Physics at HERA

Contents
- HERA and ZEUS
- Electroweak results
- Structure of the proton

Katsuo Tokushuku
(KEK, ZEUS)
HERA: (27.5GeV e vs 920GeV p) the world largest electron microscope
A view of the HERA ring tunnel

Proton ring

Electron ring
The corner stone (定礎)
In 1984
Experiments started in 1992
Progress in accelerator enables us to investigate the smaller structure.

HERA:
(27.5GeV electron vs 920GeV proton)

\[Q^2 \equiv -\left(q_i - q_f \right)^2 \]

In order to obtain the same CMS energy as HERA in a fixed target experiment, it requires 54TeV electron beam.
HERA probes the quarks in the proton

- Proton
 - @ KEKPH2005
 - 920 GeV
- Electron
 - 27.5 GeV
- Scattered quark
 - \bar{q}
 - Jet
- Parton distribution in the proton
 - Good sensitivity to the interaction type
 - High Energy
 - High Resolution
 - Polarized experiment

- New interactions and new particles

- Neutral Current
 - Charged Current

- HERA

3/March/2005
Introduction: Deep Inelastic Scattering

Described by 2 kinematic variables

\[Q^2 = -q^2 \]

\[x = \frac{Q^2}{2p.q} \]

\[
\frac{d\sigma_{e^\pm p}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} (Y_+ F_2 - y^2 F_L \mp Y_- x F_3)
\]

\[y = \frac{Q^2}{xs}, \] the inelasticity parameter, \(Y_\pm = (1 \pm (1 - y)^2) \)

\(F_2, F_L, \) and \(x F_3 \) are structure functions of the proton.

- \(F_L \): longitudinal component, damped by \(y^2 \).
- \(x F_3 \): Small at \(Q^2 \ll M_Z^2 \),

\[
F_2 = \sum_f e^2 x q_f(x, Q^2)
\]

\(q_f(x, Q^2) \): quark distribution function
Kinematical region for HERA structure function measurements

\[s = Q^2 xy \]

- 2 order higher region in \(Q^2 \),
- 2 order lower region in \(x \)
- Wide (\(O(10^6) \)) span in \(Q^2 \): Precise measurements for \(Q^2 \) evolution
High Q² measurements: still limited by statistics

→ HERA II
At high Q^2 ($Q^2 \sim M_{WZ}^2$),

\[\frac{d\sigma}{dQ^2} \propto \frac{\alpha'^2}{\left(Q^2 + M_{\text{Exchange}}^2\right)^2} \]

\[\sigma_{\text{NC}} \sim \sigma_{\text{CC}} \]

\[\rightarrow \text{Electroweak unification} \]

Good agreement with the SM

\[M_W = 80.3 \pm 2.1(\text{stat}) \pm 1.2(\text{syst}) \pm 1.0(\text{PDF}) \text{ GeV} \]

(from ZEUS e^+p data)

- $\sigma_{e^+p} < \sigma_{e^-p}$
 \[\leftrightarrow Z \text{ interference} \]
- $\sigma_{e^+p} < \sigma_{e^-p}$
 \[\leftrightarrow u,d\text{-quark distribution in the proton} \]

Measurements of NC/CC Cross sections

HerA-I Final Results

\[\sigma_{\text{NC}} \sim \sigma_{\text{CC}} \]
"softer" scattering
If the quark is not point-like

Good agreement with the SM

Quark Radius < \(0.85 \times 10^{-16}\) cm

No signal for Leptoquarks

Excess in 1994-1997 data (e+p)
NC Cross section including Z

\[
d\sigma_{e^+p}^{x}{dx\partial Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[\left\{ 1 + (1-y)^2 \right\} F_2 + \left\{ 1 - (1-y)^2 \right\} xF_3 \right]
\]

\[
F_2(x, Q^2) = \sum_q \left\{ e^2_f - 2e_f v_f v_e P_Z + (v_f^2 + a_f^2)(v_e^2 + a_e^2) P_Z^2 \right\} \left[xq(x, Q^2) + xq(x, Q^2) \right]
\]

\[
xF_3(x, Q^2) = \sum_q \left\{ -2e_f a_f a_e P_Z + 4v_f a_f v_e a_e P_Z^2 \right\} \left[xq(x, Q^2) - xq(x, Q^2) \right]
\]

\[
P_z = \frac{1}{\sin^2 2\theta_w} \left(\frac{Q^2}{Q^2 + M_Z^2} \right)
\]

ZEUS

\[
Q^2 > 10,000 \text{ GeV}^2
\]

\[
\frac{d\sigma}{dx} (\text{pb})
\]

\[
x,
\]

\[
\gamma Z \text{ interference effect}
\]

3/March/2005 K.Tokushuku(KEK) @ KEKPH2005
Longitudinal polarization of lepton beam: → Direct EW sensitivity

- Sokolov-Ternov effect
 → Lepton beam has transverse polarization
 +
- Spin rotator before/after the H1/ZEUS/HERMES detectors.

