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Introduc8on:	Fujita-san’s	seminar	in	Jan.	2016	
•  Systema8cs	of	Gamow-Teller	distribu8ons	for	N=Z+2	→	N=Z	nuclei	

–  Using	charge	exchange	reac8on	(3He,	t)	



Observed	GT	strength	
•  Concentra8on	in	the	1+1	level	for	

42Ca	→	42Sc	

–  B(GT;	0+1	→	1+1)	=	2.2		

Y.	Fujita	et	al.,	Phys.	Rev.	Le`.	112,	112502	(2014).	

“low-energy	super	GT	state”	



Ikeda	sum	rule	
•  When	B(GT)	is	defined	as	𝐵(G​T↑± ;𝑖→𝑓)= ​​|​​𝛼↓𝑓 ​𝐽↓𝑓  ⁠|𝜎​𝑡↑± | ⁠​𝛼↓𝑖 ​
𝐽↓𝑖  |↑2 /2​𝐽↓𝑖 +1 =∑𝜇​𝑀↓𝑓 ↑▒​|​​𝛼↓𝑓 ​𝐽↓𝑓 ​𝑀↓𝑓 ⁠​𝜎↓𝜇 ​𝑡↑±  ⁠​𝛼↓𝑖 ​𝐽↓𝑖 ​𝑀↓𝑖  |
↑2  ,		
∑𝑓↑▒𝐵(G​T↑− ;𝑖→𝑓)− 	∑𝑓↑▒𝐵(G​T↑+ ;𝑖→𝑓)=3(𝑁−𝑍) 	is	
sa8sfied.	
(with	 ​𝑡↑− | ​𝑛⟩=| ​𝑝⟩)


•  If	GT+	transi8on	is	hindered	by	Pauli	blocking,	∑𝑓↑▒𝐵(G​T↑− ;𝑖→𝑓) 	
is	close	to	3(𝑁−𝑍).	

–  ∑𝑓↑▒𝐵(G​T↑− ;𝑖→𝑓) 	for	42Ca	should		
be	close	to	6,	if	proton	excita8on		
to	the	pf	shell	is	small.	

proton	

neutron	





SU(4)?	single-par8cle	transi8on?	
•  The	situa8on	is	similar	to	what	is	expected	from	the	SU(4)	

symmetry	(no	spin	or	isospin	dependent	forces).	

•  SU(4)	is	strongly	broken	by	the	existence	of	spin-orbit	splifng.	

•  Single-par8cle	structure?	



f7/2→f7/2	
f7/2→f5/2	

ε(f5/2)-ε(f7/2)	

B(GT)	distribu8on	with	pure	configura8ons	

•  Concentra8on	in	a	single	state	
cannot	be	accounted	for	by	a	
simple	shell-model	argument.	

From	the	simple	single-par8cle	picture	

Experimental	strength	

0	 10	



Essen8al	role	of	configura8on	mixing	

Y.	Fujita	et	al.,	Phys.	Rev.	C	91,	064316	(2015)	

•  RPA	calcula8on	
–  Isoscalar	pairing	is	essen8al.	

•  Coherence	in	the	GT	transi8on	is	also	
obtained	by	shell-model	calc.	

•  Why	is	collec8vity	created?	

C.	L.	Bai	et	al.,	Phys.	Rev.	C	90,	054335	(2014).	
Shell-model	analysis	



Two-par8cle	vs.	two-hole	configura8ons	
•  A	ques8on	by	someone	(sorry,	I	do	not	remember	who	raised)	

– What	about	two	hole	systems?	

two	hole：14C	→	14N	
log	A	=	9.1	

p3/2	

p1/2	

two-par8cle：6He	→	6Li	

log	A	=	2.9	

protons	 neutrons	

B(GT)	 Two-par0cle	 Two-hole	
p	 sd	 pf	 p	 sd	

A=6	 A=18	 A=42	 A=14	 A=38	
1+1	 4.7	 3.1	 2.2	 3.5×10-6	 0.060	
1+2	 0.13	 0.10	 2.8	 1.5	



Distribu8on	of	known	log	A	

6He	→	6Li	 14C	→	14N	
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Ques8ons	
•  Why	does	the	“low-energy	super	GT	state”	appear	for	two-par8cle	

configura8ons?	

•  Why	is	the	corresponding	B(GT)	values	for	two-hole	configura8ons	
very	small?	

