Tensor Network and black hole

Masafumi Ishihara

Tohoku University WPI-AIMR

Collaborators: Hiroaki Matsueda
Sendai National college of Technology
Yoichiro Hashizume
Tokyo University of Science

H. Matsueda, M. I. and Y. Hashizume
Tensor Network

Tensor Network: Graphical representation of the wave function

Wave function of n-particle system

\[|\psi\rangle = \sum_{\{s_j\}} C^{s_1s_2\cdots s_n} |s_1s_2\cdots s_n\rangle \]

Tensor Network

Scalar: \(C \)

Vector: \(C^{s_1} \)

Matrix: \(C^{s_1s_2} \)

n-rank tensor: \(C^{s_1s_2\cdots s_n} \)
n-particles system in quantum critical system

Ground state wave-function can be approximately written as a special tensor network called **MERA** (Multi-scale entanglement renormalization ansatz) \((G.\text{Vidal}:2007)\)

\[
|\psi\rangle = \sum_{\{s_j\}} C^{s_1 s_2 \cdots s_n} |s_1 s_2 \cdots s_n\rangle
\]
Similarity between AdS space and MERA

MERA network \equiv a discrete version of AdS space

(B. Swingle, 2009)

MERA: graphical representation of the ground state wave function in the critical phase

Anti de Sitter (AdS) space

by M. C. Escher
MERA at thermal system and AdS Black Hole

By using Thermo Field Dynamics \((Y. \text{Takahashi and H. Umezawa, 1975}) \)

, we suggest the following MERA at thermal system corresponds to the AdS black hole.