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Introduction: Fujita-san’s seminar in Jan. 2016

» Systematics of Gamow-Teller distributions for N=Z+2 - N=Z nuclei

— Using charge exchange reaction (3He, t)

(a) 42Ca+42Sc  (b)46Ti» 46V (C)50Cr+» 50Mn (d)%4Fe» 54Co
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Y. Fujita et al., Phys. Rev. Lett. 112, 112502 (2014). 0




lkeda sum rule

* When B(GT) is defined as Z(GT T+ ;i=f)=[alf Jif [otT+ [all

satisfied.
(with £7— |n)=|p))

be close to 6, if proton excitation
to the pf shell is small.




Proof of the Ikeda sum rule

The sum of B(GT) values are written as

Y B(GT*i— f)
= fz |<fof‘ff|20ﬂ £ (k) |avi Ji M;) [
= afL%Mf (i J; M; |Z ti Koo JpMe)(agJs UﬂZaH t% (k)| s Ji M) &
= acijffww\jf| > (=1)Fo_ (K)o, (k)T (k)= (k)| JiM;).
et
Here we define
0F = %;(—1)“0—#(kJ)ay(k‘)ﬁ(/nf’)fi(/f) (2)
and get
O~ -0t = Z,(—w{a_ﬂ (K)o (k) (K )t~ (k) — o— (K)o (k) (K)t+ (k)}
= lf(—l)“{a-u(k’)an(lf)f*(k’)f‘(/f) — o—p(k)ou (k)™ (k)T (K')}
= ltzki(—l)“{a—ﬂ(/f’)ffy(A‘)f+(1f’)t‘(k) — op(k)o— (k)™ ()t (K)}
= Mi(—l)“v—ﬂ(k)aﬂ(k‘){f+(k)f‘(k) —t~(k)t(k)} )
= i2(—1)"0—;1(A‘)au(k)t:(/f)
= i 2{03(k) + oy (k) + o2 (k) }t (k)

k
= 67..



SU(4)? single-particle transition?

* The situation is similar to what is expected from the SU(4)
symmetry (no spin or isospin dependent forces).

Review

Overview of neutron-proton pairing
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Very recently, Fujita et al. [171] carried out a detailed study of GT excitations for mass number A = 42, 46, 50, and 54
using the (*He, t) reaction at the RCNP Facility in Osaka. Of particular interest to us, are the results observed for the charge
exchange reaction from the gs of 42Ca to #2Sc. The GT strength for this case appears to be concentrated in the lowest 17 state
at 0.611 MeV which the authors interpret as a restoration of the SU(4) symmetry in the form of a low-lying collective GT
phonon. Shell model calculations with the Kuo-Brown interaction seem to account for the data rather well. With only two
valence particles outside closed shells, the direct implication of this observation on the existence of an isoscalar condensate
is not clear and shell model indicators do not signal such a condensate. The interpretation of this 17 state as an isoscalar

phonon, seems at variance with the large B(M1, 1* — 0%) which is well described by a [vf; ), —7f7,2]'" configuration [158]

and other properties to be discussed in Sections 7 and 8. Moreover, low-lying single-particle levels in #'Ca and #'Sc are
consistent with jj- rather than LS-coupling. One cannot but notice in Fig. 48 that in the SU(4) limit, the single-l model predicts
very small values of the total B(GT).

e SU(4) is strongly broken by the existence of spin-orbit splitting.

* Single-particle structure?



From the simple single-particle picture

(a) 42Ca+42Sc
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Essential role of configuration mixing

e RPA calculation 1 ccasar 00 |
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C. L. Bai et al., Phys. Rev. C 90, 054335 (2014).
Shell-model analysis

States in **Sc Configurations Transition strengths
E,. (MeV) T f1— f7 f7— f5 f5— f7 p3 — p3 p3 — pl pl — p3 2M(GT) B(GT)
0.33 0 1.383 0.548 0.063 0.031 0.024 0.016 2.07 4.28
441 0 0.719 —0.742 —0.085 —0.079 —0.073 —0.048 —0.31 0.09
7.41 0 0.193 —0.788 —0.090 0.142 0.060 0.040 —0.44 0.19
8.62 0 —0.151 0.385 0.044 0.109 —0.071 —0.047 0.30 0.09
9.82 1 0.0 1.196 —0.137 0.0 —0.053 0.035 1.04 1.08

Y. Fujita et al., Phys. Rev. C 91, 064316 (2015)



Two-particle vs. two-hole configurations

* A guestion by someone (sorry, | do not remember who raised)

— What about two hole systems?

two-particle:®*He - °Li two hole:14C - 14N
protons neutrons log ft = 9'1m
p1/, ——O—O O—O0— —0—0 o—0—
p;, -O—O0—0—0- -0—00—0 —-0—00—0 0000

U log ft =2.9

p sd pf p sd
A=6 A=18 A=42 A=14 A=38
1+, 4.7 3.1 2.2 3.5x10%  0.060

1%, 0.13 0.10 2.8 1.5




Distribution of known log ft
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Questions

 Why does the “low-energy super GT state” appear for two-particle
configurations?