•  What	does	those	proper8es	tell	us	about	isovector	and	isoscalar	
pairing	proper8es,	since	correlated	two	nucleons	form	a	“Cooper	
pair”?		



Unified	treatment	of	p-p	and	h-h	systems	
•  The	following	two	descrip8ons	are	iden8cal	

–  Par8cle	Hamiltonian	
𝐻=∑𝑖↑▒​𝜀↓𝑖 ​​​𝑎↓𝑖 ↓↑† 𝑎↓𝑖  + ​1/4 ∑𝑖,𝑗,𝑘,𝑙↑▒​𝑣↓𝑖𝑗;𝑘𝑙  ​​𝑎↓𝑖 ↓↑† ​​𝑎↓𝑗 ↓↑† ​𝑎↓𝑙 ​𝑎↓𝑘 	

–  Hole	Hamiltonian	
𝐻=∑𝑖↑▒​​𝜀 ↓𝑖 ​​​𝑏↓𝑖 ↓↑† 𝑏↓𝑖  + ​1/4 ∑𝑖,𝑗,𝑘,𝑙↑▒​​𝑣 ↓𝑖𝑗;𝑘𝑙  ​​𝑏↓𝑖 ↓↑† ​​𝑏↓𝑗 ↓↑† ​𝑏↓𝑙 ​𝑏↓𝑘 	

when	​𝑣↓𝑖𝑗;𝑘𝑙 = ​​𝑣 ↓𝑖𝑗;𝑘𝑙 	and	 ​​𝜀 ↓𝑖 =𝐸( ​𝑖↑−1 )	are	sa8sfied.	
		

	

Two-body	matrix	elements	are	the	same,	but	the	single-par8cle		
energies	are	in	the	reversed	order	for	the	hole-hole	Hamiltonian.	

p3/2	

p1/2	



GT	strength	in	2p	and	2h	conf.:	p-shell	case	
•  As	shown	in	the	last	slide,	both	the	6He	→	6Li	(2p)	and	14C	→	14N	

(2h)	decays	can	be	described	as	two-nucleon	systems	with	the	
same	two-body	matrix	elements.	

•  The	only	difference	between	them	is	the	single-par8cle	splifng	​
Δ𝜀↓𝑝 =𝜀( ​𝑝↓1/2 ) −𝜀( ​𝑝↓3/2 ):	
–  For	the	par8cle	case:	​Δ𝜀↓𝑝 =0.1 MeV		

–  For	the	hole	case:	​Δ𝜀↓𝑝 =−6.3 MeV	

•  It	is	interes8ng	to	plot	the	Gamow-Teller	matrix	element	𝑀(𝐺𝑇)= ​​
𝐽↓𝑓 ⁠|𝜎​𝑡↑− | ⁠​𝐽↓𝑖  	as	a	func8on	of	​Δ𝜀↓𝑝 	for	given	two-body	
interac8ons	in	order	to	see	the	dependence	on	the	single-par8cle	
energies.	

Taken	from	the		
Cohen-Kurath’s	CKII	interac8on	



(1)	Cohen-Kurath’s	CKII	interac8on	
•  One	of	the	most	popular	empirical	interac8ons	for	the	p	shell.	

–  15	two-body	matrix	elements	are	deduced	by	fifng	energy	levels	of	A=8-16	
nuclei.	



(2)	Pairing	interac8on	
•  Isoscalar-	and	isovector-pairing	interac8ons	are	defined	as	
​𝑉↑IVpair = ​𝐺↑IV ∑𝜇↑▒​𝑃↓𝜇↑†  ​𝑃↓𝜇 	
​𝑉↑ISpair = ​𝐺↑IS ∑𝜇↑▒​𝐷↓𝜇↑†  ​𝐷↓𝜇 	
where	​𝑃↓𝜇↑† =√⁠1/2 ​∑𝑛𝑙↑▒​(−1)↑𝑙 √⁠2𝑙+1 [​𝑎↓𝑛𝑙↑† × ​𝑎↓𝑛𝑙↑† ] ↓​
𝑀↓𝐿 =0,​𝑀↓𝑆 =0,​𝑀↓𝑇 =𝜇↑𝐿=0,𝑆=0,𝑇=1 and	 �
​𝐷↓𝜇↑† =√⁠1/2 ​∑𝑛𝑙↑▒​(−1)↑𝑙 √⁠2𝑙+1 [​𝑎↓𝑛𝑙↑† × ​𝑎↓𝑛𝑙↑† ] ↓​𝑀↓𝐿 =0,​
𝑀↓𝑆 =𝜇, ​𝑀↓𝑇 =0↑𝐿=0,𝑆=1,𝑇=0 .	