Luminosity Upgrade:
← High-Q^2 requires large luminosity

- Final focusing magnets in the detector
CC Expectations

With ~ 200 pb\(^{-1}\) for each polarized beam.

$M_{WL} \sim 80\text{MeV}$

$M_{WR} > 400\text{GeV}$
HERA delivered

Physics Luminosity 2002 - 2005

Even better performance with e⁻ p

04/05 e⁻

04 e⁺

03 e⁺

02/03 e⁺

3/March/2005 K.Tokushuku(KEK) @ KEKPH2005

Integrated Luminosity (pb⁻¹)

Days of running

Average HERA polarisation

Average longitudinal Polarization

P=+32%

P=-40%

(~50% in Feb 2005)

04 2003 Nov 2003 Dec 2003 Jan 2004

Oct 2003

Polarisation [%]

Day in month

Mar 2004

Jun 2004

Jul 2004

Aug 2004

~50% in Feb 2005

Polarisation [%]

Day in month

Avg. HERA Polarisation

P organisat

Mar 2004

Jun 2004

Jul 2004

Aug 2004

Polarisation [%]

Day in month

Avg. HERA Polarisation

P organisat
The first measurement of Left/Right asymmetry in CC in this energy region.

Consistent with the Standard Model.
Polarization effects observed in overall, i.e. no phase space bias.

→ Agrees with the SM prediction of: overall normalization change by (1+P) factor.
CC Cross-Sections [H1/ZEUS]

H1 preliminary result on \perp_R

$\sigma_{cc}(P=-1) = -3.7 \pm 2.4_{\text{stat}} \pm 2.7_{\text{syst}} \text{ pb}$

H1 cross sections are slightly lower but the two results are consistent.

$\rightarrow \perp_{cc} (RH) = 0$

$Q^2 > 400 \text{ GeV}^2$

$y < 0.9$
Polarized Neutral Current Cross section

- Very subtle effect from γ-Z interference
- Larger effect in e-p
 (The experiment has started in Nov 2004)

$\chi^2 = 1.69$
(w/ Pol.)

$\chi^2 = 2.29$
(w/o Pol.)
at $Q^2 > 1000$ GeV2

Pol.=70%

$\sigma^2 = 1.69$
(w/ Pol.)

$\sigma^2 = 2.29$
(w/o Pol.)

at $Q^2 > 1000$ GeV2

- ZEUS
- $P=\pm 32\% / P=0$
- $P=\pm 40\% / P=0$

- Polarized Neutral Current Cross section
- Very subtle effect from γ-Z interference
- Larger effect in e-p
 (The experiment has started in Nov 2004)

Pol.=70%
Kinematical region for HERA structure function measurements

\[s = Q^2 x y \]

- 2 order higher region in \(Q^2 \),
- 2 order lower region in \(x \)
- Wide (\(O(10^6) \)) span in \(Q^2 \): Precise measurements for \(Q^2 \) evolution
Early ZEUS data showed rapid increase of F_2 at low x.

Donnachie & Landshoff

“Hadronic”: Regge theory behavior of $\bar{p}p$ total cross section

“pQCD”: parton evolution

Gluck, Reya and Vogt

Predictions of F_2
Scaling violation

DGLAP evolution (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)

\[\frac{dF_2}{d \ln Q^2} = \alpha \sum_q e_q^2 \frac{\alpha_s(Q^2)}{2\pi} \int_1^\infty \frac{dy}{y} \left[P_{qq}(x/y) \cdot q(y, Q^2) + P_{qg}(x/y) \cdot g(y, Q^2) \right] \]

Q2 larger:
high-x q and g are split into low x q and g.
• Strong rise of F_2 as x decreases
 – Soft ‘sea’ of quarks in the proton
• Slope of rise gets steeper as $Q^2 \uparrow$
 softer part
 smaller resol.
 dynamics of quarks and gluons
• Good agreement with fixed-target experiments at middle - high x
 – Sea + valence quarks
F₂ for fixed x, as a function of Q²