 Why is the corresponding B(GT) values for two-hole configurations
very small?

 What does those properties tell us about isovector and isoscalar

pairing properties, since correlated two nucleons form a “Cooper
pair”?



Unified treatment of p-p and h-h systems

 The following two descriptions are identical

— Particle Hamiltonian

when viijikl=v lijikl and £ di =£(iT—1) are satisfied.

P1/ —O—0O (O —
— === ===

P3/»

Two-body matrix elements are the same, but the single-particle
energies are in the reversed order for the hole-hole Hamiltonian.



GT strength in 2p and 2h conf.: p-shell case

* As shown in the last slide, both the ®He - °Li (2p) and 1*C - *N
(2h) decays can be described as two-nucleon systems with the

same two-body matrix elements.
 The only difference between them is the single-particle splitting
Aslp=e(pdl/2) —(pd3/2):
— For the particle case: Asdp =0.1 MeV
— For the hole case: Aslp =—6.3 MeV }

Taken from the
Cohen-Kurath’s CKIl interaction

* lItis interesting to plot the Gamow-Teller matrix element M (¢7)=

S \otT— |/4i as afunction of Asdp for given two-body
interactions in order to see the dependence on the single-particle

energies.



(1) Cohen-Kurath’s CKII interaction

* One of the most popular empirical interactions for the p shell.

— 15 two-body matrix elements are deduced by fitting energy levels of A=8-16
nuclei.
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(2) Pairing interaction

e |soscalar- and isovector-pairing interactions are defined as

MIS=uMIT=07.=0,5=1,7=0.
* |sovector-pair creation operator PluTt and isoscalar-pair creation

operators DJuTt are symmetric in terms of Sand T.



M(GT) with the pairing interaction

* Strengths of G" and G are determined so as to reproduce the

mean square (J,7)=(1,0) and (0,1) matrix elements of CKII.

|

| (b) [])airinglj

\\

€ p;), limit:
v10/3 ~1.83

=

— -
e

—

”
—
—
S v —

Aep (MeV)

* M(GT): Enhanced for small Aelp and no vanishing for Aelp <0.

— Larger than single-particle limits on the both sides



Coherence of the GT matrix element

 When two-nucleon wave functions are decomposed into basis

where mlabcd (14kT+ )=alabllS T+ (kK)alcdTIV (1)ab /=1
7=0|otT— |cd /=0 7=1.
* Signs of mlabcd (14kT+ )

— Constructive or destructive interference—essential for determining large or
small B(GT)



Signs of mlabcd (144£T+ ). CKII

miabcd (1dkT+ )=alablS T+ (k)alcdNV (1)ab /=1 7=0|ctT— |cd /=0

7=1.
Aslp =5 MeV Aslp =—5 MeV
T=1 J=0 n=1 —> T=0 J=1 n=1 T=1 J=0 n=1 —=> T=0 J=1 n=1
# SPE: 0.0000 (p>) 5.0000 (p<) # SPE:  0.0000 (p>) -5.0000 (p<)
(P> p>) (p< p<) (P> p>) (p< p<)
—-0. 94845 -0. 31692 +0. 45403 +0. 89099
(p> p>) -0.81525 -1 %+ +0. 00%+0. 258 (p> p>) -0.00736 -1 *— +0. 00%-0. 007
I —1.41170] +0. 00000 | +0.00610| +0. 00000
(p> p<) +0.57862 +1.15%-0. 549 +1_63%-0.183 (p> p<) +0.42130 +1.15%+0. 191  +1_63%+0. 375
[ -0.63369) [ -0.29945) | +6.7§687| [ +0.61298 )
(p< p<) +0. 02401 +0. 00%-0. 023 +0. 82x-0. 008 (p< p<) -0.90689 +0. 00%-0.412 +0, 82%—
+0. 00000 [ -0.00621) +0. 00000 | —0.65975|
sum = -2.351  B(GT) = 5.527 sum = 0.180  B(GT) = 0.032

* Destructive interference for Aslp =—5 MeV.