•  Isovector-pair	crea8on	operator	 ​𝑃↓𝜇↑† 	and	isoscalar-pair	crea8on	
operators	 ​𝐷↓𝜇↑† 	are	symmetric	in	terms	of	S	and	T.	
	



M(GT)	with	the	pairing	interac8on	

•  M(GT):	Enhanced	for	small	​Δ𝜀↓𝑝 	and	no	vanishing	for	​Δ𝜀↓𝑝 <0.	
–  Larger	than	single-par8cle	limits	on	the	both	sides	

•  Strengths	of	GIS	and	GIV	are	determined	so	as	to	reproduce	the	
mean	square	(J,T)=(1,0)	and	(0,1)	matrix	elements	of	CKII.		

									p3/2	limit:	
√⁠10/3 ≈1.83		

p1/2	limit:	
√⁠2/3 ≈0.82		



Coherence	of	the	GT	matrix	element	
•  When	two-nucleon	wave	func8ons	are	decomposed	into	basis	

states	as	| ​​0↓𝑘↑+ ⟩=∑𝑎𝑏↑▒​𝛼↓𝑎𝑏↑IV (𝑘) | ​𝑎𝑏 𝐽=0 𝑇=1⟩	and	| ​​
1↓𝑘↑+ ⟩=∑𝑎𝑏↑▒​𝛼↓𝑎𝑏↑I𝑆 (𝑘) | ​𝑎𝑏 𝐽=1 𝑇=0⟩,	the	Gamow-Teller	
matrix	element	is	wri`en	as	
𝑀(𝐺𝑇;​1↓𝑘↑+ )=∑𝑎𝑏𝑐𝑑↑▒​𝑚↓𝑎𝑏𝑐𝑑 ( ​1↓𝑘↑+ ) 	
where	​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )= ​​𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)​𝛼↓𝑐𝑑↑IV (1)​𝑎𝑏 𝐽=1 
𝑇=0⁠|𝜎​𝑡↑− | ⁠𝑐𝑑 𝐽=0 𝑇=1 .	

•  Signs	of	​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )	
–  Construc8ve	or	destruc8ve	interference—essen8al	for	determining	large	or	

small	B(GT)	
	



Signs	of	​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ ):	CKII	

•  Destruc8ve	interference	for	​Δ𝜀↓𝑝 =−5 MeV.	

​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )= ​​𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)​𝛼↓𝑐𝑑↑IV (1)​𝑎𝑏 𝐽=1 𝑇=0⁠|𝜎​𝑡↑− | ⁠𝑐𝑑 𝐽=0 
𝑇=1 .	

​Δ𝜀↓𝑝 =5 MeV	 ​Δ𝜀↓𝑝 =−5 MeV	



Signs	of	​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ ):	pairing	

•  It	looks	that	the	pairing	interac8on	always	gives	a	construc8ve	
interference,	but	realis8c	interac8ons	do	not.	

​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )= ​​𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)​𝛼↓𝑐𝑑↑IV (1)​𝑎𝑏 𝐽=1 𝑇=0⁠|𝜎​𝑡↑− | ⁠𝑐𝑑 𝐽=0 
𝑇=1 .	

​Δ𝜀↓𝑝 =5 MeV	 ​Δ𝜀↓𝑝 =−5 MeV	



Theorem	for	the	signs	of	​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )		

When	the	(J,T)=(0,1)	and	(1,0)	two-body	matrix	elements	are	
given	by	the	isovector-	and	isoscalar-pairing	interac8ons	with	

nega8ve	GIV	and	GIS,	respec8vely,	all	the	signs	of	​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )	in	
two-nucleon	systems	are	the	same	for	any	valence	shell	

(including	mul8-j	shell)	and	for	any	single-par8cle	splifng.	

