Search for Quark Gluon Plasma at RHIC

Hideki Hamagaki

Center for Nuclear Study
University of Tokyo
Outline of This Talk

• Introduction
 - Scope and primary goal of studies with heavy ion collisions
 - RHIC and the experiments

• Key conditions and signatures of QGP (with selected results)
 - High density
 - Chemical equilibrium
 - Thermal equilibrium
 - Signatures of deconfinement

• Summary and Outlook
Scope of the Research

• Hadrons
 - building blocks of nuclear matter
 - Peculiar property of QCD = Confinement
 • quarks cannot be extracted as single entities
 • we only have baryons and mesons, for sure.

• New forms of hadronic matter
 - Lattice-QCD predicts a new phase of nuclear matter (quark gluon plasma: QGP) at high temperature
 • relevance to Big Bang
 - Phases at high baryon density region
 • relevance to neutron star
Method and Goal of the Research

• Experimental method
 - ultra-relativistic heavy ion collision is a unique tool to create matter with high energy density

• Research Goals
 - realize and evident QGP
 - study its properties
RHIC and the Experiments

RHIC
- 2 independent rings
- 3.83 km circumference
- CMS energy
 - Au + Au: up to 200 A GeV
 - p + p: 500 GeV (polarized)
- two programs: Heavy Ion and SPIN

BRAHMS, PHOBOS
- Small collaborations (~100)
- Large \(\eta \) but small \(\phi \) coverage

STAR, PHENIX
- Big collaborations (~500)
- Small \(\eta \) but large \(\phi \) coverage
Advertisement of Japanese group

- Two Japanese groups have been participating in the PHENIX experiment
 - Heavy ion: Japan-US collaboration in High Energy Physics
 - SPIN: RIKEN SPIN project
RHIC Operation

- The first collision: June 12, 2000
- Year-1 RUN
 - June ~ Sep. 4, 2000
 - Au+Au: $s_{NN}^{1/2} = 132$ GeV
- Year-2 RUN
 - Au+Au, p+p: $s_{NN}^{1/2} = 200$ GeV
- Year-3 RUN
 - Jan. 2003 ~ May 2004
 - d+Au, p+p: $s_{NN}^{1/2} = 200$ GeV
- Year-4 RUN
 - Jan. 2004 ~ May 2004
 - Au+Au, p+p: $s_{NN}^{1/2} = 200$ GeV, 63 GeV
- Year-5 RUN (currently ongoing)
 - Jan. 2005 ~
 - Cu+Cu, p+p: $s_{NN}^{1/2} = 63$ GeV
Key conditions and signatures of QGP

• High density
 - jet quenching

• Chemical equilibrium
 - particle yield

• Thermal equilibrium
 - hydrodynamical behavior
 → elliptic anisotropy v_2 in azimuthal angular distribution

• Signatures of deconfinement
 - hadron yield and v_2 at medium p_T
 - J/ψ yield: suppression and enhancement
 - thermal photons
Probing Partonic Matter with Jets

• Back-to-back Jet Production
 - a hard process common in high energy collisions
 - parton-parton hard scattering
 - parton fragmentation \rightarrow jet
 - high p_T hadrons = mostly leading particles

• In p-A and A-A collisions
 - binary collision scaling
 - nuclear modifications:
 nuclear shadowing & Cronin effect (kT broadening)

• In A-A Collisions
 - new effect = energy loss of partons due to gluon bremsstrahlung
 - a new probe to investigate gluon density

$$\Delta E = \pi C_A C_a \alpha_s^3 \int d\tau p_{\text{glue}}(\tau, r(\tau)) \tau \log \left(\frac{2E_{\text{jet}}}{\mu^2 L} \right)$$
Jet Quenching Effect in Au+Au

- Suppression of yield at high pT in central Au + Au collisions
- Missing of back-to-back angular correlation for high pT particles
Controlled Experiment with d + Au

- Initial state effects cannot be ruled out
 - strong reduction of gluon strength \(\leftrightarrow\) c.f. CGC
 - energy loss of leading baryons due to subsequent collisions