- At low x, strong scaling violation is seen.
 Large gluon density + $g \rightarrow q\bar{q}$ splitting → F₂ increases
- At $x \sim 0.1$, approximate scaling.
- At higher x, F₂ decreases as $Q^2 \uparrow$.
 Quark radiates off gluon: $q \rightarrow qg$

- Line = result of QCD fit
 - All data points well described.
PDF parameterization

- \(xf(x) = p_1 x^{p_2} (1-x)^{p_3} (1+p_5 x) \) at \(Q_0^2 = 7 \text{GeV}^2 \)
 - \(p_1 \): normalization
 - \(p_2(p_3) \): \(x \to 0 \) (\(x \to 1 \)) bahavior
 - \(p_5 \): high-\(x \) shape

- Some assumptions
 - For \(xu_v \) and \(xd_v \), fix \(p_2=0 \) (not sensitive to low-\(x \) valence)
 - For \(xg \), fix \(p_5=0 \) (not sensitive to high-\(x \) gluon shape)
 - \(x\text{Sea}=(x\text{ubar}+x\text{dbar}+x\text{Strange}+x\text{Charm}) \), \(x\text{Strange}=0.2*x\text{Sea} \) (CCFR)
 - Use MRST form for \(x(u\text{bar}-d\text{bar}) \) shape (only fit \(p_1 \))

- Sum-rule constraints (number and momentum)
 - \(\int u_v(x)dx=2 \), \(\int d_v(x)dx=1 \), \(\int x\Sigma f(x)dx=1 \)

- Total: 11 free parameters, 1263 data points
As seen in the F_2 rise at low-x, many sea quarks.

Gluons are dominant at low-x.

Similar conclusion from ZEUS and the PDF fitters (Durham, CTEQ).

How about H1 results?

PDFs obtained from the fits

Note the scale factor. Gluon dominant at low-x.

H1/ZEUS comparison:
The main difference comes from

- Initial Parameter
- Selection of low energy experiments
Simultaneous extraction of α_s and PDF

- Scaling violation:
 \[\frac{\partial F_2}{\partial \ln Q^2} \sim \alpha_s \cdot x g(x, Q^2) \]

Data at low x allow disentangling correlation of α_s and $x g$

- α_s-free fit gives:
 \[
 \begin{align*}
 \text{H1:} & \quad \alpha_s = 0.1150 \pm 0.0017 \text{(exp)} \pm 0.0009 \text{(model)} \\
 & \quad \text{(additionally } \pm 0.0005 \text{ from renormalization scale)} \\
 \text{ZEUS:} & \quad \alpha_s = 0.1166 \pm 0.0049 \text{(exp)} \pm 0.0018 \text{(model)} \\
 & \quad \text{(additionally } \pm 0.0004 \text{ from renormalization scale)}
 \end{align*}
 \]

Difference in exp. error mainly from the treatment of systematic error and normalization of data points in the fitting procedure and error propagation.
What if there were no HERA data?

- HERA data determine the low-x gluon and sea-quark PDF.
- HERA revealed: F_2 is very steep.
Low-Q^2 sea and gluon distributions

- At $Q^2 \sim 1\text{GeV}^2$, gluon becomes valence-like (and even tends to be negative)
- Sea quark is still rising
S.F. measurements with 1 fb$^{-1}$

- Expected precision in F_2 and gluon determination
Flavor-specific measurements

- Complete ‘mapping’ of the proton...
 - d/u at high x: charged current
 - **Strange**: charm in CC and/or leading ϕ particle
 - **Charm and bottom**: improved tagging with micro-vertex

Charm 500 pb$^{-1}$

Bottom/charm 500 pb$^{-1}$
Summary

• HERA and ZEUS/H1 experiments
 – Collider = x100 extended region in \(Q^2 \) and \(x \).

• High- \(Q^2 \) NC and CC: electroweak effects
 – NC: effect of Z exchange (different coupling of quark-antiquark)
 – CC: flavor-specific (sees positive and negative quarks differently)

• HERA-II with longitudinal polarization just started.
 – \(W \) should couple with only right-handed \(e^+ \) (and left-handed \(e^- \)).

• \(F_2 \) measurement and PDF determination
 – Very steep rise of sea and gluon at low \(x \).