​𝐻↑pair =∑𝑖↑▒​𝜀↓𝑖 ​​​𝑎↓𝑖 ↓↑† 𝑎↓𝑖  + ​𝑉↑pair 	

​𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )= ​​𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)​𝛼↓𝑐𝑑↑IV (1)​𝑎𝑏 𝐽=1 𝑇=0⁠|𝜎​𝑡↑− | ⁠𝑐𝑑 𝐽=0 𝑇=1 ≥0	

​​𝑉↑pair =𝐺↑IV ∑𝜇↑▒​𝑃↓𝜇↑†  ​𝑃↓𝜇 + ​𝐺↑IS ∑𝜇↑▒​𝐷↓𝜇↑†  ​𝐷↓𝜇 	



Proof	of	the	theorem	(1)	
•  Write	down	j-j	coupled	two-body	matrix	elements:	
​𝑎𝑏 𝐽=0 𝑇=1⁠​𝑉↑pair  ⁠𝑐𝑑 𝐽=0 𝑇=1 = ​𝐺↑IV ​𝜒↓𝑎𝑏↑IV ​𝜒↓𝑐𝑑↑IV 	
​𝑎𝑏 𝐽=1 𝑇=0⁠​𝑉↑pair  ⁠𝑐𝑑 𝐽=1 𝑇=0 = ​𝐺↑I𝑆 ​𝜒↓𝑎𝑏↑IS ​𝜒↓𝑐𝑑↑IS 	
with	
​𝜒↓𝑎𝑏↑IV = ​(−1)↑​𝑙↓𝑎  √⁠​𝑗↓𝑎 +1/2 ​𝛿↓𝑎𝑏 	
​𝜒↓𝑎𝑏↑IS =√⁠​2/1+ ​𝛿↓𝑎𝑏   ​(−1)↑​𝑗↓𝑎 −1/2 √⁠(2​𝑗↓𝑎 +1)(2​𝑗↓𝑏 +1) 
{█1/2&​𝑗↓𝑎 &​𝑙↓𝑎 @​𝑗↓𝑏 &1/2&1 }​𝛿↓​𝑛↓𝑎 ​𝑛↓𝑏  ​𝛿↓​𝑙↓𝑎 ​𝑙↓𝑏  	

•  One	can	easily	show	that	the	sign	of	​𝜒↓𝑎𝑏↑IV 	is	​(−1)↑​𝑙↓𝑎  	and	that	
that	of	​𝜒↓𝑎𝑏↑IS 	is	​(−1)↑​𝑗↓𝑏 −1/2 	by	using	the	exact	form	of	
{█1/2&​𝑗↓𝑎 &​𝑙↓𝑎 @​𝑗↓𝑏 &1/2&1 }.	

•  When	the	conven8ons	of	​| ​𝑎𝑏 𝐽=0 𝑇=1⟩ = ​(−1)↑​𝑙↓𝑎  | ​𝑎𝑏 𝐽=0 𝑇=1⟩	
and	 ​| ​𝑎𝑏 𝐽=1 𝑇=0⟩ = ​(−1)↑​𝑗↓𝑏 −1/2 | ​𝑎𝑏 𝐽=1 𝑇=0⟩	are	taken,	all	the	
two-body	matrix	elements	are	non	posi8ve.	



Proof	of	the	theorem	(2)	
•  Matrix	element	of	the	Hamiltonian	
​𝐻↓𝑖𝑗↑pair = ​𝛿↓𝑖𝑗 ( ​𝜀↓𝑎(𝑖) + ​𝜀↓𝑏(𝑖) )+ ​𝑉↓𝑖𝑗↑pair 	

•  All	the	off-diagonal	matrix	elements	are	non	posi8ve	when	the	
present	phase	conven8on.	

•  From	a	version	of	the	Perron-Frobenius	theorem,	the	components	
of	the	lowest	eigenvector	are	completely	of	the	same	sign.	

For	a	matrix	[█​ℎ↓11 &⋯&​ℎ↓1𝑛 @⋮&⋱&⋮@​ℎ↓𝑛1 &⋯&​ℎ↓𝑛𝑛  ]	with	 ​ℎ↓𝑖𝑗 ≤0	(𝑖≠𝑗),	the	lowest		
eigenvector	​​𝑣↓1  =[█​𝛼↓1 @⋮@​𝛼↓𝑛  ]	sa8sfies	 ​𝛼↓𝑖 ≥0	for	any	𝑖.	



Proof	of	the	theorem	(3)	
•  Gamow-Teller	matrix	elements	for	two-nucleon	configura8ons	

	
	

Condon-Shortley	
conven8on	

	
	

present	
conven8on	

Completely	the	same	sign!	