- With d + Au collisions, “initial” and “final” state effects can be distinguished
 - no significant final state effects in d + Au collisions
 - “less jets created” versus “jets quenched”
Confirmation of High Density Matter

- Behavior is clearly different between $d + Au$ and $Au + Au$
 - Final state effect (jet quenching) is the main cause of these effects seen in central $Au + Au$ collisions
 - Matter with large gluon density is created in $Au + Au$ collisions
 - A theoretical calculation gives; $\rho = 11.5/fm^3$, $\varepsilon = 8.8$ GeV/fm3 at $\tau = 1$ fm
Chemical Equilibrium

Two Freezeout

- **Chemical Freezeout**
 - End of inelastic interaction
 - Number of particles is fixed

- **Kinetic Freezeout**
 - End of elastic interaction
 - Momentum distribution is fixed

- **Chemical freeze-out model**
 - Assuming thermalization of hadrons consisted from u, d, s

\[
\rho_i = \gamma_s |s_i| \frac{g_i}{2\pi^2} T_{ch}^3 \left(\frac{m_i}{T_{ch}} \right)^2 K_2\left(\frac{m_i}{T_{ch}}\right) \lambda_q Q_i \lambda_s s_i
\]

- Q_i: 1 for u and d, -1 for u and d
- s_i: 1 for s, -1 for s
- g_i: spin-isospin freedom
- m_i: particle mass

- 4 parameters
 - T_{ch}: chemical freeze-out temperature
 - λ_q: light-quark chemical potential
 - λ_s: strangeness chemical potential
 - γ_s: strangeness saturation factor

2005/03/03 "QGP at RHIC" presented at KEKPH 2005
Chemical Fit

- The model reproduce data within (almost) one sigma
 - There are a few exception, but they are OK within 2 sigma

- Tch at RHIC (and SPS) seems to sit on the phase boundary
Centrality ($<N_{\text{part}}>$) Dependence

- $T_{\text{ch}} \sim 160$ MeV; close to T_{c}
- strangeness saturation factor γ_s
 - introduced to reflect that strangeness production/equilibration is a slow process
 - Increasing with $<N_{\text{part}}>$, and reach ~ 1 in central collisions
 - Only at RHIC; $\gamma_s < \sim 0.7$ at AGS and SPS energy
- Implication
 - fast strangeness production/equilibration at RHIC
 - it may only be possible in the deconfined phase
 - two-body process in hadronic phase is too slow
 - a new idea: multi-body interactions
Elliptic Anisotropy v_2

\[\frac{dN}{d\phi} = N \left[1 + \sum 2v_n \cos(n\phi) \right] \]

- ϕ: azimuthal angle for measured particles from a reaction plane
- v_n: anisotropy parameter

Large v_2 value indicates early thermalization
Large Elliptic Flow at RHIC

- Large v_2 is observed at RHIC
- v_2 value comparable to 'hydro' for $p_T < \sim 1.5$ GeV/c
- Hydro needs thermalization time Δt to be less than ~ 1 fm, in order to have large v_2 value comparable to the experimental results
Large Proton to Pion Ratio in Mid-rapidity Region

- Large p/π ratio at mid-p_T region in central Au-Au collisions
- Different central-to-peripheral ratio (R_{cp}) for π and p

- "Radial flow" is not the answer
 - R_{cp} for ϕ is similar to π, not to proton
 - If it is a "flow effect"
 - slope parameter: $T_0 \sim T + m<\beta^2>
 - $m_\phi \sim m_p$
 - A new scheme of hadron formation
- "recombination" instead of "fragmentation" from the QGP soup
Quark Recombination Model

• A new hadronization scheme other than fragmentation
 - could be a good probe of deconfinement
 - gain is larger for baryons than for mesons
 • large combinatorials in central Au-Au collisions
 • combining three quarks at pT/3 to produce a baryon at pT v.s. two quarks at pT/2 to produce a meson at pT

• v2/n vs pT/n
 - Good example to show validity of this model
Quarkonium in HI collisions

- Novel idea of J/ψ suppression
 - by Matsui and Satz (1986; before experimental results)
 - a good probe of deconfinement
 - suppression due to Debye screening in deconfined phase

