @0&0&0 ).	

•  Possible	𝐿𝑆	
–  Only	𝐿𝑆=00	for	(𝐽,𝑇)=(0,1)	

–  𝐿𝑆=01	and	21	for	(𝐽,𝑇)=(1,0)	

One	must	take	the	𝐿𝑆=21	term	into	account	when	fully	evalua8ng		
the	matrix	elements	of	short-range	central	forces.	



Cancella8on	due	to	L=2	
•  𝑎𝑏𝐽𝑇 𝑉↑SDI  𝑐𝑑𝐽𝑇 =𝐶↓0 ∑𝐿𝑆 (𝐿+𝑆+𝑇=odd)↑▒𝜂↓𝑎𝑏 (𝐿𝑆𝐽)𝜂↓𝑐𝑑 

(𝐿𝑆𝐽) 		
•  Exact	expression	of	 𝜂↓𝑎𝑏 (𝐿 𝑆=1 𝐽=1)	divided	by	𝑠= (−1)↑𝑗↓𝑏 

−1/2 		

•  Clearly,		cancella8on	due	to	L=2	occurs	for	 𝑗↓> 𝑗↓>  𝑉� 𝑗↓> 𝑗↓<  	
and	 𝑗↓< 𝑗↓<  𝑉� 𝑗↓> 𝑗↓<  .	

𝑙↑′ =𝑙−2	



Quan8ta8ve	argument	
•  𝑎𝑏 𝐽=1 𝑇=0𝑉↑SDI  𝑐𝑑 𝐽=1 𝑇=0 /𝑙	with	the	conven8on	of	(−1)↑
𝑗↓𝑏 −1/2 | 𝑎𝑏 𝐽=1 𝑇=0⟩↓Condon−Shortley 		

•  𝑗↓< 𝑗↓<  𝑉� 𝑗↓> 𝑗↓<  	with	low-𝑙	are	strongly	cancelled	by	L=2.	
•  Finite-range	interac8ons	can	make	𝑗↓< 𝑗↓<  𝑉� 𝑗↓> 𝑗↓<  	posi8ve.	



Frustra8on	caused	by	Δl=2	mixing	
•  Matrix	elements	concerning	| 𝑗↓<  𝑗↓>↑′ ⟩	with	 𝑙↑′ =𝑙−2	(such	as	| 
𝑑↓3/2 𝑠↓1/2 ⟩)	does	not	appear	with	the	L=0	terms,	and	can	be	an	
addi8onal	source	of	frustra8on.	

•  The	sign	of	 ℎ↓12 ℎ↓23 ℎ↓31 	is	invariant	under	phase	
transforma8on.		When	it	is	posi8ve,	the	frustra8on	occurs	among	 
𝑣↓1 ,	 𝑣↓2 	and	 𝑣↓3 .	𝜂↓𝑎𝑏 (𝐿 𝑆=1 𝐽=1)/ (−1)↑𝑗↓𝑏 −1/2 	

⊝	⊕	

⊝	

( 𝑗↓<  𝑗↓>↑′ )	

( 𝑗↓<  𝑗↓>↑ )	( 𝑗↓>  𝑗↓>↑ )	



Tensor-force	contribu8ons	

Matrix	
element	
(MeV)	

diagonal	 +1.40	

+0.59	

-0.78	

off-diagonal	 +1.16	

-0.22	

+0.43	

Matrix	
element	
(MeV)	

diagonal	 +1.05	

+0.51	

-0.23	

off-diagonal	 +0.76	

-0.25	

+0.21	

•  Pointed	out	by	Talmi	in	terms	of	the	origin	of	long	life8me	of	14C.	

•  Evalua8on	with	the	π+ρ	meson	exchange	tensor	force	using	the	
(−1)↑𝑗↓𝑏 −1/2 | 𝑎𝑏 𝐽=1 𝑇=0⟩↓Condon−Shortley 	conven8on	

p	shell	 sd	shell	



Pair	transfer	matrix	elements	
•  It	is	o{en	discussed	that	pair	transfer	probability	is	a	good	measure	

of	pairing	correla8on.		

•  Isoscalar	pair	crea8on	and	removal	probabili8es:	
|𝐽↓𝑓 𝑇↓𝑓  ||𝐷↑† || 𝐽↓𝑖 𝑇↓𝑖  |↑2 	and	 |𝐽↓𝑓 𝑇↓𝑓  ||𝐷|| 𝐽↓𝑖 𝑇↓𝑖  |↑2 	

Pair	crea0on	on	
vacuum	

Pair	removal	
from	closure	

p	 8.1	 5.3×10-3	

sd	 15.7	 1.7	



Possible	effects	on	pair	condensate	
•  On	the	basis	of	strong	T=0	a`rac8ve	force,	isoscalar	pair	

condensates	are	expected	to	occur	especially	around	N=Z	nuclei,	
similar	to	well-known	isovector	pair	condensates.	
–  | 𝛹⟩= (𝛬↑† )↑𝑁 | −⟩	with	the	Cooper	pair	𝛬↑† =∑𝑎𝑏↑▒𝜆↓𝑎𝑏 [𝑎↓𝑖↑† 

×𝑎↓𝑗↑† ]↑𝐽=1 𝑇=0  	

•  There	seems	to	be	no	strong	evidence	for	isoscalar	pair	
condensates	in	the	actual	nuclei.	

•  As	shown	in	this	talk,	the	signs	of	the	isoscalar	pair	are	not	uniquely	
determined	because	of	frustra8on.	This	is	a	possible	reason	why	
isoscalar	pair	condensates	are	not	well	established.	



Summary	
•  We	have	exactly	proven	that	the	GT	matrix	elements	in	two-nucleon	

configura8ons	(2p	and	2h)	are	always	in	phase	with	the	isovetor-	
and	isoscalar-pairing	interac8ons,	which	accounts	for	“low-energy	
super	GT	states”.	

•  The	observed	hindrance	of	the	GT	matrix	elements	in	two-hole	
configura8ons	is	due	to	“non	coherence”	of	realis8c	(J,T)=(1,0)	
matrix	elements,	which	cannot	give	definite	signs	in	”Cooper	pairs”.	

•  Difference	in	sign	between	isoscalar-pairing	and	realis8c	interac8ons	
is	predominantly	caused	by	L=2	central	forces	and	tensor	forces.	

•  This	effect	can	prevent	correlated	proton-neutron	pair	from	forming	
isoescalar-pair	condensates,	which	are	not	established	in	
experiement.	