Proof	of	the	theorem	(4)	
•  We	go	back	to	𝑀(𝐺𝑇;​1↓𝑘↑+ )=∑𝑎𝑏𝑐𝑑↑▒​𝑚↓𝑎𝑏𝑐𝑑 ( ​1↓𝑘↑+ ) 	with	 ​
𝑚↓𝑎𝑏𝑐𝑑 (​1↓𝑘↑+ )= ​​𝛼↓𝑎𝑏↑I𝑆 ↑∗ (𝑘)​𝛼↓𝑐𝑑↑IV (1)​𝑎𝑏 𝐽=1 𝑇=0⁠|𝜎​
𝑡↑− | ⁠𝑐𝑑 𝐽=0 𝑇=1 .		

•  All	of	​​𝛼↓𝑎𝑏↑I𝑆 ↑∗ (1),	 ​𝛼↓𝑐𝑑↑IV (1),	and	 ​𝑎𝑏 𝐽=1 𝑇=0⁠|𝜎​𝑡↑− | ⁠𝑐𝑑 𝐽=0 
𝑇=1 	have	fixed	signs	when	the	phase	conven8ons	of	​| ​𝑎𝑏 𝐽=0 
𝑇=1⟩ = ​(−1)↑​𝑙↓𝑎  | ​𝑎𝑏 𝐽=0 𝑇=1⟩	and	 ​| ​𝑎𝑏 𝐽=1 𝑇=0⟩ = ​(−1)↑​𝑗↓𝑏 
−1/2 | ​𝑎𝑏 𝐽=1 𝑇=0⟩	are	taken.	Therefore,	the	signs	of	​𝑚↓𝑎𝑏𝑐𝑑 (​
1↓1↑+ )	are	the	same	for	all	possible	(𝑎,𝑏,𝑐,𝑑).	

•  This	is	the	origin	of	the	coherence	(“low-energy	super	GT	state”)	
obtained	for	two-par8cle	configura8ons.	



(rough)	Proof	of	the	Perron-Frobenius	theorem	
•  Consider	a	real-symmetric	matrix	with	𝐻=( ​ℎ↓𝑖𝑗 )	with	∀ ​ℎ↓𝑖𝑗 ≤0	

(𝑖≠𝑗)	and	let	​​𝑣↓1  =(​𝛼↓1 , …, ​𝛼↓𝑛 )	be	the	lowest	eigenvector.			
•  Since	 ​​𝑣↓1  	is	the	lowest	eigenvector,	there	is	no	vector	that	

sa8sfies	 ​𝑣⁠𝐻�𝑣 < ​​𝑣↓1  ⁠𝐻� ​𝑣↓1  .	
•  If	 ​​𝑣↓1  	contains	posi8ve	and	nega8ve	components,	one	can	

generally	assume	 ​𝛼↓1 ≥0,	…,	​𝛼↓𝑘 ≥0,	 ​𝛼↓𝑘+1 <0,	…,	​𝛼↓𝑛 <0.	Let	 ​​
𝑣↓1 ′  be	(​𝛼↓1 , … ​𝛼↓𝑘 , − ​𝛼↓𝑘+1 , ​−𝛼↓𝑛 ).		

•  Since	 ​​𝑣↓1  ⁠𝐻� ​𝑣↓1  =∑𝑖𝑗↑▒​𝛼↓𝑖  ​ℎ↓𝑖𝑗 ​𝛼↓𝑗 ,	one	gets	​​𝑣↓1  ⁠𝐻� ​𝑣↓1  − ​​
𝑣↓1 ′ ⁠𝐻� ​𝑣↓1 ′ =∑𝑖≤𝑘, 𝑗>𝑘↑▒2 ​𝛼↓𝑖 ​ℎ↓𝑖𝑗 ​𝛼↓𝑗 >0.	This	contradicts	
that	​​𝑣↓1  	is	the	lowest	eigenvector.	



Graphical	image	of	the	P-F	theorem	
•  Represent	an	off-diagonal	matrix	element	​ℎ↓𝑖𝑗 	

as	a	bond	that	connects	the	site	𝑖	and	𝑗.	
•  For	each	site	𝑖,	a	posi8ve	(nega8ve)	​𝛼↓𝑖 	is	

represented	as	an	upward	(downward)	arrow.	

•  The	right	figure	shows	favored	signs,	which	are	
analogous	to	ferromagne8sm	and	
an8ferromagne8sm.	

•  The	situa8on	of	P-F	theorem	is	like	parallel	spin	
alignment	in	ferromagne8sm	that	makes	
energy	stable.	