- History in Brief
 - observation of suppression in S + A at SPS
 → turned out to be similar to p + A
 - anomalous suppression in Pb + Pb
 → a result to evident QGP at SPS
Recent Progress in Theory (I)

- Lattice-QCD told us:
 - confining potential starts to disappear at low temperature far below T_c
 - J/ψ does not melt easily
 - Impact to the scenarios
 - Is dissociation dynamical or static?
Recent Progress in Theory (II)

- Enhancement of J/ψ yield
 - recombination of charms becomes effective with increase of charm density
 - a signature of deconfinement
 - recombination of quarks from QGP soup
 - statistical hadronization model
 - coalescence in the final stage
 - kinetic formation model
 - reproduction in QGP + coalescence in the final stage
J/ψ in Au-Au collisions at RHIC

- results from Year-2 RUN
 - very poor

- but is already inconsistent with large enhancement scenarios
 - e.g. kinetic formation model, cf. PRC 63, 054905 (2001)

- In Run-4, 240 μb⁻¹ recorded with improved detector performance
 - ~ 100 times more J/ψ signals expected than in Run-2
Direct photons

- Direct photon is a unique probe, which provides direct information of its birth, because of penetrating property
- Photons can come from every stage of collisions, and can have various origins
- Direct photons = not from “hadron decay”

Diagram:
- Direct photons
 - Non-thermal
 - Initial hard scattering
 - Pre-equilibrium
 - Thermal
 - QGP
 - Hadron gas
- Photons from hadron decay
Quick Look of Various Photon Sources

- for thermal and hard photon measurements, hadron decay is a non-trivial background source
 - strong suppression of high \(p_T \) hadrons would improve the ratio, in particular, for hard direct photons

- a window for QGP thermal photons; \(p_T = 1 \sim 3 \text{ GeV/c} \)
Success in the 1st round

- Direct photon in high pT region in Au+Au collisions
 - suppression of high pT π^0 yield makes the γ/π^0 ratio larger
 - comparable to a pQCD calculation (Ncoll scaling), which means:
 - no strong initial state effect; modification of structure function
 - π^0 suppression is the final state effect

- 2nd round \rightarrow thermal photons
Is thermal photon yield suppressed?

- Comparison of the present result with calculations with kT broadening and jet QGP bremsstrahlung
 - fast quarks passing through QGP, which is a significant photon source for \(p_T < 6 \text{ GeV/c} \)
- At present, it is too early to claim anything significant

- Gluon plasma (GP) and photon yield
 - chemically non-equilibrium state; \(GP \rightarrow QGP \)
 - hotter than QGP (\(\leftrightarrow \) smaller degeneracy)
 - hot glue scenario?
 - If GP stays long, it will have impact to photon production in hot matter; photon yield will be related to the evolution from GP to QGP
 - Other way to say: photon suppression is the signature of GP; native no-QGP hadron picture can be ruled out
Summary and Outlook

Key conditions and signatures of QGP

• High density
 - jet quenching \(\rightarrow\) OK

• Chemical equilibrium
 - particle yield \(\rightarrow\) looks fine
 -- need dynamical model

• Thermal equilibrium
 - hydrodynamical behavior \(\rightarrow\) seems OK
 → elliptic anisotropy \(v_2\) in azimuthal angular distribution

• Signatures of deconfinement
 - hadron yield and \(v_2\) at medium \(p_T\) \(\rightarrow\) promising
 - \(J/\psi\) yield: suppression and enhancement \(\rightarrow\) stay tuned
 - thermal photons \(\rightarrow\) need further work
Epilogue

• All the RHIC results suggest realization of a new form of matter, Quark Gluon Plasma, but we still know little about “what is QGP”.

• Data suggests thermalization at very early stage → Idea of sQGP (strongly interacting QGP) came out.
 - Lattice calculations seem to support the idea of strongly interacting matter near Tc
 - at the same time, it is a perfect fluid with very small viscosity, according to hydrodynamics.

• Study of properties of QGP is the next stage of this exciting field
 - RHIC → RHIC-II
 - LHC