Signs of mdabcd (1.ikT+ ): pairing

miabcd (1dkT+ )=alablS T+ (k)alcdNV (1)ab /=1 7=0|ctT— |cd /=0

7=1.
Aslp =5 MeV
T=1 J=0 n=1 —> T=0 J=1 n=1
# SPE:  0.0000 (p>)  5.0000 (p<)
(p> p>) (p< p<)
-0. 95195 -0. 30624
(p> p>) -0.82072 -1.83%+0. 781 +0. 00%+0. 251
-1.42644) +0. 00000
(p> p<) +0.56310 +1.15%-0.536  +1.63%-0. 172
-0.61898) [ -0.28160 )
(p< p<) +0.09658 +0. 00%x-0. 092 +0. 82%-0. 030
+0. 00000 ((-0.02415 )
sum = -2.351  B(GT) = 5.528

Aslp =—5 MeV

T=1 J=0 n=1 —> T=0 J=1 n=1

# SPE: 0.0000 (p>) -5.0000 (p<)
(p> p>) (p< p<)
+0. 46591 +0. 88483
(p> p>) -0.36547 -1. 83%— +0. 00*%-0. 323
[+0.31088 ) +0. 00000
(p> p<) +0.76070 +1.15%+0._354 +1.63%+0. 673
((+0.40924 ) (+7.09975 )
(p< p<) +0.53644 +0. 00%+0. 250 +0. 82x+0.4/5
+0. 00000 +0. 38756
sum = 2.207 B(GT) = 4.870

* It looks that the pairing interaction always gives a constructive

interference, but realistic interactions do not.



Theorem for the signs of mlabcd (144T+ )

When the (J,7)=(0,1) and (1,0) two-body matrix elements are
given by the isovector- and isoscalar-pairing interactions with
negative G'Y and G, respectively, all the signs of in
two-nucleon systems are the same for any valence shell

(including multi-j shell) and for any single-particle splitting.

4

miabed (1dkT+ )=alablS T+ (k)alcdNV (1)ab /=1 7=0|ctT— |cd /=0 7=1 =0



Proof of the theorem (1)

 Write down j-j coupled two-body matrix elements:
ab /=0 7=1VTpair cd /=0 7=1 =GTIV ylabTIV ylcdTIV
ab /=1 7=0VTpair cd /=1 7=0 =GTLS ylabTlS ylcdTlS
with
labTV =(—1)1la Vila+1/2 Slab
lablS =v21+8lab (—1)Tjla—1/2 V(2/ia+1)(2/ib +1)
{l/2&/la &lla @jlb &1 /2&1 }oinlanih ollla llb

* One can easily show that the sign of ylabTIV is (—1)T/la and that
that of pdabTlS is (—1)7/4H6—1/2 by using the exact form of
{M/2&/la &lla @jlb &1/2&1 ).

* When the conventions of |ab /=0 7=1)=(—1)Tla |ab /=0 7=1)
and |ab /=17=0)=(=1)T/ib6—1/2 |ab /=1 7=0) are taken, all the
two-body matrix elements are non positive.



Proof of the theorem (2)
Matrix element of the Hamiltonian
HlijTpair =ddij (ela(i) +£lb(i) )+ Vi Tpair

All the off-diagonal matrix elements are non positive when the

present phase convention.

From a version of the Perron-Frobenius theorem, the components

of the lowest eigenvector are completely of the same sign.

For a matrix /mii11 & &4iln @: & & @hinl & &hdnn | With A4if <0 (=
eigenvector 1 =/Mal1 @:@ain ] satisfies «4i>0 for any 7.

/), t




Proof of the theorem (3)

* Gamow-Teller matrix elements for two-nucleon configurations

Condon-Shortley

convention

present

convention

Completely the same sign!



Proof of the theorem (4)

miabcd (VIiT+ )=alabllS T (kK)alcdNV (1)ab /=1 7=0|0c
tT—|cd /=0 7=1.

* Allof adabTlS T+ (1), adcdTV (1), and ab /=1 7=0|otT— |cd /=0
7=1 have fixed signs when the phase conventions of |a4 /=0
7=1)=(—1)Tla |ab /=0 7=1)and |ab /=1 T=0) =(—1)T;ib
—1/2 |ab /=1 7=0) are taken. Therefore, the signs of mdabcd (
1J17+ ) are the same for all possible (a,5,¢,d).