⊝	
𝑖	 𝑗	

⊕	
𝑖	 𝑗	

⊝	

⊝	

⊝	

⊝	
⊝	

⊝	



Going	back	to	physics	
•  The	coherence	of	GT	matrix	elements	is	due	to	the	“alignment”	of	

all	the	two-nucleon	configura8ons,	where	alignment	stands	for	that	
coefficients	of	basis	vectors	are	of	the	same	sign.	

•  Since	this	is	independent	of	single-par8cle	energies,	such	an	
“aligned”	state	must	be	most	stable	also	for	two-hole	
configura8ons.	

•  The	actual	situa8on	is	different.	This	means	that	some	of	the	off-
diagonal	matrix	elements	in	the	(J,T)=(1,0)	and/or	(0,1)	channels	
are	opposite.	



Realis8c	(J,T)=(0,1)	and	(1,0)	matrix	elements	
•  Ques8ons	

–  Isovector	or	isoscalar?	
–  Which	matrix	elements	are	different?	

–  Any	rule	about	the	different	signs?	

•  Examining	off-diagonal	matrix	elements	in	realis8c	interac8ons	
–  Empirical	and	microscopic	(G	matrix)	

–  Phase	conven8ons	of	​| ​𝑎𝑏 𝐽=0 𝑇=1⟩ = ​(−1)↑​𝑙↓𝑎  | ​𝑎𝑏 𝐽=0 𝑇=1⟩	and	 ​| ​𝑎𝑏 𝐽=1 
𝑇=0⟩ = ​(−1)↑​𝑗↓𝑏 −1/2 | ​𝑎𝑏 𝐽=1 𝑇=0⟩	

CKII	 Kuo	p	

-1.56	 -1.75	

-3.55	 -5.06	

+1.70	 +2.31	

CKII	 Kuo	p	

-4.86	 -3.96	

(J,T)=(0,1)	off-diagonal	 (J,T)=(1,0)	off-diagonal	



sd	shell	

USD	 Kuo	sd	

-0.72	 -1.62	

-2.54	 -3.17	

+0.57	 +0.04	

+1.10	 +0.24	

-1.18	 -0.60	

-1.71	 -1.91	

-2.10	 -1.71	

+0.40	 +0.80	

-0.03	 +0.21	

-1.25	 -0.31	

USD	 Kuo	sd	

-3.19	 -3.79	

-1.32	 -0.97	

-1.08	 -0.74	

(J,T)=(0,1)	off-diagonal	 (J,T)=(1,0)	off-diagonal	

Some	isoscalar	matrix	elements		
have	the	opposite	sign.	



Pairing	vs.	realis8c	interac8ons:	p-shell	case	

•  Same	signs	for	isovector	matrix	elements.	

•  Opposite	sign	for	 ​​𝑝↓3/2 ​𝑝↓1/2  ⁠𝑉� ​𝑝↓1/2 ​𝑝↓1/2  	in	the	(J,T)=(1,0)	
channel.	This	causes	“frustra8on”,	which	cannot	uniquely	
determine	the	signs.	The	actual	signs	depend	on	the	diagonal	
matrix	elements.	
–  Two-par8cle	config.:	coherent	due	to	the	dominance	of	​𝑣↓1 	and	 ​𝑣↓2 	
–  Two-hole	config.:	non	coherent	due	to	dominance	of	​𝑣↓2 	and	 ​𝑣↓3 .	



Origin	of	difference	in	sign	
•  We	consider	the	matrix	elements	of	the	delta	interac8on	as	a	short-

range	central	interac8on.	

•  The	j-j	coupled	matrix	elements	are	wri`en	as		
​𝑎𝑏𝐽𝑇 ⁠𝛿(𝑟) ⁠𝑐𝑑𝐽𝑇 = ​𝐶↓0 ∑𝐿𝑆 (𝐿+𝑆+𝑇=odd)↑▒​𝜂↓𝑎𝑏 (𝐿𝑆𝐽)​𝜂↓𝑐𝑑 (𝐿𝑆𝐽) 	
with	 ​𝜂↓𝑎𝑏 (𝐿𝑆𝐽)=√⁠​1− ​(−1)↑𝑆+𝑇 /1+ ​𝛿↓𝑎𝑏   ​𝛾↓𝐿𝑆↑(𝐽) (𝑎,𝑏)​(−1)↑​
𝑛↓𝑎 + ​𝑛↓𝑏  √⁠(2​𝑙↓𝑎 +1)(2​𝑙↓𝑏 +1) (█𝐿&​𝑙↓𝑎 &​𝑙↓𝑏 @0&0&0 )	and	 ​
𝛾↓𝐿𝑆↑(𝐽) (𝑎,𝑏)=√⁠(2​𝑗↓𝑎 +1)(2​𝑗↓𝑏 +1 )(2𝐿+1)(2𝑆+1) {█​𝑙↓𝑎 
&1/2&​𝑗↓𝑎 @​𝑙↓𝑏 &1/2&​𝑗↓𝑏 @𝐿&𝑆&𝐽 }.	