* This is the origin of the coherence (“low-energy super GT state”)
obtained for two-particle configurations.



(rough) Proof of the Perron-Frobenius theorem

Consider a real-symmetric matrix with Z/=(/4Ji;) with V/Ali; <0
(i#/) and let 241 =(all, ..., adn ) be the lowest eigenvector.

Since 41 is the lowest eigenvector, there is no vector that
satisfies vA/l\Jv <vil HlR]Jvil .

If 241 contains positive and negative components, one can
generally assume adl =0, ..., &d£ =0, ali+1 <0, ..., adn <0. Let
i1’ be (@dl, ..alk, —alk+1,—ain).

that 41 is the lowest eigenvector.



Graphical image of the P-F theorem

Represent an off-diagonal matrix element 4JZ/

as a bond that connects the site 7and /. O
For each site Z, a positive (negative) @7 is

represented as an upward (downward) arrow. &

The right figure shows favored signs, which are ¢ } """ l/

analogous to ferromagnetism and
antiferromagnetism.

The situation of P-F theorem is like parallel spin I S 1
alignment in ferromagnetism that makes N

|
energy stable. o ! w 0



Going back to physics

 The coherence of GT matrix elements is due to the “alignment” of
all the two-nucleon configurations, where alignment stands for that
coefficients of basis vectors are of the same sign.

* Since this is independent of single-particle energies, such an
“aligned” state must be most stable also for two-hole
configurations.

e The actual situation is different. This means that some of the off-

diagonal matrix elements in the (J,T)=(1,0) and/or (0,1) channels
are opposite.



Realistic (J,T)=(0,1) and (1,0) matrix elements

e (Questions
— |sovector or isoscalar?
— Which matrix elements are different?

— Any rule about the different signs?

* Examining off-diagonal matrix elements in realistic interactions

— Empirical and microscopic (G matrix)

— Phase conventions of |ab /=0 7=1) =(—1)T/a |ab /=0 7=1) and |ab /=1
7=0)=(=1)T/b-1/2 |ab /=1 7=0)

(J,T)=(0,1) off-diagonal (J,T)=(1,0) off-diagonal
_lm | cKIl | Kuop
-4.86 -3 -1.56 -1.75
-3.55 -5.06

+1.70 +2.31



sd shell

(J,T)=(0,1) off-diagonal (J,T)=(1,0) off-diagonal
| usD | kuosd MM | USD | Kuosd_
319  -3.79 072 -1.62
132 -0.97 254 317
108 -0.74 4057  +0.04
4110 +0.24
118  -0.60
171 -191
210  -171
+0.40  +0.80
003 4021
125 031

Some isoscalar matrix elements
have the opposite sign.



Pairing vs. realistic interactions: p-shell case

(a) pairing Hamiltonian (b) CKIll Hamiltonian
V1=(p>p>)/*\ v1= (p>p>)/t
// \\\ /, \\\
/ \ f \
SRS Q" O
// \\ // \\
// \\ // \\
/
forrg e RN K i
v,=(p, P.) v,=(p_p,) v,=(p, p.) v,=(p_p.)

 Same signs for isovector matrix elements.
* Opposite sign for pd3/2 pd1/2 V]pi1/2 pd1/2 inthe (J,T)=(1,0)
channel. This causes “frustration”, which cannot uniquely

determine the signs. The actual signs depend on the diagonal
matrix elements.

— Two-particle config.: coherent due to the dominance of 41 and ©J2

— Two-hale confic * non coherent diie +o dominance af 77/7 and 77/



Origin of difference in sign

We consider the matrix elements of the delta interaction as a short-
range central interaction.

The j-j coupled matrix elements are written as

with 74ad (LS))=V1—(—1)1S+T /1+8lab yiLST() (ab)(—1)1
nda+ndb VQUa+1)QRUL+1) (ML&a &ILb @0&0&O ) and
VLST()) (ab)=V(2/da+1)(2/ib+1)(2L4+1)(25+1) {M/ia
&1/2&/la @llb &1/2&)1b @L&S&] }.

¢J0 dependson (nla, [la ) etc., but we assume a constant £Y0
which is called the surface delta interaction.

In this case, the £Z=0 contributions are exactly the same as the
pairing matrix elements.



[=0 and 2 contributions

(L5))
Restrictions
— /=L+5;5=0or1.

— Lis only even when one considers a single-major shell, since 7dab
(LS))x(ML&/la &lH @0 &0 &0 ).

Possible Z.§
— Only 25=00 for (/,7)=(0,1)
— 185=01and 21 for (,7)=(1,0)

One must take the 2s=21 term into account when fully evaluating
the matrix elements of short-range central forces.



Cancellation due to L=2

o ap/TVISDI cd/T =CI0 LS (L+S+7=o0dd) Téinlab (LS))ndcd
(LS5))

¢ Fvart avnraccinn nf nlah 7 C—1 /—1 ) divvidad h c— 71T/ A

(a,b) (J>,J>) (J>. 7<) (J<, J<) (j<, J5)

L [(1+1)(2+3) [81(1+ 1) [121 - 1)

T Vo 3@i+1) \/ 3(20 + 1) \/ 3020+ 1)

L [ 2+ NIEE [ 21 +1) N EEDE)

T \/ 3(20 +1)(20 + 3) \/ 320+ 1) \/ 32— D)2+ 1) Vo 243
[T =/[-2

 Clearly, cancellation due to L=2 occurs for /4> ji> V]/I> ji<
and /U< U< VIR]JI> ji< .



Quantitative argument

 ab/=17=0VTISDI cd /=1 7=0 //with the convention of (—1)7T
Jb—1/2 |ab /=1 7=0)JCondon—Shortley

(a) diagonal (b) off-diagonal

v/l

o N IS VRA]I> ji< with low-/are strongly cancelled by L=2.
* Finite-range interactions can make /U< ji< VR]/I> jI< positive.



Frustration caused by A/=2 mixing

* Matrix elements concerning |/4< j4>T ) with /T =/-2 (such as |
dl3/2 s41/2 )) does not appear with the L=0 terms, and can be an

additional source of frustration.

* The sign of 2412 4423 A2431 is invariant under phase
transformation. When it is positive, the frustration occurs among

1, vd2 and vd3,10p (1 5=1 /=1)) (- )1)l6-1)2

(a,b) (J>.7>) (J>, J<) (1<, ]<) (J<. jl>~)
L [+ 1) +3) [81(1+1) [121—1)
T \ 3(20+ 1) \ 3(20+ 1) \ 321 + 1)
[ —9 ,' 202(1+1) [1(1+1) 20(1 +1)2 [3(L+ 1)(1+2)
T \/ 320+ 1)(20 +3) RECED \/ 32— 1)20+1) V203

(i< ji>T)

A
/7 \
D O
/ \

/ \
GI> Py = = (i< f>1)



Tensor-force contributions

* Pointed out by Talmi in terms of the origin of long lifetime of 4C.

e Evaluation with the m+p meson exchange tensor force using the
(—1)7/4b6—-1/2 |ab /=1 7=0)JCondon—Shortley convention

p shell sd shell

element element

(MeV) (MeV)
diagonal +1.40 diagonal +1.05
+0.59 +0.51
-0.78 -0.23
off-diagonal +1.16 off-diagonal +0.76
-0.22 -0.25

+0.43 +0.21



Pair transfer matrix elements

* Itis often discussed that pair transfer probability is a good measure
of pairing correlation.

* Isoscalar pair creation and removal probabilities:

LTI IDTY [[J4i T80 [T2 and [JLf T [P/ T4i [T2

Pair creation on Pair removal
vacuum from closure

p 8.1 5.3x1073
sd 15.7 1.7



Possible effects on pair condensate

* On the basis of strong T=0 attractive force, isoscalar pair
condensates are expected to occur especially around N=Z nuclei,

similar to well-known isovector pair condensates.

XaljTt |T/=1 7=0
* There seems to be no strong evidence for isoscalar pair

condensates in the actual nuclei.

* As shown in this talk, the signs of the isoscalar pair are not uniquely

determined because of frustration. This is a possible reason why
isoscalar pair condensates are not well established.



Summary

We have exactly proven that the GT matrix elements in two-nucleon
configurations (2p and 2h) are always in phase with the isovetor-
and isoscalar-pairing interactions, which accounts for “low-energy
super GT states”.

The observed hindrance of the GT matrix elements in two-hole
configurations is due to “non coherence” of realistic (J,T)=(1,0)

matrix elements, which cannot give definite signs in “Cooper pairs”.

Difference in sign between isoscalar-pairing and realistic interactions

is predominantly caused by =2 central forces and tensor forces.

This effect can prevent correlated proton-neutron pair from forming
isoescalar-pair condensates, which are not established in
experiement.