•  ​𝐶↓0 	depends	on	(​𝑛↓𝑎 , ​𝑙↓𝑎 )	etc.,	but	we	assume	a	constant	​𝐶↓0 	
which	is	called	the	surface	delta	interac8on.	

•  In	this	case,	the	𝐿=0	contribu8ons	are	exactly	the	same	as	the	
pairing	matrix	elements.	



L=0	and	2	contribu8ons	
•  ​​𝑎𝑏𝐽𝑇 ⁠​𝑉↑SDI  ⁠𝑐𝑑𝐽𝑇 =𝐶↓0 ∑𝐿𝑆 (𝐿+𝑆+𝑇=odd)↑▒​𝜂↓𝑎𝑏 (𝐿𝑆𝐽)​𝜂↓𝑐𝑑 

(𝐿𝑆𝐽) 		
•  Restric8ons


–  ​𝐽 = ​𝐿 + ​𝑆 ;	𝑆=0	or	1.	

–  𝐿	is	only	even	when	one	considers	a	single-major	shell,	since	​𝜂↓𝑎𝑏 
(𝐿𝑆𝐽)∝(█𝐿&​𝑙↓𝑎 &​𝑙↓𝑏 @0&0&0 ).	

•  Possible	𝐿𝑆	
–  Only	𝐿𝑆=00	for	(𝐽,𝑇)=(0,1)	

–  𝐿𝑆=01	and	21	for	(𝐽,𝑇)=(1,0)	

One	must	take	the	𝐿𝑆=21	term	into	account	when	fully	evalua8ng		
the	matrix	elements	of	short-range	central	forces.	



Cancella8on	due	to	L=2	
•  ​​𝑎𝑏𝐽𝑇 ⁠​𝑉↑SDI  ⁠𝑐𝑑𝐽𝑇 =𝐶↓0 ∑𝐿𝑆 (𝐿+𝑆+𝑇=odd)↑▒​𝜂↓𝑎𝑏 (𝐿𝑆𝐽)​𝜂↓𝑐𝑑 

(𝐿𝑆𝐽) 		
•  Exact	expression	of	 ​𝜂↓𝑎𝑏 (𝐿 𝑆=1 𝐽=1)	divided	by	𝑠= ​(−1)↑​𝑗↓𝑏 

−1/2 		

•  Clearly,		cancella8on	due	to	L=2	occurs	for	 ​​𝑗↓> ​𝑗↓>  ⁠𝑉� ​𝑗↓> ​𝑗↓<  	
and	 ​​𝑗↓< ​𝑗↓<  ⁠𝑉� ​𝑗↓> ​𝑗↓<  .	

​𝑙↑′ =𝑙−2	



Quan8ta8ve	argument	
•  ​𝑎𝑏 𝐽=1 𝑇=0⁠​𝑉↑SDI  ⁠𝑐𝑑 𝐽=1 𝑇=0 /𝑙	with	the	conven8on	of	​(−1)↑​
𝑗↓𝑏 −1/2 | ​​𝑎𝑏 𝐽=1 𝑇=0⟩↓Condon−Shortley 		

•  ​​𝑗↓< ​𝑗↓<  ⁠𝑉� ​𝑗↓> ​𝑗↓<  	with	low-𝑙	are	strongly	cancelled	by	L=2.	
•  Finite-range	interac8ons	can	make	​​𝑗↓< ​𝑗↓<  ⁠𝑉� ​𝑗↓> ​𝑗↓<  	posi8ve.	



Frustra8on	caused	by	Δl=2	mixing	
•  Matrix	elements	concerning	| ​​𝑗↓<  ​𝑗↓>↑′ ⟩	with	 ​𝑙↑′ =𝑙−2	(such	as	| ​​
𝑑↓3/2 ​𝑠↓1/2 ⟩)	does	not	appear	with	the	L=0	terms,	and	can	be	an	
addi8onal	source	of	frustra8on.	

•  The	sign	of	 ​ℎ↓12 ​ℎ↓23 ​ℎ↓31 	is	invariant	under	phase	
transforma8on.		When	it	is	posi8ve,	the	frustra8on	occurs	among	 ​
𝑣↓1 ,	 ​𝑣↓2 	and	 ​𝑣↓3 .	​𝜂↓𝑎𝑏 (𝐿 𝑆=1 𝐽=1)/ ​(−1)↑​𝑗↓𝑏 −1/2 	

⊝	⊕	

⊝	

( ​𝑗↓<  ​𝑗↓>↑′ )	

( ​𝑗↓<  ​𝑗↓>↑ )	( ​𝑗↓>  ​𝑗↓>↑ )	



Tensor-force	contribu8ons	

Matrix	
element	
(MeV)	

diagonal	 +1.40	

+0.59	

-0.78	

off-diagonal	 +1.16	

-0.22	

+0.43	

Matrix	
element	
(MeV)	

diagonal	 +1.05	

+0.51	

-0.23	

off-diagonal	 +0.76	

-0.25	

+0.21	

•  Pointed	out	by	Talmi	in	terms	of	the	origin	of	long	life8me	of	14C.	

•  Evalua8on	with	the	π+ρ	meson	exchange	tensor	force	using	the	​
(−1)↑​𝑗↓𝑏 −1/2 | ​​𝑎𝑏 𝐽=1 𝑇=0⟩↓Condon−Shortley 	conven8on	

p	shell	 sd	shell	



Pair	transfer	matrix	elements	
•  It	is	o{en	discussed	that	pair	transfer	probability	is	a	good	measure	

of	pairing	correla8on.		

•  Isoscalar	pair	crea8on	and	removal	probabili8es:	
​|​​𝐽↓𝑓 ​𝑇↓𝑓  ⁠||​𝐷↑† || ⁠​𝐽↓𝑖 ​𝑇↓𝑖  |↑2 	and	 ​|​​𝐽↓𝑓 ​𝑇↓𝑓  ⁠||𝐷|| ⁠​𝐽↓𝑖 ​𝑇↓𝑖  |↑2 	

Pair	crea0on	on	
vacuum	

Pair	removal	
from	closure	

p	 8.1	 5.3×10-3	

sd	 15.7	 1.7	



Possible	effects	on	pair	condensate	
•  On	the	basis	of	strong	T=0	a`rac8ve	force,	isoscalar	pair	

condensates	are	expected	to	occur	especially	around	N=Z	nuclei,	
similar	to	well-known	isovector	pair	condensates.	
–  | ​𝛹⟩= ​(​𝛬↑† )↑𝑁 | ​−⟩	with	the	Cooper	pair	​𝛬↑† =∑𝑎𝑏↑▒​𝜆↓𝑎𝑏 ​[​𝑎↓𝑖↑† ​

×𝑎↓𝑗↑† ]↑𝐽=1 𝑇=0  	

•  There	seems	to	be	no	strong	evidence	for	isoscalar	pair	
condensates	in	the	actual	nuclei.	

•  As	shown	in	this	talk,	the	signs	of	the	isoscalar	pair	are	not	uniquely	
determined	because	of	frustra8on.	This	is	a	possible	reason	why	
isoscalar	pair	condensates	are	not	well	established.	



Summary	
•  We	have	exactly	proven	that	the	GT	matrix	elements	in	two-nucleon	

configura8ons	(2p	and	2h)	are	always	in	phase	with	the	isovetor-	
and	isoscalar-pairing	interac8ons,	which	accounts	for	“low-energy	
super	GT	states”.	

•  The	observed	hindrance	of	the	GT	matrix	elements	in	two-hole	
configura8ons	is	due	to	“non	coherence”	of	realis8c	(J,T)=(1,0)	
matrix	elements,	which	cannot	give	definite	signs	in	”Cooper	pairs”.	

•  Difference	in	sign	between	isoscalar-pairing	and	realis8c	interac8ons	
is	predominantly	caused	by	L=2	central	forces	and	tensor	forces.	

•  This	effect	can	prevent	correlated	proton-neutron	pair	from	forming	
isoescalar-pair	condensates,	which	are	not	established	in	
experiement.	


